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1. Notation and main results

In combinatorial analysis, the Bell polynomials of the second kind, also known as
the partial Bell polynomials, denoted by Bn,k(x1, x2, . . . , xn−k+1), can be defined
by

Bn,k(x1, x2, . . . , xn−k+1) =
∑

1≤i≤n,`i∈{0}∪N∑n
i=1 i`i=n∑n
i=1 `i=k

n!∏n−k+1
i=1 `i!

n−k+1∏
i=1

(xi
i!

)`i

for n ≥ k ≥ 0. The well-known Faà di Bruno formula can be described in terms of
the Bell polynomials of the second kind Bn,k(x1, x2, . . . , xn−k+1) by

dn

dxn
f ◦ g(x) =

n∑
k=0

f (k)(g(x))Bn,k
(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
, (1.1)

see [2, p. 139, Theorem C].
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The first aim of this paper is to discover an explicit formula for special values

Bn,k((−1)!!, 1!!, 3!!, . . . , [2(n− k)− 1]!!). (1.2)

Theorem 1.1. For n ≥ k ≥ 0, we have

Bn,k((−1)!!, 1!!, 3!!, . . . , [2(n− k)− 1]!!) =
(−1)n

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
m=0

(`− 2m). (1.3)

In recent years, several explicit formulas of special values for the Bell polynomials
of the second kind Bn,k(x1, x2, . . . , xn−k+1) were discovered, recovered, and applied
in [4, 6, 19,22,30,37] and references cited therein.

The Bessel polynomials were defined in [9] by

yn(x) =

n∑
k=0

(n+ k)!

(n− k)!k!

(
x

2

)k
,

n∑
k=0

bn,kx
k. (1.4)

The first five Bessel polynomials yn(x) for 0 ≤ n ≤ 4 are

y0(x) = 1, y1(x) = x+ 1, y2(x) = 3x2 + 3x+ 1,

y3(x) = 15x3 + 15x2 + 6x+ 1, y4(x) = 105x4 + 105x3 + 45x2 + 10x+ 1.

For more information on the Bessel polynomials yn(x), please refer to the web
sites [33,34,38].

The second aim is to simplify the right hand side of the identity (1.3) in The-
orem 1.1 and, as a consequence, to find a connection between special values of the
quantity (1.2) and coefficients bn,k, defined in (1.4), of the Bessel polynomials yn(x).

Theorem 1.2. For n ≥ k ≥ 0, we have

Bn,k((−1)!!, 1!!, 3!!, . . . , [2(n− k)− 1]!!) =

(
2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!. (1.5)

Consequently, coefficients bn,k of the Bessel polynomials yn(x) and special values of
the quantity (1.2) satisfy

bn,k = Bn+1,n−k+1((−1)!!, 1!!, 3!!, . . . , (2k − 1)!!), n ≥ k ≥ 0. (1.6)

In combinatorial number theory, the Catalan numbers Cn for n ≥ 0 form a
sequence of natural numbers that occur in tree enumeration problems such as “In
how many ways can a regular n-gon be divided into n − 2 triangles if different
orientations are counted separately?” The first twelve Catalan numbers Cn for
0 ≤ n ≤ 11 are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786.

Let us recall some conclusions in [3,8,35,36] as follows. Explicit formulas of Cn for
n ≥ 0 include

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

n!(n+ 1)!
=

2n(2n− 1)!!

(n+ 1)!
= (−1)n22n+1

(
1/2

n+ 1

)
=

1

n

(
2n

n− 1

)
=

4nΓ(n+ 1/2)√
π Γ(n+ 2)

= 2F1(1− n,−n; 2; 1), (1.7)
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where

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0

is the classical Euler gamma function and

pFq(a1, . . . , ap; b1, . . . , bq; z) =

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!

is the generalized hypergeometric series defined for positive integers p, q ∈ N, for
complex numbers ai ∈ C and bi ∈ C \ {0,−1,−2, . . . }, and in terms of the rising
factorials

(x)n =

{
x(x+ 1)(x+ 2) . . . (x+ n− 1), n ≥ 1,

1, n = 0.

The asymptotic form for the Catalan function

Cx ,
4xΓ

(
x+ 1

2

)
√
π Γ(x+ 2)

is

Cx ∼
4x√
π

(
1

x3/2
− 9

8

1

x5/2
+

145

128

1

x7/2
+ · · ·

)
.

Motivated by the sixth expression in (1.7) and by virtue of an integral represen-
tation of the gamma function ln Γ(x), the authors represented in [32, Theorem 1]
the Catalan function Cx as

Cx =
e3/24x(x+ 1/2)x√
π (x+ 2)x+3/2

exp

[∫ ∞
0

1

t

(
1

et − 1
− 1

t
+

1

2

)(
e−t/2 − e−2t

)
e−xt d t

]
for x ≥ 0. Hereafter, the above integral representation was further deeply cultivated
in [15, 29]. For more detailed information on the Catalan numbers Cn, please refer
to the monographs and websites [2, 3, 35,39] and references cited therein.

The third aim of this paper is to apply the formulas (1.3) and (1.5) in Theorem-
s 1.1 and 1.2 to express the Catalan numbers as new forms below.

Theorem 1.3. For n ≥ 0, the Catalan numbers can be expressed by

Cn = (−1)n
2n

n!

n∑
k=0

1

2k

k∑
`=0

(−1)`
(
k

`

) n−1∏
m=0

(`− 2m) (1.8)

=
2n

n!

n∑
k=0

k!

2k

(
2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!. (1.9)

Finally, the fourth aim of this paper is to apply the formula (1.5) in Theorem 1.2
to compute arbitrary higher order derivatives of several elementary functions of the
form f(

√
a+ bx ) for a, b ∈ R and b 6= 0. As examples, we obtain the following

results.

Theorem 1.4. Let g(x) =
√
a+ bx for a, b ∈ R and b 6= 0 and let n ∈ N. Then

the Bell polynomials of the second kind Bn,k satisfy

Bn,k
(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
=(−1)n+k[2(n− k)− 1]!!

(
b

2

)n(
2n− k − 1

2(n− k)

)
1

(a+ bx)n−k/2
. (1.10)
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Consequently, for n ≥ 0, we have

dn
(
sin
√
x
)

dxn
=

(−1)n

(2x)n

n∑
k=0

(−1)k[2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
xk/2 sin

(√
x + k

π

2

)
,

dn
(
cos
√
x
)

dxn
=

(−1)n

(2x)n

n∑
k=0

(−1)k[2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
xk/2 cos

(√
x + k

π

2

)
,

dn
(
e
√
x
)

dxn
=

(−1)n

(2x)n
e
√
x

n∑
k=0

(−1)k[2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
xk/2,

and

dn
[
ln
(
1±
√
x
)]

dxn

=
(−1)n+1

(2x)n

n∑
k=0

(±1)k(k − 1)![2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)( √
x

1±
√
x

)k
.

For n ≥ 1, we have

dn(arcsinx)

dxn
= −dn(arccosx)

dxn
=

dn−1

dxn−1

(
1√

1− x2

)
=

1

(2x)n

n−1∑
k=0

2k+1(2k − 1)!!(n− k − 1)!

(
n− 1

k

)(
k

n− k − 1

)(
x2

1− x2

)k+1/2

.

(1.11)

Consequently, for n ≥ 1, we have

dn
(
arcsin

√
x
)

dxn
= −

dn
(
arccos

√
x
)

dxn

=
(−1)n

(2x)n

n∑
k=1

(−1)k

2k
[2(n− k)− 1]!!

(
2n− k − 1

2(n− k)

)
1

(
√
x )k

×
k−1∑
`=0

2`+1(2`− 1)!!(k − `− 1)!

(
k − 1

`

)(
`

k − `− 1

)(
x2

1− x2

)`+1/2

.

2. Proofs of Theorems 1.1 to 1.4

Now we are in a position to prove Theorems 1.1 to 1.4 in details.
Proof. [First proof of Theorem 1.1] In [2, p. 133], it was collected that

1

k!

( ∞∑
m=1

xm
tm

m!

)k
=

∞∑
n=k

Bn,k(x1, x2, . . . , xn−k+1)
tn

n!

for k ≥ 0. From this, it follows that

∞∑
n=k

Bn,k((−1)!!, 1!!, 3!!, . . . , [2(n− k)− 1]!!)
tn

n!
=

1

k!

( ∞∑
m=1

(2m− 3)!!
tm

m!

)k
=

1

k!

(
1−
√

1− 2t
)k
.
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Differentiating m ≥ k times on both sides of the above equation reveals that

∞∑
n=m

Bn,k((−1)!!, 1!!, 3!!, . . . , [2(n− k)− 1]!!)
tn−m

(n−m)!

=
1

k!

dm

d tm
(
1−
√

1− 2t
)k

= (−1)k
1

k!

dm

d tm
(√

1− 2t − 1
)k

=(−1)k
1

k!

dm

d tm

k∑
`=0

(−1)k−`
(
k

`

)
(1− 2t)`/2 =

1

k!

k∑
`=0

(−1)`
(
k

`

)
dm

d tm
(1− 2t)`/2

=
1

k!

k∑
`=0

(−1)`
(
k

`

)m−1∏
p=0

(
`

2
− p
)

(−2)m(1− 2t)`/2−m.

Further letting t→ 0 yields

Bm,k((−1)!!, 1!!, 3!!, . . . , (2(m− k)− 1)!!) =
1

k!

k∑
`=0

(−1)`
(
k

`

)m−1∏
p=0

(
`

2
− p
)

(−2)m

= (−1)m
1

k!

k∑
`=0

(−1)`
(
k

`

)m−1∏
p=0

(`− 2p).

The formula (1.3) is thus proved. The first proof of Theorem 1.1 is complete.
Proof. [Second proof of Theorem 1.1] The nth derivative of the function 2

1+
√

1−4x

can be computed by the Faà di Bruno formula (1.1) or by the following formula

dn y

dxn
=

n∑
k=0

(−1)k

k!

k∑
α=0

(−1)α
(
k

α

)
uk−α

dn(uα)

dxn
dk y

duk
, n ≥ 0 (2.1)

in [31, p. 12, (83)], where y = φ(u) and u = f(x).
Taking in (1.1) f(u) = 2

1+u and u = g(x) =
√

1− 4x yields(
2

1 +
√
1− 4x

)(n)

=2

n∑
k=0

(−1)k k!

(1 + u)k+1

× Bn,k

(
− 2

(1− 4x)1/2
,− 22

(1− 4x)3/2
, . . . ,−2n−k+1[2(n− k + 1)− 3]!!

(1− 4x)[2(n−k+1)−1]/2

)
=2

n∑
k=0

(−1)k k!(
1 +
√
1− 4x

)k+1
(−1)k2n (1− 4x)k/2

(1− 4x)n

× Bn,k
(
(−1)!!, 1!!, . . . , [2(n− k)− 1]!!

)
=

2n+1

(1− 4x)n

n∑
k=0

k!
(√

1− 4x
)k(

1 +
√
1− 4x

)k+1
Bn,k

(
(−1)!!, 1!!, . . . , [2(n− k)− 1]!!

)
, (2.2)

where the formula

Bn,k
(
abx1, ab

2x2, . . . , ab
n−k+1xn−k+1

)
= akbnBn,k(x1, x2, . . . , xn−k+1) (2.3)

for complex numbers a and b, which was listed in [2, p. 135], was employed above.
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Taking in (2.1) y = φ(u) = 2
1+u

and u = f(x) =
√
1− 4x gives

(
2

1 +
√
1− 4x

)(n)

=

n∑
k=0

(−1)k

k!

k∑
α=0

(−1)α
(
k

α

)(√
1− 4x

)k−α
× dn[(1− 4x)α/2]

dxn
dk

duk

(
2

1 + u

)
=

n∑
k=0

(−1)k

k!

k∑
α=0

(−1)α
(
k

α

)(√
1− 4x

)k−α
×
n−1∏
`=0

(α− 2`)(−2)n(1− 4x)α/2−n
2(−1)kk!(

1 +
√
1− 4x

)k+1

=(−1)n 2n+1

(1− 4x)n

n∑
k=0

k!
(√

1− 4x
)k(

1 +
√
1− 4x

)k+1

k∑
α=0

(−1)α

α!(k − α)!

n−1∏
`=0

(α− 2`).

(2.4)

Comparing derivatives (2.2) and (2.4) leads to (1.3). The second proof of Theorem 1.1 is
complete.

Proof. [Proof of Theorem 1.2] In [33], it was mentioned that

Bn,k
(
f ′, f ′′, f ′′′, . . . , f (n−k+1)

)
= T (n− 1, k − 1)(1− 2x)k/2−n, (2.5)

where f(x) = 1−
√

1− 2x and

T (n, k) =

(
2n− k

2(n− k)

)
[2(n− k)− 1]!!, n ≥ k ≥ 0. (2.6)

On the other hand, as done in (2.2), it follows that

Bn,k
(
f ′, f ′′, f ′′′, . . . , f (n−k+1)

)
= Bn,k

(
1

(1− 2x)1/2
,

1

(1− 2x)3/2
, . . . ,

[2(n− k + 1)− 3]!!

(1− 2x)[2(n−k+1)−1]/2

)
= Bn,k

(
(−1)!!, 1!!, . . . , [2(n− k)− 1]!!

)
(1− 2x)k/2−n.

Since the sequence of the functions (1− 2x)k/2−n is linearly independent, we have

Bn,k
(
(−1)!!, 1!!, . . . , [2(n−k)−1]!!

)
= T (n−1, k−1) =

(
2n− k − 1

2(n− k)

)
[2(n−k)−1]!!,

that is, the identity (1.5) follows immediately.

The equality (1.6) comes from directly verifying bn,k = T (n, n − k). The proof
of Theorem 1.2 is complete.

Proof. [Proof of Theorem 1.3] The Catalan numbers Cn can be generated [35,39]
by

2

1 +
√

1− 4x
=

1−
√

1− 4x

2x
=

∞∑
k=0

Ckx
k. (2.7)

Hence, making use of the equations (2.2) and (2.4) and employing Theorem 1.1, it
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follows that

Cn =
1

n!
lim
x→0

(
2

1 +
√

1− 4x

)(n)

=
2n+1

n!

n∑
k=0

k!

2k+1
Bn,k

(
(−1)!!, 1!!, . . . , [2(n− k)− 1]!!

)
=

2n+1

n!

n∑
k=0

k!

2k+1
(−1)n

1

k!

k∑
`=0

(−1)`
(
k

`

) n−1∏
m=0

(`− 2m)

= (−1)n
2n

n!

n∑
k=0

1

2k

k∑
`=0

(−1)`
(
k

`

) n−1∏
m=0

(`− 2m).

Therefore, the equality (1.8) is deduced readily.
Similarly, we can derive the equality (1.9). The proof of Theorem 1.3 is complete.

Proof. [Proof of Theorem 1.4] By virtue of (2.3) and the formula (1.5), we have

Bn,k
(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
=Bn,k

(
1

2

b

(a+ bx)1/2
,

1

2

(
−1

2

)
b2

(a+ bx)3/2
,

1

2

(
−1

2

)(
−3

2

)
b3

(a+ bx)5/2
, . . . , (−1)n−k

[2(n− k)− 1]!!

2n−k+1

bn−k+1

(a+ bx)(2(n−k)+1)/2

)
=(−1)n+k 1

2n
(a+ bx)k/2

bn

(a+ bx)n
Bn,k((−1)!!, 1!!, 3!!, . . . , [2(n− k)− 1]!!)

=(−1)n+k 1

2n

(
2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!

bn

(a+ bx)n−k/2
.

The formula (1.10) is thus derived.
Further, by the Faà di Bruno formula (1.1) applied to the functions f(u) = sinu

and u = g(x) =
√
x and by the formula (1.10) applied to a = 0 and b = 1, we easily

obtain

dn

dxn
(
sin
√
x
)

=

n∑
k=0

sin(k) uBn,k
(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
=

n∑
k=0

sin

(√
x + k

π

2

)
(−1)n+k 1

2n

(
2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!

1

xn−k/2

=
(−1)n

(2x)n

n∑
k=0

(−1)k
(

2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!xk/2 sin

(√
x + k

π

2

)
.

As did just now, considering cos(n) x = cos
(
x+nπ2

)
leads to the formula for the

derivative dn

d xn

(
cos
√
x
)

in Theorem 1.4.
Similarly, we acquire

dn

dxn
(
e
√
x
)

= e
√
x

n∑
k=0

Bn,k
(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
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= e
√
x

n∑
k=0

(−1)n+k 1

2n

(
2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!

1

xn−k/2

= (−1)n
e
√
x

(2x)n

n∑
k=0

(−1)k
(

2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!xk/2.

Furthermore, we see that

dn

dxn
[
ln
(
1±
√
x
)]

=

n∑
k=0

(−1)k−1(k − 1)!

(1±
√
x )k

Bn,k
(
±g′(x), . . . ,±g(n−k+1)(x)

)
=

n∑
k=0

(−1)k−1(k − 1)!

(1±
√
x )k

(±1)kBn,k
(
g′(x), . . . , g(n−k+1)(x)

)
=

n∑
k=0

(−1)k−1(k − 1)!

(1±
√
x )k

(±1)k(−1)n+k 1

2n

(
2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!

1

xn−k/2

=
(−1)n+1

(2x)n

n∑
k=0

(±1)k(k − 1)!

(
2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!

( √
x

1±
√
x

)k
.

In the proof of [30, Theorem 3.1, pp. 601–602], it was derived that

dn

dxn

(
1√

1− x2

)
=

n∑
k=0

(2k − 1)!!

(1− x2)k+1/2
Bn,k(x, 1, 0, . . . , 0), n ≥ 0.

In [6, Theorem 4.1], it was established that the Bell polynomials of the second kind
Bn,k for 0 ≤ k ≤ n satisfy

Bn,k(x, 1, 0, . . . , 0) =
(n− k)!

2n−k

(
n

k

)(
k

n− k

)
x2k−n. (2.8)

As a result, it follows that

dn

dxn
(arcsinx)

=− dn

dxn
(arccosx) =

dn−1

dxn−1

(
1√

1− x2

)
=

n−1∑
k=0

(2k − 1)!!

(1− x2)k+1/2
Bn−1,k(x, 1, 0, . . . , 0)

=

n−1∑
k=0

(2k − 1)!!

(1− x2)k+1/2

(n− k − 1)!

2n−k−1

(
n− 1

k

)(
k

n− k − 1

)
x2k−n+1

=
1

(2x)n

n−1∑
k=0

(2k − 1)!!(n− k − 1)!2k+1

(
n− 1

k

)(
k

n− k − 1

)(
x2

1− x2

)k+1/2

for n ≥ 1. The formula (1.11) is proved.
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By the Faà di Bruno formula (1.1), the formula (1.10) applied to a = 0 and
b = 1, and the formula (1.11), we arrive at

dn

dxn
(
arcsin

√
x
)

= − dn

dxn
(
arccos

√
x
)

=

n∑
k=0

(
arcsin(k) u

)
Bn,k

(
g′(x), g′′(x), . . . , g(n−k+1)(x)

)
=

n∑
k=1

1

(2x)k

k−1∑
`=0

(2`− 1)!!(k − `− 1)!2`+1

(
k − 1

`

)(
`

k − `− 1

)(
x2

1− x2

)`+1/2

× (−1)n+k 1

2n

(
2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!

1

xn−k/2

=
(−1)n

(2x)n

n∑
k=1

(−1)k

(2x)k

(
2n− k − 1

2(n− k)

)
[2(n− k)− 1]!!xk/2

×
k−1∑
`=0

(2`− 1)!!(k − `− 1)!2`+1

(
k − 1

`

)(
`

k − `− 1

)(
x2

1− x2

)`+1/2

for n ≥ 1. The proof of Theorem 1.4 is complete.

3. Remarks

Finally, we give several remarks on the recovery of the third formula in (1.7), on
the formulas (1.11) and (2.8), and on the derivatives of some elementary functions.

Remark 3.1. Let u = u(z) and v = v(z) 6= 0 be differentiable functions. In [1,
p. 40], the formula

dk

d zk

(
u

v

)
=

(−1)k

vk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u v 0 . . . 0

u′ v′ v . . . 0

u′′ v′′ 2v′ . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . .

u(k−1) v(k−1)
(
k−1

1

)
v(k−2) . . . v

u(k) v(k)
(
k
1

)
v(k−1) . . .

(
k
k−1

)
v′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.1)

for the kth derivative of the ratio u(z)
v(z) was listed. In [19, Section 2.2, p. 849], [22,

(3.2) and (3.3)], and [37, Lemma 2.1], the formula (3.1) was reformulated as

dk

d zk

(
u

v

)
=

(−1)k

vk+1

∣∣∣A(k+1)×1 B(k+1)×k

∣∣∣
(k+1)×(k+1)

, (3.2)

where the matrices

A(k+1)×1 = (a`,1)0≤`≤k and B(k+1)×k = (b`,m)0≤`≤k,0≤m≤k−1

satisfy

a`,1 = u(`)(z) and b`,m =

(
`

m

)
v(`−m)(z)
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under the conventions that v(0)(z) = v(z) and that
(
p
q

)
= 0 and v(p−q)(z) ≡ 0 for

p < q. Applying the formula (3.1) or (3.2) to the function 1−
√

1−4x
2x by taking

u(x) = 1−
√

1− 4x and v(x) = 2x reveals that

dn

dxn

(
1−
√

1− 4x

2x

)
=

(−1)n

2xn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1−
√

1− 4x x 0 . . . 0 0

2√
1−4x

1 x . . . 0 0

4
(1−4x)3/2

0 2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

2n−2(2n−7)!!
(1−4x)(2n−5)/2 0 0 . . . x 0

2n−1(2n−5)!!
(1−4x)(2n−3)/2 0 0 . . . n− 1 x

2n(2n−3)!!
(1−4x)(2n−1)/2 0 0 . . . 0 n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(−1)n

2xn+1
D(n+1)×(n+1),

where the determinant D(n+1)×(n+1) satisfies

D(n+1)×(n+1) = nDn×n + (−1)n
2n(2n− 3)!!

(1− 4x)(2n−1)/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 . . . 0 0

1 x . . . 0 0

0 2 . . . 0 0

. . . . . . . . . . .

0 0 . . . x 0

0 0 . . . n− 1 x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= nDn×n + (−1)n2n(2n− 3)!!
xn

(1− 4x)n−1/2
.

Consequently, we obtain

dn

dxn

(
1−
√

1− 4x

2x

)
=

(−1)n

2xn+1

[
nDn×n + (−1)n2n(2n− 3)!!

xn

(1− 4x)n−1/2

]
= − 1

x

[
n

(−1)n−1

2xn
Dn×n −

2n−1(2n− 3)!!

(1− 4x)n−1/2

]
= − 1

x

[
n

dn−1

dxn−1

(
1−
√

1− 4x

2x

)
− 2n−1(2n− 3)!!

(1− 4x)n−1/2

]
.

This implies that

lim
x→0

dn−1

dxn−1

(
1−
√

1− 4x

2x

)
=

1

n
lim
x→0

2n−1(2n− 3)!!

(1− 4x)n−1/2
=

2n−1(2n− 3)!!

n
.

As a result, by virtue of (2.7), we acquire

Cn−1 =
2n−1(2n− 3)!!

n!

which recovers the third formula in (1.7) for the Catalan numbers Cn for n ≥ 0.
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Remark 3.2. On 14 September 2015, when the original version of this paper was
finalized, we found the papers [13, 14, 17] which are related to the generating func-
tion (2.7) of the Catalan numbers Cn and its derivatives.

Remark 3.3. As said in [6, Remark 4.1], the formulas in (1.11) simplify those
results obtained in [30, Theorem 2.1 and Corollaries 2.1 and 2.2] while the formu-
la (2.8) simplifies [30, Theorem 3.1].

Remark 3.4. Recently, among other things, several explicit formulas and their
applications of higher order derivatives for the tangent and cotangent functions
were collected and established in [19]. By virtue of conclusions obtained in [5,7,41],
some nice closed formulas for higher order derivatives of the tangent, cotangent,
secant, cosecant, hyperbolic tangent, hyperbolic cotangent, hyperbolic secant, and
hyperbolic cosecant functions were found in [40]. Hence, we can regard this paper
as a companion of the papers [19,30,40] and closely related reference therein.

Remark 3.5. This paper is a companion of the articles [15, 16, 23–25, 29, 32] and
the preprints [18,20,21,26,28] and is a slightly revised version of the preprint [27].

4. Appendix

For completeness and accuracy, we now directly and alternatively verify the formu-
las (2.5) and (2.6) as follows.

In [10–12] and closely-related references therein, the composita Y ∆(n, k, x) of
the function

Y (x, z) = y(x+ z)− y(x)

was introduced by

Y ∆(n, k, x) =
∑
πk∈Sn

k∏
i=1

y(λi)(x)

λi!
,

where y(i) is the ith derivative of the function y(x), Sn is the set of compositions

of n, and πk is the composition of n with k parts such that
∑k
`=1 λ` = n. In those

papers, it was proved that the composita Y ∆(n, k, x) can be generated by

[Y (x, z)]k = [y(x+ z)− y(x)]k =

∞∑
n=k

Y ∆(n, k, x)zn (4.1)

and that the Bell polynomials Bn,k and the composita Y ∆(n, k, x) have the relation

Bn,k
(
y′(x), y′′(x), . . . , y(n−k+1)(x)

)
=
n!

k!
Y ∆(n, k, x). (4.2)

It is straightforward that

[f(x+ y)− f(x)]k = (1− 2x)k/2
(

1−
√

1− 2y

1− 2x

)k
,

where f(x) = 1−
√

1− 2x . Since

(
1−
√

1− z
)k

=

∞∑
n=k

k2k−2n
(

2n−k−1
n−k

)
n

zn,
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by regarding 2
1−2x as a coefficient, we derive

(
1−

√
1− 2y

1− 2x

)k
=

∞∑
n=k

(
2

1− 2x

)n k2k−2n
(

2n−k−1
n−k

)
n

yn.

Hence, by (4.1), the composita F∆(n, k, x) of the function F (x, z) = f(x+z)−f(x)
is equal to

F∆(n, k, x) = (1− 2x)k/2
(

2

1− 2x

)n
k

n
2k−2n

(
2n− k − 1

n− k

)
= 2k−n

k

n

(
2n− k − 1

n− k

)
(1− 2x)k/2−n.

Therefore, by virtue of the relation (4.2), the Bell polynomial of the second kind
Bn,k for the function f(x) = 1−

√
1− 2x is

Bn,k
(
f ′(x), f ′′(x), . . . , f (n−k+1)(x)

)
=
n!

k!
F∆(n, k, x)

= 2k−n
(n− 1)!

(k − 1)!

(
2n− k − 1

n− k

)
(1− 2x)k/2−n

which can be reformulated as (2.5) and (2.6).
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