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Abstract Nonlinear wave phenomena are of great importance in the nature,
and have became for a long time a challenging research topic for both pure
and applied mathematicians. In this paper the solitary wave, kink (anti-kink)
wave and periodic wave solutions for a class of (3+1)-dimensional nonlinear
equation were obtained by some effective methods from the dynamical systems
theory.
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1. Introduction

In the last few decades, the research on traveling wave solutions for soliton equations
is one of most prominent events in the field of nonlinear sciences. Researching
the exact traveling wave solutions can help both mathematicians and physicists to
understand the mechanism of phenomena in nature which have been described by
these soliton equations.

In recent years, some of powerful methods have been proposed to get solu-
tions of different equations. Abourabia and Morad [1] applied two different exact
methods to obtain exact traveling wave solutions of the van der Waals normal
form for fluidized granular matter. The results show that the exact solutions of
the model introduce solitary waves with different types. Applying the G′/G ex-
pansion method, Alquran and Qawasmeh [2, 12] investigated the traveling wave
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solutions determined by the generalized shallow water wave equation, and also in-
vestigated the Whitham-Broer-Kaup model for dispersive long waves in the shallow
water small-amplitude regime. Rehman et.al [13] investigated the possible class-
es of traveling wave solutions of some members of a recently-derived integrable
family of generalized Camassa-Holm equations, and got smooth and non-smooth
traveling wave solutions of some generalized Camassa-Holm equations. Zhao and
Ruan [19] researched the existence, uniqueness, and asymptotic stability of time
periodic traveling wave solutions for a class of periodic advection-reaction-diffusion
systems under certain conditions. Lin [11] applied Schauder fixed point theorem
to proof the existence of traveling wave solutions for integro-difference systems of
higher order. Then the asymptotic behavior of traveling wave solutions was stud-
ied by using the idea of contracting rectangles. Li et.al [10] applied the extended
Riccati equation method to the Zakharov-Kuznetsov equation and then obtained
more general exact traveling wave solutions under specific parametric conditions.
Using the bifurcation theory of dynamical systems to the (2+1)-dimensional gener-
alized asymmetric Nizhnik-Novikov-Veselov equation, Zhang and Han [17] obtained
the existence of solitary wave solutions and uncountably infinite many smooth and
non-smooth periodic wave solutions in different regions of parametric spaces.

In [3,4,14], four (2+1)-dimensional nonlinear models generated by the Jaulent-
Miodek hierarchy were developed in the form
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under the decaying condition at infinity. The model of (1.1a) above was studied by
using a perturbation technique in Wu [16]. Wazwaz [14] studied the model (1.1c)
to derive multiple kink solutions and multiple singular kink solutions by use of
Hirota’s bilinear method [6], and then the author gave soliton solutions in terms of
exponential polynomials. The other models can be researched in a similar manner.

Wazwaz [15] extended the works in [3, 4, 13], and have further researched four
(3+1)-dimensional nonlinear models generated by the Jaulent-Miodek hierarchy.
The (3+1)-dimensional nonlinear models were developed in the form
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where α is a parameter. It is obvious that these (3+1)-dimensional nonlinear models
are developed by adding α∂−1

x wzz to the first three models in (1.1), and the terms
− 3

4∂
−1
x wzz − 1

4wz −
1
2wy to the fourth model in (1.1).

Wazwaz [15] applied the method of Hereman-Nuseir [5] to model (1.3a) and
(1.3d) to derive multiple soliton solutions. The single soliton solution, two-soliton
solutions and three-soliton solutions for model (1.3a) were obtained. In addition, the
single soliton solution, two-soliton solutions and three-soliton solutions for model
(1.3d) were also obtained respectively.

In order to obtain traveling wave solutions for a class of nonlinear integrable
evolution equations, it is always significant to decompose a nonlinear partial dif-
ferential equation into a pair of systems of ordinary differential equations both in
theoretical point and practical point of view. This approach aims to decompose in-
tegrable soliton equations into finite-dimensional Hamiltonian systems, and it also
makes it very natural to compute solutions of soliton equations. Li [7–9] applied
these effective methods from the dynamical systems theory to proof the existence of
solitary wave, kink wave and periodic wave solutions of different singular nonlinear
traveling wave equations.

The present paper will keep the focus on the nonlinear model (1.3a) by use of the
method introduced in [7–9]. We take a traveling wave transformation, such that the
partial differential equation becomes a associated “traveling wave system”. We also
discuss the dynamical behaviors of the “traveling wave system”. Using the known
dynamical behaviors of the “traveling wave system”, we obtain the nonlinear wave
profiles for the partial differential equation.

The outline of the paper is as follows. The rest of the present paper is divided
into four sections. In section 2, we obtain an ordinary differential system (traveling
wave system) in phase plane (φ, η = dφ/dξ) from the nonlinear model by using
the potential introduced in [15] and the associated traveling wave transformation
introduced in [7–9]. In section 3, we investigate the equilibrium points bifurcation
and obtain the bifurcation curves(sets) of the ordinary differential system. In sec-
tion 4, we compute the solitary wave solution, the periodic wave solution and the
kink(anti-kink) wave solution of the nonlinear model (1.3a).

2. Traveling Wave System in Phase Plane (φ, η =
dφ/dξ) from (1.3a)

In this section, we obtain an ordinary differential system in phase plane (φ, η =
dφ/dξ) from equation (1.3a) by using the potential introduced in [15] and the trav-
eling wave transformation introduced in [7–9].

We apply the potential

w(x, y, z, t) = ux(x, y, z, t), (2.1)

to remove the integral term in (1.3a) and then equation (1.3a) becomes as follows

uxt + uxxxx − 6u2
xuxx +

3

2
uxxuy +

3

2
uxuxy − αuzz = 0. (2.2)

By letting u(x, y, z, t) = u(ξ) = u(ax+ by+ cz− dt), where d is the propagating
wave velocity and a 6= 0. We have

− (ad+ αc2)u′′ + a4u(4) − 6a4(u′)2u′′ + 3a2bu′u′′ = 0, (2.3)
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where “ ′ ” stands for the derivative with respect to ξ.
Integrating equation (2.3) with respect to ξ once and setting φ = uξ, we have

− 2(ad+ αc2)φ+ 2a4φ′′ − 4a4φ3 + 3a2bφ2 = 0. (2.4)

By letting φ′ = η, we have the following planar system (traveling wave system)
with Hamiltonian function H = H(φ, η),

dφ

dξ
= η =

∂H

∂η
,

dη

dξ
= 2φ3 + f1φ

2 + f2φ = −∂H
∂φ

, (2.5)

where f1 = − 3a2b
2a4 , f2 = ad+αc2

a4 .

3. Bifurcation of the Phase Portraits and the Wave
Profiles Determined by the Orbits of (2.5)

In this section, we investigate the dynamical behaviors of traveling wave system
(2.5). Based on the bifurcation theory of dynamical systems [18], we study the
bifurcation of equilibrium points and obtain the bifurcation curves(sets) of system
(2.5). According to these curves, we consider the bifurcation of the phase portraits
of system (2.5) in different regions of parametric spaces.

3.1. Bifurcation of Equilibrium Points of System (2.5)

Through system (2.5), we have theorem as follows.

Theorem 3.1. We denote that ∆1 = f2
1 − 8f2, so
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(ii) If ∆1 = 0, System (2.5) has two equilibrium points, (φ1, η1) = (0, 0), (φ2, η2) =
(φ3, η3) = (−f14 , 0);

(iii) If ∆1 < 0, System (2.5) has only one real equilibrium points, (φ1, η1) = (0, 0).

We notice that the Jacobian of the linearized system of (2.5) at equilibrium
point (φi, ηi) is given by J(φi, ηi). Let M(φi, ηi) be the coefficient matrix of the
linearized system of (2.5) at an equilibrium point (φi, ηi). We have
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Remark 3.1. For a system,

dx

dt
=

1

f2(x)

∂H

∂y
,

dy

dt
= − 1

f2(x)

∂H

∂x
,

where H is the first integral of the system above and f2(x) is an integral factor.
There exist a equilibrium point (x0, y0), according to [17], we have

(i) If J(x0, y0) < 0, then the equilibrium point is a saddle point;

(ii) If J(x0, y0) > 0 and (triceM(x0, y0))2 − 4J(x0, y0) < 0(> 0), then the equi-
librium point is a center point (a node point);

(iii) If J(x0, y0) = 0 and the Poincare index of the equilibrium point is 0, then the
equilibrium point is a cusp.

Remark 3.2. System (2.5) is a completely integrable system, so any nondegenerate
equilibrium point of system (2.5) is either a saddle point or a center. Furthermore,

(i) The saddle point of (2.5) corresponds to a strict maximum of the Hamiltonian
function;

(ii) The center of (2.5) corresponds to a strict minimum of the Hamiltonian func-
tion.

3.2. Bifurcation of the Phase Portraits of System (2.5)

Based on Hamiltonian function of system (2.5), we denote that F (φ) = 1
2φ

2+ 1
3f1φ+

1
2f2, and ∆2 = f2

1 −9f2. There are four bifurcation curves in the (f1, f2) parameter
plane (see Figure 1) as follows

L1 : f2
1 − 8f2 = 0,

L2 : f2
1 − 9f2 = 0,

L3 : f1 = 0 (f2 < 0),

L4 : f2 = 0,

these curves divide (f1, f2) parameter plane into several sections. Let

hi = H(φ(i), η(i)), i = 1, 2, 3, (3.1)

for a fixed h, the level curve H(φ, η) = h determines a set of solution curves of
system (2.5), which includes different branches of curves. We compute the type of
equilibrium point and compare the value of Hamiltonian function at each equilibri-
um point of system (2.5) under different regions of parametric spaces in Figure 1.
Based on the basic information above, we can describe the orbits of system (2.5)
approximately.

(1) Section (I). Parameters condition is f2
1 = 8f2, and f1 > 0, we have h2 < h1

and the system (2.5) have a saddle point at (φ1, 0) and two cusps coincide at (φ2, 0).
(2) Section (II). Parameters condition is 8f2 < f2

1 < 9f2, and f1 > 0, we
have h2 < h3 < h1 and the system (2.5) have two saddle points at (φ1,3, 0) and a
center at (φ2, 0). The curve on the right hand side of saddle point (φ3, 0) defined by
H(φ, η) = h3 give rise to a homoclinic orbit. The homoclinic orbit is also the limit
curve of the family of periodic orbits of (2.5) defined by H(φ, η) = h, h ∈ (h2, h3).
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Figure 1. The bifurcation curves(sets) of system (2.5).

(3) Section (III). Parameters condition is f2
1 = 9f2, and f1 > 0, we have

h2 < h1 = h3 and the system (2.5) have two saddle points at (φ1,3, 0) and a center
at (φ2, 0). The curve connect (φ1,3, 0) defined by H(φ, η) = h1 give rise to two
heteroclinic orbits (or so called connecting obrit). The heteroclinic orbits is also
the limit curve of the family of periodic orbits of (2.5) defined by H(φ, η) = h, h ∈
(h2, h1).

(4) Section (IV ). Parameters condition is f2
1 > 9f2, and f1 > 0, we have

h2 < h1 < h3 and the system (2.5) have two saddle points at (φ1,3, 0) and a
center at (φ2, 0). The curve on the left hand side of saddle point (φ1, 0) defined by
H(φ, η) = h1 give rise to a homoclinic orbit. The homoclinic orbit is also the limit
curve of the family of periodic orbits of (2.5) defined by H(φ, η) = h, h ∈ (h2, h1).

(5) Section (V ). Parameters condition is f2 = 0, and f1 > 0, we have h1 = h2 <
h3 and the system (2.5) have a saddle point at (φ3, 0) and two cusps coincide at
origin.

(6) Section (V I). Parameters condition is f2 < 0, and f1 > 0, we have h1 < h2 <
h3 and the system (2.5) have two saddle points at (φ2,3, 0) and a center at (φ1, 0).
The curve on the left hand side of saddle point (φ2, 0) defined by H(φ, η) = h2 give
rise to a homoclinic orbit. The homoclinic orbit is also the limit curve of the family
of periodic orbits of (2.5) defined by H(φ, η) = h, h ∈ (h1, h2).

(7) Section (V II). Parameters condition is f1 = 0, and f2 < 0, we have h1 <
h2 = h3 and the system (2.5) have two saddle points at (φ2,3, 0) and a center
at (φ1, 0). The curve connect (φ2,3, 0) defined by H(φ, η) = h2 give rise to two
heteroclinic orbits. These heteroclinic orbits are also the limit curve of the family
of periodic orbits of (2.5) defined by H(φ, η) = h, h ∈ (h1, h2).

(8) Section (V III). Parameters condition is f1 < 0, and f2 < 0, we have
h1 < h3 < h2 and the system (2.5) have two saddle points at (φ2,3, 0) and a center
at (φ1, 0). The curve on the right hand side of saddle point (φ3, 0) defined by
H(φ, η) = h3 give rise to a homoclinic orbit. The homoclinic orbit is also the limit
curve of the family of periodic orbits of (2.5) defined by H(φ, η) = h, h ∈ (h1, h3).

(9) Section (IX). Parameters condition is f2 = 0, and f1 < 0, we have h1 =
h3 < h2 and the system (2.5) have a saddle point at (φ2, 0) and two cusps coincide
at origin.

(10) Section (X). Parameters condition is f2
1 > 9f2, and f1 < 0, we have

h3 < h1 < h2 and the system (2.5) have two saddle points at (φ1,2, 0) and a center
at (φ3, 0). The curve on the right hand side of saddle point (φ1, 0) defined by
H(φ, η) = h1 give rise to a homoclinic orbit. The homoclinic orbit is also the limit
curve of the family of periodic orbits of (2.5) defined by H(φ, η) = h, h ∈ (h3, h1).
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(11) Section (XI). Parameters condition is f2
1 = 9f2, and f1 < 0, we have

h3 < h1 = h2 and the system (2.5) have two saddle points at (φ1,2, 0) and a center
at (φ3, 0). The curve connect (φ1,2, 0) defined by H(φ, η) = h1 give rise to two
heteroclinic orbits. The heteroclinic orbits is also the limit curve of the family of
periodic orbits of (2.5) defined by H(φ, η) = h, h ∈ (h3, h1).

(12) Section (XII). Parameters condition is 8f2 < f2
1 < 9f2, and f1 < 0, we

have h3 < h2 < h1 and the system (2.5) have two saddle points at (φ1,2, 0) and a
center at (φ3, 0). The curve on the left hand side of saddle point (φ2, 0) defined by
H(φ, η) = h2 give rise to a homoclinic orbit. The homoclinic orbit is also the limit
curve of the family of periodic orbits of (2.5) defined by H(φ, η) = h, h ∈ (h3, h2).

(13) Section (XIII). Parameters condition is f2
1 = 8f2, and f1 < 0, we have

h2 < h1 and the system (2.5) have a saddle point at (φ1, 0) and two cusps coincide
at (φ2, 0).

Remark 3.3. According to the qualitative theory of differential equations [18],
System (2.5) has only one equilibrium point which is degenerate saddle point at the
origin in parametric space under the parameters condition is f1 = f2 = 0.

We obtain the bifurcation of the phase portraits of system (2.5) in different
regions of parametric spaces with maple (see Figure 2).

4. Relationship Between Special Bounded Orbits of
System (2.5) and Exact Nonlinear Wave Solu-
tions of System (1.3a)

In this section, we obtain several important wave profiles based on some special
phase orbits, such as solitary wave, periodic wave and kink(anti-kink) wave.

4.1. Special bounded orbits of system (2.5) in Figure 2

According to qualitative theory of dynamical system, we suppose that φ(ξ) is a
smooth solution of a system with smoothness for ξ ∈ (−∞,∞) and limξ→∝ φ(ξ) =
α, limξ→−∝ φ(ξ) = β. It is well known that

(i) φ(ξ) is called a smooth solitary wave solution if α = β;

(ii) φ(ξ) is called a smooth kink or anti-kink wave solution if α 6= β.

Usually a smooth solitary wave solution of partial differential system corresponds
to a smooth homoclinic orbit of a traveling wave equation. A smooth kink(or an-
tikink) wave solution corresponds to a smooth heteroclinic orbit of a traveling wave
equation. In some references, a kink wave solution is called a wavefront. Similarly,
a periodic wave solution corresponds to a smooth periodic orbit of traveling wave
equation.

Through the analysis above, we can obtain some special and important bounded
orbits of system (2.5) from Figure 2.

4.1.1. Smooth homoclinic orbit of system (2.5)

Theorem 4.1. From Figure 2, we have that
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10) (11) (12)

Figure 2. The Bifurcation phase portraits of the system (2.5). (1)-(4) f1 > 0, f2 > 0. (1) f2
1 = 8f2. (2)

8f2 < f2
1 < 9f2. (3) f2

1 = 9f2. (4) f2
1 > 9f2. (5) f1 > 0, f2 = 0. (6) f1 > 0, f2 < 0. (7) f1 = 0, f2 < 0.

(8) f1 < 0, f2 < 0. (9) f1 < 0, f2 = 0. (10)-(13) f1 < 0, f2 > 0. (10) f2
1 > 9f2. (11) f2

1 = 9f2. (12)

8f2 < f2
1 < 9f2. (13) f2

1 = 8f2.
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(13)

Figure 2. Continued

(1) (2)

Figure 3. The smooth homoclinic orbit of system (2.5). (1) f1, f2 ∈ section (II). (2) f1, f2 ∈
section (IV ).

(i) f1, f2 ∈ section (II), section (V III) and section (X), system (2.5) has a
smooth homoclinic orbit and the curve is on the right hand side of saddle
point;

(ii) f1, f2 ∈ section (IV ), section (V I) and section (XII), system (2.5) has a
smooth homoclinic orbit and the curve is on the left hand side of saddle point.

The smooth homoclinic orbit of system (2.5) under parameters conditions that
f1, f2 ∈ section (II) and f1, f2 ∈ section (IV ) shown in Figure 3 respectively. In
section 4.2, we determine the profiles and solutions of nonlinear solitary waves from
the known portraits of Figure 3.

4.1.2. Smooth heteroclinic orbit of system (2.5)

Theorem 4.2. From figure 2, we have that f1, f2 ∈ section (III), section (V II)
and section (XI), system (2.6) has a smooth heteroclinic orbit.

The smooth heteroclinic orbit of system (2.5) under parameters conditions that
f1, f2 ∈ section (III) shown in Figure 4. In section 4.2, we determine the profiles
and solutions of nonlinear kink(or anti-kink) waves from the known portraits of
Figure 4.
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Figure 4. The smooth heteroclinic orbit and the smooth periodic orbit of system (2.6) with f1, f2 ∈
section (III).

4.1.3. Smooth periodic orbit of system (2.5)

Theorem 4.3. From Figure 2, we have that parameters f1 and f2 in the sections
in which system (2.5) has a center, system (2.5) has a family of smooth periodic
orbit.

The smooth periodic orbit of system (2.5) under parameters conditions that
f1, f2 ∈ section (III) shown in Figure 4. In section 4.2, we determine the profiles
and solutions of nonlinear periodic waves from the known portraits of Figure 4.

4.2. Exact Nonlinear Wave Solutions of System (1.3a)

In this section, we compute and determine the profiles and explicit expressions of
nonlinear waves from the known portraits of Figure 3 and Figure 4.

4.2.1. Smooth Solitary Wave of System (1.3a)

From Figure 3(1), the intersection points of curve defined by H(φ, η) = h3 with
η = 0 is φa1, φb1 and φc1, with

φa1 < φb1 < φc1. (4.1)

Based on the Hamiltonian function of system (2.5), we can get that

η1 = ±
√

(φ− φa1)
2

(φb1 − φ) (φc1 − φ), (4.2)

by using (4.2) and the first equation of system (2.5), we have

±
∫ φ

φ̃1

1

(s− φa1)
√

(φb1 − s)(φc1 − s)
ds =

∫ ξ

0

dt, (4.3)

where φa1 < φ̃1 << φb1. From (4.3), we obtain,

φ1 = φa1 − 2
(φa1 − φb1) (φa1 − φc1)

(φb1 − φc1) cosh
(√

(φa1 − φb1) (φa1 − φc1)ξ
)

+ 2φa1 − φb − φc1
.

(4.4)
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By integrating equation (4.4) with respect to ξ once, according to equation (2.1),
we have the parametric representation of solitary wave solution of (1.3a) as follows
(see Figure 5(1)),

w1 = a(φa1 − 2
(φa1 − φb1) (φa1 − φc1)

(φb1 − φc1) cosh
(√

(φa1 − φb1) (φa1 − φc1)ξ
)

+ 2φa1 − φb1 − φc1
).

(4.5)

(1) (2)

Figure 5. (1) Smooth solitary wave of peak type with a=1. (2) Smooth solitary wave of valley type
with a=1.

Similarly, from Figure 3(2), we obtain parametric representation of the smooth
solitary wave of (1.3a) as follows (see Figure 5(2)),

w2 = a(φa2 − 2
(φa2 − φb2) (φa2 − φc2)

(φb2 − φc2) cosh
(√

(φa2 − φb2) (φa2 − φc2)ξ
)

+ 2φa2 − φb − φc2
),

(4.6)
where φa2, φb2 and φc2 are intersection points of curve defined by H(φ, η) = h1

with η = 0 under parameter f1, f2 ∈ section (IV ), and

φc2 < φb2 < φa2. (4.7)

4.2.2. Smooth Kink(or Anti-Kink) Wave of System (1.3a)

From Figure 4, the intersection points of curve defined by H(φ, η) = h1 with η = 0
is φa1, φa3 and φb3, with

φb3 < φa3. (4.8)

Based on the Hamiltonian function of system (2.5), we can get that

η3 = ±
√

(φa3 − φ)2(φ− φb3)2. (4.9)

by using (4.9) and the first equation of system (2.5), we have

±
∫ φ

φ̃3

1√
(φa3 − φ)2(φ− φb3)2

ds =

∫ ξ

0

dt, (4.10)

where φb3 < φ̃3 << φa3.
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From (4.10), we obtain,

φ3 =
φa3 + φb3

2
+
φa3 − φb3

2
tanh(

φa3 − φb3
4

ξ), (4.11)

and

φ3′ =
φa3 + φb3

2
+
φa3 − φb3

2
tanh(−φa3 − φb3

4
ξ). (4.12)

By integrating equation (4.11) and (4.12) with respect to ξ once , according to
equation (2.1), we have the parametric representation of kink wave and anti-kink
wave solution of (1.3a) as follows (see Figure 6 respectively),

w3 = a(
φa3 + φb3

2
+
φa3 − φb3

2
tanh(

φa3 − φb3
4

ξ)), (4.13)

and

w3′ = a(
φa3 + φb3

2
+
φa3 − φb3

2
tanh(−φa3 − φb3

4
ξ)). (4.14)

(1) (2)

Figure 6. (1) Smooth kink wave with a=1. (2) Smooth anti-kink wave with a=1.

4.2.3. Smooth Periodic Wave of System (1.3a)

From Figure 4, the intersection points of curve defined by defined by H(φ, η) =
h, h ∈ (h2, h1) with η = 0 is φa4, φb4, φc4 and φd4 with

φd4 < φc4 < φb4 < φa4. (4.15)

Based on the Hamiltonian function of system (2.5), we can get that

η4 = ±
√

(φa4 − φ)(φb4 − φ)(φ− φc4)(φ− φd4), (4.16)

by using (4.16) and the first equation of system (2.5), we have

±
∫ φ

φ̃4

1√
(φa4 − φ)(φb4 − φ)(φ− φc4)(φ− φd4)

ds =

∫ ξ

0

dt, (4.17)

where φc4 < φ̃4 << φb4.
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From (4.17), we obtain,

φ4 =
(φb4 − φd4)φc4 − (φb4 − φc4)φd4sn

2( ξg , k)

(φb4 − φd4)− (φb4 − φc4)sn2( ξg , k)
, (4.18)

where g = 2√
(φa4−φc4)(φb4−φd4)

and k =
√

(φb4−φc4)(φa4−φd4)
(φa4−φc4)(φb4−φd4) .

By integrating equation (4.18) with respect to ξ once , according to equation
(2.1), we have the parametric representation of periodic wave solution of (1.3a) as
follows (see Figure 7),

w4 = a(
(φb4 − φd4)φc4 − (φb4 − φc4)φd4sn

2( ξg , k)

(φb4 − φd4)− (φb4 − φc4)sn2( ξg , k)
). (4.19)

Figure 7. The smooth periodic wave with h=-0.00018 and a=1.

Thus, to summarize, we have the following main results.

Theorem 4.4. Through the analysis and computation above, we have

(i) Under parameters f1, f2 ∈ section(II), (V III) and (X), partial differential
equation (1.3a) have a solitary wave of peak type. Under parameters f1, f2 ∈
section(IV ), (V I) and (XII), partial differential equation (1.3a) have a soli-
tary wave of valley type.

(ii) Under parameters f1, f2 ∈ section(III), (V II) and (XI), partial differential
equation (1.3a) have a Kink (anti-kink) wave.

(iii) Under parametersf1, f2 in the sections mentioned in theorem above, partial
differential equation (1.3a) have a family of periodic wave.

Remark 4.1. To sum up, for ease of understanding, we show the wave profiles
determined by different phase portraits of system (2.5)(see Figure 8).

5. Conclusion

In this paper, we apply the bifurcation theory method of dynamical systems to
find exact traveling wave solutions and their dynamics. We obtain the profiles and
solutions of nonlinear waves for a class of (3+1)-dimensional nonlinear equation
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

Figure 8. The profiles of wave determined by phase portraits of the system (2.5). (1) Homoclinic
orbit to left equilibrium. (2) Solitary wave of peak type. (3) Homoclinic orbit to right equilibrium. (4)
Solitary wave of valley type. (5) Smooth periodic orbit and two smooth heteroclinic orbits. (6) Smooth
periodic wave. (7) Smooth kink wave. (8) Smooth anti-kink wave.
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from known phase portraits of traveling wave equations. We can find that system
(2.5) has not singular property and new waves for singular nonlinear traveling wave
equations were not arised in this paper.

In fact, nonlinear wave phenomena are of great importance in the physical world
and have been for a long time a challenging topic of research for both pure and
applied mathematicians. There are numerous nonlinear evolution equations for
which we need to analyze the properties of the solutions for time evolution of the
systems. The investigation of the traveling wave solutions to nonlinear evolution
equations plays an important role in the mathematical physics.

To find exact traveling wave solutions for a given nonlinear wave system, s-
ince 1970’s, a lot of methods have been developed such as the inverse scattering
method, Darboux transformation method, Hirota bilinear method, algebraic geo-
metric method, et al. Usually, the mathematical modeling of important phenomena
arising in physics and biology often leads to integrable nonlinear wave equations.
Generally, their traveling systems are ordinary differential equations. The studies
of solitons and complete integrability of nonlinear wave equations and bifurcations,
chaos of dynamical systems are two very active fields in nonlinear science [7–9]. A
homoclinic orbit of a traveling wave system corresponds to a solitary wave solution
of a nonlinear wave equation, while a heteroclinic orbit of a traveling wave system
corresponds to a kink wave solution of a nonlinear wave equation. These relation-
ships provide intersection points for the above two study fields. To consider traveling
wave solutions of a partial differential equation, the essential work is to investigate
the dynamical behavior of the corresponding ordinary differential equations (trav-
eling wave systems) [7–9]. Therefore, the theory and method of dynamical systems
play the pivotal role in the qualitative study of traveling wave solutions.
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