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Abstract In this paper, by employing the lower and upper solutions method,
we give an existence theorem for the extremal solutions for a nonlinear impul-
sive differential equations with multi-orders fractional derivatives and integral
boundary conditions. A new comparison result is also established.
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1. Introduction

In this paper, we study an integral boundary problem of nonlinear impulsive
differential equations with fractional derivatives involving several orders and given
by

thafu(t) = f(t,u(t)), l<ap <2, k=0,12---,p, telJ,
k
Aulty) = I(u(ty)), Au'(te) = Li(u(ty)),  k=1,2,---,p,

p
u(0) = Z)‘kjﬁku(nk) + &, u'(0)=0, te <Mk < tgs1,
k
k=0

where Cfo is the Caputo fractional derivative of order «ay and jt [i" is fractional
Riemann-Liouville integral of order i > 0. f € C(JXR,R), I, It € C(R,R). Ay, 7k
are positive constants. J = [0,T](T > 0), k € R, 0 =tp <t; < - <t <--- <
ty < tpr1 = T, J = I\{t1,ta, -+ ,tp}, Aulty) = u(t{) — u(ty), where u(t])
and u(t, ) denote the right and the left limits of u(t) at t = tx(k = 1,2,--- ,p),
respectively. Au'(t;) have a similar meaning for «’(t).
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Boundary value problems for fractional differential equations have considered by
many authors recently. See, for example, [1-6,10,11,13,16-18,22] and the references
therein. The concept of solution is based on [15] and we show the existence of
extremal solutions by using the classical Monotone Iterative Technique [7,9,12,14,
19-21].

2. Preliminaries

Let us fix Jo = [0,t1],Jp—1 = (ts—1,tx), & = 2,--- ,p+ 1 with ¢,41 = T and
introduce the Banach space:

PC(J,R)={u:J =R ueC(Jy), k=0,1,--,pand u(t)) exist, k =1,2,--- ,p}

with the norm ||u|| = sup |u(¢)].
teJ

AC™(J)={h:J = R:h N, - h"D e C(J,R) and h("™V) is absolutely continuous}.

For the reader’s convenience, we present some necessary definitions from frac-
tional calculus theory and several important Lemmas.

Definition 2.1 ( [8]). The Riemann-Liouville fractional integral of order « for a
function f € L([d,00),R) is defined as

1 /dt(t —5)*" 1 f(s)ds, a >0,

T f(t) = T(a)

provided the integral exists.

Definition 2.2 ( [8]). The Caputo fractional derivative of order « for a function
f € AC™[d, o) is defined by

_ t — )t (9)ds, n = [a
e L e s, = ol 1,

where [a] denotes the integer part of real number a.

CD3+ f(t) =

Lemma 2.1. For a given y € C[0,T] and constants Ip,, T (k = 1,2,--- ,p.), the
impulsive integral boundary value problem

CD;Xfu(t) :y(t)’ 1 < o SQ, k:0,1,27... . D, te J/’
k
Au(ty) =TI, Au(ty) =TI, k=1,2,---,p,

, (2.1)
= Z )\k.jﬁku(nk) +r, 4(0)=0,
k=0 *
has a unique solution
Pt —s)0=1y(s)ds + A, t € Jo;
t(t—s) (t; — s)xi171 _
j;fk ( 2 ( )ds + Z [ft 1 (1) y(s)ds +Iz}
wt)y =4 4 Z e g, M y(s)ds + ;] (2.2)
ti Cki,1 — ].) v
_ b (ti—s)¥ 172 .
+12::1(t tk;)|: tio1 my(s)ds+zl:| +A,
te ka k= 1727"' » D,
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where
k(e — t)? - (n — s)or Bl
( Z LBy +1 ) { Z )\k/ I'(ax + Br) yls)ds

k v
Ak (i — ti) b (ty — s)@i-11
Z T(Be + 1) |:‘/t'i1 Wy(s)ds +L‘]

b=
p
+2
k=11i=1
p k-1 | o
Ae(me — te)Pe (b — t) 1[5 (t; — s)™i—172 *
! ; im1 LBk +1) [/t CTlois — 1) y(s)ds +Ii}
Pk , o
D R A (O S «
—l—;zzzl I'(Br +2) |:/tz CT(a, - 1) y(S)ds+IZ.} _|_,i}_

Proof. Let u be a solution of (2.1). Then, by [8, Lemma 2.22, pp 96], for any
t € Jo, we have

1 ¢ L
t—s8)* " y(s)ds—c1 —cot, t€ Jy, (2.3
F(O[O)~/0( ) y() 1 2 0 ( )

for some c¢q, co € R. Differentiating (2.3), we get

1 t
e — t — s)®0~2 ds — t .
T [ 9 s e e g

u(t) = Jg°y(t) —c1 — cot =

u'(t) =

Ift € Jp, then

u = ﬁ / (t =) y(s)ds — di — da(t — ),

t1
1

t
for some di,ds € R. Thus,
1 t

u'(t) =

Ut) = gy o (= o) T yl)ds —er sty ult) =y,
u'(ty) = ﬁ Yty — ) 2y(s)ds — ca, u'(tF) = —ds.

Using the impulse conditions
Aulty) = u(th) —ultT) = T, Ol (h) = ' (6) ' (57) = T,
we find that

1 1 —
—d1 = F(O‘Ol) f(f (tl - s)ao 1y(5)d3 —c1 —cot1 + 14,
—dy = Fap 1) J0 Bty — 8)*02y(s)ds — ¢y + I7.
Consequently, we obtain

u(t) :ﬁ/t (t — 8)* " Ly(s)ds + ﬁ/{) 1 (t; — s)*0~Ly(s)ds

t—t h
+ r(TIU/ (tr = 8)™2y(s)ds + Ty + (t = t1)I] —c1 — eat, L€ Ji.
0 0
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By a similar process, we get

u(t)/tt (t;(s)ak : derZ [/t ai;((‘ii;ly(s)ds+11

+Z(tk ti)[/“ my@)d8+zﬂ

ti—1

k by a2 *
+ ;(t —tr) {/ (;Z(ai_)l_l)y(s)ds + Il] — ¢ — eot,

ti—1

teJo, k=1,2,---,p. (2.4)
The boundary condition «’(0) = 0 implies ¢co = 0. For ¢ € Ji, we have

Tt u(t)

- i Y(s)ds + ——y(s)ds + I,
/tk (o + Br) Z L'(Br + 1) [ ; T(ci_1) y(s) 1

1—1

t_tk ﬂk k:_t> ti (ti—s)(’”’l_Q .
+Z LBk +1) [/t my“)d”ﬂ

i—1

k )
t _ t Br+1 t; t; — aj—1—2 t — t;.)Bk
+ Z ) {/ Ly(s)ds +Iﬂ _alt=t)™ (2.5)
=1 ti—1

L(Br +2) (o1 —1) T(Br+1)

P
Applying the boundary condition u(0) = 3 Akxﬁku(nk) + K, we find
k=0 k

p

N (i — )P L (ny — s) s tBe—1
“a=(1 “ 2 TrE o) {ZM/ e T Vs

k .
e (e — ti)P O P
Z T(Br+1) [/t Wy(s)ds—l—L}

k=
p
+2.
k=11i=1 P
p k-1 . oy
N (me — )P (b — 1) / (t; — 8)>i-1 .
ds +7;
+;z:1 L(Br + 1) [ i Tloig —1) y(s)ds + }
P k . I
A (mr, — tg) Pt / (t; — 5)%i1 )
+;; I'(Bx +2) [ b Tlai1—1) y(S)ds+Ii]+,{}.

Substituting the value of ¢;(i = 1,2) in (2.3) and (2.4), we obtain the unique solution
u(t) of impulsive fractional integral boundary value problem (2.1), which is given
by expression (2.2), This completes the proof. O

)\ k
Lemma 2.2 (Comparison theorem). If Z M

2 TG+ 1) < 1andu(t) € PC(J,R)N
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AC?(Jy,) satisfies

CD%u(t) >0, 1<ap<2 k=0,12-,p teJ,
k
Au(tk) > 07 Au/(tk) > 07 k= 1727 Y 2) (26)
p
u(0) > >° )\kjffu(ﬂk)? u'(0) = 0.
k=0

Then u(t) > 0, Vt € J.
Proof. Consider a modified version of problem (2.1):
CDtafu(t):y(t)v l<arp<2, k£=0,1,2,---,p, tEJ/,
k
Au(ty) =Tk, AuU'(ty) =I5, k=1,2,---,p,

) (2.7)
= > NTulm) +r, ' (0) =0,
k=0

where y(t) € C(J,R") and Zj,, Z;; (k = 1,2, - - , p.), k are nonnegative constants.
Then, the problem (2.7) has a unique solutlon

1
F(040)

ti—1

u(t) = — 2 ;— 8)i-172 .
®) + Z(tk; —t;) [/ (tf‘(a- ) —y y(s)ds +IZ-*} (2:8)
i=1 ti—1 i—1

¢
/ (t —s)* ty(s)ds + B, t € Jo;
0

+ ﬁ‘:(t — 1) {/t;il (if(;is_)ji_ll_)zy(s)ds +1;| + B,

tedg, k=1,2,---,p,

where
* ; _ ul Wt G s+ 7]
B S 5] )

On account of the nonnegative nature of function y(t) and constants 7y, Z;, k
then by (2.8), the conclusion of Lemma 2.2 holds. O
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3. Main results

Definition 3.1. We say that wu(t) is called a lower solution of (1.1) if
CD:éfu(t) Sf(t7u(1‘;))5 1 <oy SQ? k:071727"' »Ps tEJ/7
k
Au(tk) < Ik(u(tk))’ A’u‘l(tk?) < I;ck(u(tk))? k= 1727 LD

and it is an upper solution of (1.1) if the above inequalities are reversed.

To prove the existence of extremal solutions of problem (1.1), we need the fol-
lowing fixed point theorem in the sequel.

Theorem 3.1 ( [7]). Let [a,b] be an order interval in a subset Y of an ordered
Banach space X and let @ : [a,b] — [a,b] be a nondecreasing mapping. If each
sequence {Qx,} C Q([a,b]) converges, whenever {x,} is a monotone sequence in
[a,b], then the sequence of Q-iteration of a converges to the least fized point x, of
Q and the sequence of Q-iteration of b converges to the greatest fixed point x* of Q.
Moreover,

. =minf{y € [a,b] : y > Qy} and ¥ = max{y € [a,b] : y < Qy}
Theorem 3.2. Assume that
(H1) The functions f(t,u), I(u), If(u)(k = 1,--- ,p.) are continuous and nonde-
creasing on u.
(Hg) There exist ug and vg € PC(J,R) N AC?(Jy), lower and upper solutions,
respectively, for the problem (1.1), such that ug < vy.
P Ak(ﬁk _ tk)ﬁk

(Hs) go I'(Br+1)

are satisfied. Then problem (1.1) has extremal solutions in the sector [ug, vg].

Proof. Consider the problem (2.1) with y(t) = f(t,w(t)), Zr = Ix(w(tx)) and
i =T} (w(ty))(k=1,2,--- ,p). By Lemma 2.1, we know problem (2.1) has a unique
solution. Define u(t) = Gw(t), then G is an operator from [ug, vo] to PC(J,R) N
AC?(J). Now we shall prove that G maps [ug, vo] into [ug, vo].

Let u; = Gug, v1 = Gug. Then uy, vy, are well defined and satisfy

< 1.

CD%’“ul(t) = f(t,up(t)), 1<ap<2, k=0,1,2,---,p, te.J,
Ba(tn) = Tuluo(®)), - Sui(tn) = Fluo(tw), k=12 o)
u1(0) = Zp: )\kuzg.kul(ﬂk) +r, uy(0)=0,

k=0

and

CDjkfvl(t) = f(t,uo(t), 1<ap<2 k=0,1,2---,p, teJ,
Aoi(t) = Telw(te), - ok(t) = R, k=1.2-p o
v1(0) = Zp: Ak@%’“vl(nk) +k, v(0)=0.

k=0
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Now, put r = u; — ug. Combining with the definition of lower solution, we have
CDto‘fr(t) >0, l<ap<2, k=0,1,2,---,p, teJ,
k
Ar(ty) >0, Ar'(tg) >0, k=1,2,---,p,
P
>3 M), (0) =0,
k=0

It follows from Lemma 2.2 that p(t) > 0,V¢ € J. That is Gug > wug. Similarly,
together with the definition of upper solution, we can show Gvy < vy.
Denote ¢ = v; — uyq, by (3.1), (3.2) and (Hy), we can get

CD:fQ(t) = f(t7U0(t)) - f(tau()(t)) Z Oa 1< (673 S 23 k= 0,1727"’ » Py te Jla
k

Aq(ty) = Ix(vo(tr)) — Ix(uo(ty)) > 0, k=1,2,---,p,
Aq/(tk) = I;(Uo(tk)) - I/:(Uo(tk)) >0, k=12,---,p,

ZAkJﬁ’“q m) =0, ¢'(0)=0.

Lemma 2.2 ensures that ¢(t) > 0, i.e. Gug > Gug. It means G is nondecreasing
and uy < Gu < vy for any u € [ug,vo]. Hence, G : [ug,v9] — [ug, vo] and ||Gul| <
max{uo]l, Jvoll} = I1.

Let {u,} be a monotone sequence in [ug, vo], then ug < Gu,, < vp and [|Gu,|| <
II. Next, we shall show that the sequence {Gu,,} is an equicontinuous set. For any
(t,u) € J x [—II, 1], there exist nonnegative constants L; > 0 (i = 1,2, 3) such that
|f(t,w)| < Ly, |Ix(u)] < Lo and |I}(u)| < Ls. Thus, for any t € Ji, 0 < k < p, we
have

[(Gu)' (t)]
(t—s)ak —2
(t — S Otk 2 ti (tz _ s)ai,172
<h / Mo 1) d”Z [Ll/ m‘”“g]

L1 max To‘l

t; t—SallQ

[F(s,u(s)lds + |17 (u(t:)]

Olz 1—1)

Ter=11, 0<i<p
<i< I }
T(cr) [ Or<njn T(ay) 03
Ly Or2a<x T~
<(p+ l)ﬁ + pL3 := £(constant).
0<i<p

Hence, for 7,7 € Jp with 71 < 15, 0 < k < p, we have

T2

[(Gu)(m2) — (Gu)(n1)| < / |(Gu) (s)|ds < L(ty — t1).

T1
This implies that {Gu,} is an equicontinuous set on all Jx, k = 0,1,2,--- ,p and
hence, by the Arzela-Ascoli Theorem, {Gu,,} is relatively compact. In consequence,
{Gu,} converges in G([ug, vo))-
Theorem 3.1 ensures that G has a least and a greatest fixed point in [ug, vg].
This further implies that the problem (1.1) has extremal solutions on [ug,vg]. O
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4. Example

Example 4.1. For ap = 3, a; = 2, By

%7 n = %7 and ¢, = i, we consider

Il
NJw
™
i
Il
ot
>
S
Il
(1T
>
flrt
Il
=
=
S
Il

t 1
“Dprut) = <(u(t) + ), te[-01], t# k=01,

1 1
Au(ty) = 3 arctanu(ty), Au'(t)) = 5U3(t1), (4.1)

1
1
u(0) => Ak@?u(nkwi, @/ (0) = 0,
k=0

t 1 1
here f(t,u) = —(u+e%), I1(u) = — arctanu, I} (u) = —u3.
5 32 5
t2 1
1+—, 05t =
Take ug(t) = 0, wo(t) = 2 1 4 . Then ug, vy are lower and
1+ t2, 1< t<1
upper solutions of problem (4.1), respectively. Moreover, by a simple calculation,
Xo(mo —to)™  Ai(m — )™
['(Bo+1) (81 +1)
At last, it’s obvious that (H) is satisfied. The conclusion of Theorem 3.2 applies
and the problem (4.1) has extremal solutions in the sector [ug, vg].

= 0.013695 < 1.

5. Concluding remarks

It is noted that, the problem investigated in this paper has a very general form.
Some of special cases are listed below:

By setting oy = a(l < o < 2) in (1.1), we obtain the special case of an inte-
gral boundary problem for nonlinear impulsive differential equations with fractional
derivatives involving single order

CD%u(t):f(t,u(t)), 1<Oé§2, k:051727"' » Dy tEJ/,

Au(ty) = Ii(u(ty)), Ou'(ts) = I (u(ty)), k=1,2,---,p, (5.1)

p
u(0) = Z )\k%ﬁ’“u(nk) + K, u’(O) =0, te < nmp < tryl-
k
k=0

Again, by setting I, = I} = 0,a; =, B = 5, A\ = A\, nm, = n in (1.1), we can
obtain a very special case of (1.1). That is, we get a nonlinear fractional differential
equations without impulse effect

“Dgu(t) = f(t,u(t), 1<a<2, tel,

A

" B (5.2)
w(0) = —— —5)Ptu(s)ds + r, u'(0)=0.
0= 5057 | (1= 9" (s 4w w(0) =0

Finally, taking o« = 2,8 =1 in (5.2), we have the classical second order problem
with integral boundary condition

u’(t) = f(t,u(t)), teJ,

[t
u(0) = /0 u(s)ds +r, u'(0)=0. (5.3)
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Accordingly, our results also give rise to various interesting situations. It is

a contribution to the theory of integral boundary value problem and fractional
differential equation.
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