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Abstract In this paper, we consider a stochastic two-predators one-prey
model with modified Leslie-Gower and Holling-type II schemes. Analytically,
we completely classify the parameter space into eight categories containing
eleven cases. In each case, we show that every population is either stable in
time average or extinct, depending on the parameters of the model. Finally,
we work out some simulation figures to illustrate the theoretical results.
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1. Introduction

The famous predator-prey model with modified Leslie-Gower and Holling-type II
schemes can be denoted as follows (Aziz-Alaoui and Daher Okiye [1]):

dx(t)

dt
= x(t)

(
r1 − ax(t)− cy(t)

h+ x(t)

)
,
dy(t)

dt
= y(t)

(
r2 −

fy(t)

h+ x(t)

)
, (1.1)

where x(t) and y(t) represent the population sizes of the prey and the predator
respectively. r1, r2, a, c, f and h are positive constants. r1 and r2 is the growth rates
of the prey and the the predator respectively, a represents the competitive strength
among individuals of the prey, c stands for the per capita reduction rate, h describes
the protection of the environment, the meaning of f is similar to c. Recently,
many authors have paid attention to model (1.1) and its generalized forms, see
e.g. [2,6–8,11,12,16,22–28]. Aziz-Alaoui and Okiye [1] considered the boundedness
and stability of the positive equilibrium of model (1.1). Nindjin et al. [23] introduced
time delay into Eq. (1.1) and studied the stability of the positive equilibrium of
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their model; Eq. (1.1) with impulse was investigated by Guo and Song [8], Song and
Li [24] and Nie et al. [22]; Ji et al. [11,12] considered model (1.1) with white noise and
studied the persistence, extinction, and stationary distribution to the corresponding
system. System (1.1) with reaction-diffusion was explored in [2, 7, 28].

The above studies have focused on two-species models. However, in the nature
world it is a common phenomenon that several predators compete for a prey. At
the same time, the growth of population is the real world is inevitably affected
by environmental fluctuations ( [21]). And several authors have revealed that the
environmental fluctuations may change the properties of population models great-
ly. For example, Mao, Marion and Renshaw [20] revealed that the environmental
fluctuations can suppress a potential population explosion. Therefore it is useful to
study how the environmental fluctuations affects the multi-predators one-prey mod-
el with modified Leslie-Gower and Holling-type II schemes. However, to the best
of our knowledge, no result of this aspect has previously been reported. Suppose
that the growth rate ri is affected by white noise (see, e.g., [3–5, 11–19, 29]), with
ri → ri + σiẆi(t), then we obtain the following stochastic two-predators one-prey
system with modified Leslie-Gower and Holling-type II schemes:

dx(t) = x(t)

(
r1 − ax(t)− c1y1(t)

h1 + x(t)
− c2y2(t)

h2 + x(t)

)
dt+ σ1x(t)dW1(t),

dy1(t) = y1(t)

(
r2 −

f1y1(t)

h1 + x(t)

)
dt+ σ2y1(t)dW2(t),

dy2(t) = y2(t)

(
r3 −

f2y2(t)

h2 + x(t)

)
dt+ σ3y2(t)dW3(t),

(1.2)

where Wi(t) is a standard Wiener process and σ2
i stands for the intensity of the

noise.
For model (1.2), some interesting and important problems arise naturally.

(Q1): System (1.2) is a population model, then when the populations will be extinct
and when will be not?

(Q2): When investigating deterministic population models, an interesting topic is
to seek the positive equilibrium point and to analyze its stability. However,
Eq. (1.2) does not have positive equilibrium point. Consequently, its solution
can not tend to a positive point. Then whether model (1.2) still has some
stability properties around some positive point?

(Q3): Do white noises have effects on the stability and extinction of model (1.2)?

The aim of this paper is to consider these questions. In Section 2, the almost
complete parameters analysis is carried out. In each case, it is shown that every
population is either stable in time average or extinct, depending on the coefficients
of model (1.2), especially, depending on σ2

1 , σ
2
2 , σ

2
3 , the intensities of the white

noises. In Section 3, we work out some figures to support the theoretical findings.
Section 4 gives to the concluding remarks.

2. Main results

For the sake of convenience, we define some notations.

R3
+ = {z ∈ R3|zi > 0, i = 1, 2, 3}, bi = ri − 0.5σ2

i , i = 1, 2, 3.
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Before we state and prove our main results, we prepare some lemmas.

Lemma 2.1. For any initial data (x(0), y1(0), y2(0)) ∈ R3
+, there is a unique global

positive solution (x(t), y1(t), y2(t)) to Eq. (1.2) a.s. (almost surly).

Proof. Our proof is motivated by Ji et al. [11]. Consider the equations:

du(t) =

(
r1 − aeu(t) − c1e

v1(t)

h1 + eu(t)
− c2e

v2(t)

h2 + eu(t)

)
dt+ σ1dW1(t),

dv1(t) =

(
r2 −

f1e
v1(t)

h1 + eu(t)

)
dt+ σ2dW2(t),

dv2(t) =

(
r3 −

f2e
v2(t)

h2 + eu(t)

)
dt+ σ3dW3(t),

(2.1)

and u(0) = lnx(0), v1(0) = ln y1(0), v2(0) = ln y2(0). It is easy to see that the
coefficients of model (2.1) obey the local Lipschitz condition, hence model (2.1)
has a unique local solution (u(t), v1(t), v2(t)) on [0, τe), where τe stands for the
explosion time. In view of Itô’s formula, (x(t) = eu(t), y1(t) = ev1(t), y2(t) = ev2(t))
is the unique local positive solution to model (1.2). To complete the proof, we need
only to show τe = +∞. To this end, we construct the following auxiliary equations:

dΦ(t) = Φ(t)
(
r1 − aΦ(t)

)
dt+ σ1Φ(t)dW1(t), Φ(0) = x(0); (2.2)

dψ1(t) = ψ1(t)
(
r2 −

f1

h1
ψ1(t)

)
dt+ σ2ψ1(t)dW2(t), ψ1(0) = y1(0); (2.3)

dΨ1(t) = Ψ1(t)

(
r2 −

f1

h1 + Φ(t)
Ψ1(t)

)
dt+ σ2Ψ1(t)dW2(t), Ψ1(0) = y1(0);

dψ2(t) = ψ2(t)

(
r3 −

f2

h2
ψ2(t)

)
dt+ σ3ψ2(t)dW3(t), ψ2(0) = y2(0);

dΨ2(t) = Ψ2(t)

(
r3 −

f2

h2 + Φ(t)
Ψ2(t)

)
dt+ σ3Ψ2(t)dW3(t), Ψ2(0) = y2(0).

Making use of the famous stochastic comparison theorem ( [10]), one can see that
for t ∈ [0, τe),

x(t) ≤ Φ(t), ψ1(t) ≤ y1(t) ≤ Ψ1(t), ψ2(t) ≤ y2(t) ≤ Ψ2(t), a.s. (2.4)

By Theorem 2.2 in Jiang and Shi [13], Eq. (2.2) has the explicit solution

Φ(t) =
exp{b1t+ σ1W1(t)}

x−1(0) + a
∫ t

0
exp{b1s+ σ1W1(s)}ds

. (2.5)

Similarly,

ψ1(t) =
exp{b2t+ σ2W2(t)}

y−1
1 (0) + f1

h1

∫ t
0

exp{b2s+ σ2W2(s)}ds
, (2.6)

Ψ1(t) =
exp{b2t+ σ2W2(t)}

y−1
1 (0) +

∫ t
0

f1
h1+Φ(s) exp{b2s+ σ2W2(s)}ds

, (2.7)

ψ2(t) =
exp{b3t+ σ3W3(t)}

y−1
2 (0) + f2

h2

∫ t
0

exp{b3s+ σ3W3(s)}ds
, (2.8)
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Ψ2(t) =
exp{b3t+ σ3W3(t)}

y−1
2 (0) +

∫ t
0

f2
h2+Φ(s) exp{b3s+ σ3W3(s)}ds

. (2.9)

Note that Φ(t), ψ1(t), Ψ1(t), ψ2(t) and Ψ2(t) are existent on t ≥ 0, therefore
τe = +∞.

Lemma 2.2 ( [15])). Let Y (t) ∈ C(Ω× [0,+∞), (0,+∞)).
(I) If there exist three positive constants T , τ and τ0 such that for all t ≥ T

lnY (t) ≤ τt− τ0
∫ t

0

Y (s)ds+

n∑
i=1

αiWi(t),

where αi (1 ≤ i ≤ n) are constants, then

lim sup
t→+∞

t−1

∫ t

0

Y (s)ds ≤ τ/τ0, a.s.

(II) If there exist three positive constants T, τ and τ0 such that for all t ≥ T ,

lnY (t) ≥ τt− τ0
∫ t

0

Y (s)ds+

n∑
i=1

αiWi(t),

then lim inf
t→+∞

t−1
∫ t

0
Y (s)ds ≥ τ/τ0, a.s.

Lemma 2.3. Let b1 > 0. If b2 > 0 (respectively, b3 > 0), then

lim
t→+∞

t−1 ln y1(t) = 0 (respectively, lim
t→+∞

t−1 ln y2(t) = 0), a.s. (2.10)

Proof. Without loss of generality, we only prove the case b2 > 0. Let T be
sufficiently large satisfying 0.5 exp{b1t} ≥ 1 for t ≥ T . Hence for t ≥ T , it follows
from (2.5) that

Φ(t) =
exp{b1t+ σ1W1(t)}

x−1(0) + a
∫ t

0
exp{b1s+ σ1W1(s)}ds

≤ exp{b1t+ σ1W1(t)}
a
∫ t

0
exp{b1s+ σ1W1(s)}ds

≤ exp{b1t+ σ1W1(t)}
a exp{min0≤ν≤t σ1W1(ν)}

∫ t
0

exp{b1s}ds

=
b1
a

exp{b1t+ σ1W1(t)}
exp{min0≤ν≤t σ1W1(ν)}[exp{b1t} − 1]

≤ 2b1
a

exp{b1t+ σ1W1(t)}
exp{min0≤ν≤t σ1W1(ν)} exp{b1t}

=
2b1
a

exp

{
σ1

[
W1(t)− min

0≤ν≤t
W1(ν)

]}
≤ 2b1

a
exp

{
|σ1|
[
W1(t)− min

0≤ν≤t
W1(ν)

]}
.

Clearly,

exp

{
|σ1|
[
W1(t)− min

0≤ν≤t
W1(ν)

]}
> 1.
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Then we obtain∫ t

T

f1

h1 + Φ(s)
exp{b2s+ σ2W2(s)}ds

≥
∫ t

T

f exp{b2s+ σ2W2(s)}
h1 + 2b1

a exp{|σ1|
[
W1(s)−min0≤ν≤sW1(ν)

]
}
ds

≥
∫ t

T

f1 exp{b2s+ σ2W2(s)}[
h1 + 2b1

a

]
exp{|σ1|

[
W1(s)−min0≤ν≤sW1(ν)

]
}
ds

=
af1

ah1 + 2b1

∫ t

T

exp

{
− |σ1|

[
W1(s)− min

0≤ν≤s
W1(ν)

]}
exp

{
b2s+ σ2W2(s)

}
ds

≥ af1

ah1 + 2b1
exp

{
|σ1| min

0≤ν≤t
W1(ν)− |σ1| max

0≤ν≤t
W1(ν)

}
× exp

{
min

0≤ν≤t
σ2W2(ν)

}∫ t

T

exp

{
b2s

}
ds

=K1(t)

[
exp{b2t} − exp{b2T}

]
,

where

K1(t) =
af1

am1 + 2b1
exp

{
|σ1| min

0≤ν≤t
W1(ν)− |σ1| max

0≤ν≤t
W1(ν) + min

0≤ν≤t
σ2W2(ν)

}
.

When this inequality is used in (2.7), we can derive that

1

Ψ1(t)
≥ exp

{
− b2(t− T )− σ2

(
W2(t)−W2(T )

)}
×
[
y−1

1 (0)(T ) +K1(t)

(
exp{b2t} − exp{b2T}

)]
≥ exp

{
b2T + σ2W2(T )

}(
1− exp{−b2(t− T )}

)
×K1(t) exp

{
− max

0≤ν≤t
σ2W2(ν)

}
=:K2(t)×K3(t),

where

K2(t) = exp

{
b2T + σ2W2(T )

}(
1− exp{−b2(t− T )}

)
,

K3(t) = K1(t) exp

{
− max

0≤ν≤t
σ2W2(ν)

}
.

Consequently,
t−1 ln Ψ(t) ≤ −t−1 lnK2(t)− t−1 lnK3(t). (2.11)

Since lim
t→+∞

Wi(t)/t = 0 a.s., i = 1, 2, 3, then if b2 > 0, we have

lim
t→+∞

t−1 lnK2(t) = 0, lim
t→+∞

t−1 lnK3(t) = 0, a.s.

When these identities are used in (2.11), we can observe that

lim sup
t→+∞

t−1 ln y1(t) ≤ lim sup
t→+∞

t−1 ln Ψ1(t) ≤ 0, a.s.



718 Y. Xu, M. Liu & Y. Yang

To complete the proof, it suffices to show lim inf
t→+∞

t−1 ln y1(t) ≥ 0, a.s. An appli-

cation of Itô’s formula to (2.3) results in

d lnψ1(t) =

[
b2 −

f1

h1
ψ1(t)

]
dt+ σ2dW2(t).

In other words,

t−1 lnψ1(t) = t−1 ln y1(0) + b2 −
f1

h1
t−1

∫ t

0

ψ1(s)ds+ σ2t
−1W2(t). (2.12)

Clearly, for arbitrary ε > 0, there exists T > 0 such that for t ≥ T ,

−ε/2 ≤ t−1f ln y1(0) ≤ ε/2.

Substituting this inequality into (2.12) yields that for t ≥ T ,

t−1 lnψ1(t) ≤ b2 + ε− t−1 f1

h1

∫ t

0

ψ1(s)ds+ σ2t
−1W2(t), (2.13)

t−1 lnψ1(t) ≥ b2 − ε− t−1 f1

h1

∫ t

0

ψ1(s)ds+ σ2t
−1W2(t). (2.14)

We can choose ε be sufficiently small satisfying b2 − ε > 0. Now applying (I) and
(II) in Lemma 2.2 to (2.13) and (2.14) respectively, one can derive that

h1(b2 − ε)
f1

≤ lim inf
t→+∞

t−1

∫ t

0

ψ1(s)ds ≤ lim sup
t→+∞

t−1

∫ t

0

ψ1(s)ds ≤ h1(b2 + ε)

f1
, a.s.

It therefore follows from the arbitrariness of ε that

lim
t→+∞

t−1

∫ t

0

ψ1(s)ds =
h1b2
f1

, a.s. (2.15)

When this identity is used in (2.12), then by

lim
t→+∞

t−1 ln y1(0) = 0 and lim
t→+∞

W2(t)/t = 0,

we obtain lim
t→+∞

t−1 lnψ1(t) = 0, a.s. In view of (2.4), one can see that

lim inf
t→+∞

t−1 ln y1(t) ≥ lim
t→+∞

t−1 lnψ1(t) = 0, a.s.

Now we are in the position to give our main result.

Theorem 2.1. For model (1.2),

(i) If b1 < 0, b2 < 0 and b3 < 0, then x, y1 and y2 go to extinction, i.e.,
lim

t→+∞
x(t) = 0, lim

t→+∞
y1(t) = 0, lim

t→+∞
y2(t) = 0, a.s.;

(ii) If b1 < 0, b2 > 0 and b3 < 0, then x and y2 go to extinction and y1 is stable
in time average, i.e.,

lim
t→+∞

t−1

∫ t

0

y1(s)ds =
h1b2
f1

, a.s.;
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(iii) If b1 < 0, b2 < 0 and b3 > 0, then x and y1 go to extinction and y2 is stable
in time average, i.e.,

lim
t→+∞

t−1

∫ t

0

y2(s)ds =
h2b3
f2

, a.s.;

(iv) If b1 < 0, b2 > 0 and b3 > 0, then x goes to extinction and both y1 and y2 are
stable in time average:

lim
t→+∞

t−1

∫ t

0

y1(s)ds =
h1b2
f1

, lim
t→+∞

t−1

∫ t

0

y2(s)ds =
h2b3
f2

, a.s.; (2.16)

(v) If b1 > 0, b2 < 0 and b3 < 0, then y1 and y2 go to extinction and x is stable
in time average:

lim
t→+∞

t−1

∫ t

0

x(s)ds =
b1
a
, a.s.; (2.17)

(vi) If b1 > 0, b2 > 0 and b3 < 0, then y2 goes to extinction and moreover

(a) If b1 <
c1
f1
b2, then x goes to extinction and y1 is stable in time average:

lim
t→+∞

t−1

∫ t

0

y1(s)ds =
h1b2
f1

, a.s.

(b) If b1 >
c1
f1
b2, then

lim
t→+∞

t−1

∫ t

0

x(s)ds =
b1
a
− c1b2
af1

, lim
t→+∞

t−1

∫ t

0

y1(s)

h1 + x(s)
ds =

b2
f1
, a.s.

(vii) If b1 > 0, b2 < 0 and b3 > 0, then y1 goes to extinction and moreover

(c) If b1 <
c2
f2
b3, then x goes to extinction and y2 is stable in time average:

lim
t→+∞

t−1

∫ t

0

y2(s)ds =
h2b3
f2

, a.s.

(d) If b1 >
c2
f2
b3, then

lim
t→+∞

t−1

∫ t

0

x(s)ds =
b1
a
− c2b3
af2

, lim
t→+∞

t−1

∫ t

0

y2(s)

h2 + x(s)
ds =

b3
f2
, a.s.

(viii) If b1 > 0, b2 > 0 and b3 > 0, then

(e) If b1 < c1
f1
b2 + c2

f2
b3, then x goes to extinction and both y1 and y2 are

stable in time average:

lim
t→+∞

t−1

∫ t

0

y1(s)ds =
h1b2
f1

, lim
t→+∞

t−1

∫ t

0

y2(s)ds =
h2b3
f2

, a.s.

(f) If b1 >
c1
f1
b2 + c2

f2
b3, then

lim
t→+∞

t−1

∫ t

0

x(s)ds =
b1
a
− c1b2
af1
− c2b3
af2

, a.s. (2.18)

lim
t→+∞

t−1

∫ t

0

y1(s)

h1 + x(s)
ds =

b2
f1
, a.s.

lim
t→+∞

t−1

∫ t

0

y2(s)

h2 + x(s)
ds =

b3
f2
, a.s.
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Proof. Applying Itô’s formula to model (1.2) leads to

d lnx(t) =

[
b1 − ax(t)− c1y1(t)

h1 + x(t)
− c2y2(t)

h2 + x(t)

]
dt+ σ1dW1(t),

d ln y1(t) =

[
b2 −

f1y1(t)

h1 + x(t)

]
dt+ σ2dW2(t),

d ln y2(t) =

[
b3 −

f3y3(t)

m3 + x(t)

]
dt+ σ3dW3(t).

That is to say

lnx(t)− lnx(0) = b1t− a
∫ t

0

x(s)ds− c1
∫ t

0

y1(s)

h1 + x(s)
ds− c2

∫ t

0

y2(s)

h2 + x(s)
ds

+ σ1W1(t), (2.19)

ln y1(t)− ln y1(0) = b2t− f1

∫ t

0

y1(s)

h1 + x(s)
ds+ σ2W2(t), (2.20)

ln y2(t)− ln y2(0) = b3t− f2

∫ t

0

y2(s)

h2 + x(s)
ds+ σ3W3(t). (2.21)

The proof of (i): by virtue of (2.19),

t−1 ln
x(t)

x(0)
≤ b1 + σ1t

−1W1(t).

Since lim
t→+∞

W1(t)/t = 0 and b1 < 0, then lim
t→+∞

x(t) = 0, a.s. Similarly, if

b2 < 0 (respectively, b3 < 0), it then follow from (2.20) (respectively, (2.21)) that
lim

t→+∞
y1(t) = 0 a.s. (respectively, lim

t→+∞
y2(t) = 0 a.s.).

(ii): Note that b1 < 0 and b3 < 0, hence (i) means lim
t→+∞

x(t) = 0, lim
t→+∞

y2(t) =

0, a.s. Consequently, for sufficiently large t,

ln y1(t)− ln y1(0) ≤ b2t−
f1

h1 + ε

∫ t

0

y1(s)ds+ σ2W2(t), (2.22)

ln y1(t)− ln y1(0) ≤ b2t−
f1

h1 − ε

∫ t

0

y1(s)ds+ σ2W2(t). (2.23)

Applying of (I) and (II) in Lemma 2.2 to (2.22) and (2.23) respectively, one can see
that

lim sup
t→+∞

t−1

∫ t

0

y1(s)ds ≤ (h1 + ε)b2
f1

, a.s.

lim inf
t→+∞

t−1

∫ t

0

y(s)ds ≥ (h1 − ε)b2
f1

, a.s.

In view of the arbitrariness of ε, we obtain lim
t→+∞

t−1
∫ t

0
y1(s)ds = h1b2

f1
, a.s.

The proof of (iii) is similar to (ii) and hence is omitted.
(iv): Since b1 < 0, it then follows from (i) that lim

t→+∞
x(t) = 0. The proof of

(2.16) is similar to (ii) and hence is omitted.
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(v): Since b2 < 0 and b3 < 0, then similar to the proof of (i), we can show that
lim

t→+∞
y1(t) = 0, lim

t→+∞
y2(t) = 0. The proof of (2.17) is similar to (ii) and hence is

omitted.
We are in the position to show (vi). Clearly, b3 < 0⇒ lim

t→+∞
y2(t) = 0.

(a): By (2.19)×f1 − (2.20)× c1, we get

t−1f1 ln
x(t)

x(0)
=c1t

−1 ln
y1(t)

y1(0)
+ f1b1 − c1b2 − af1t

−1

∫ t

0

x(s)ds

− c2f1t
−1

∫ t

0

y2(s)

h2 + x(s)
ds+ f1σ1t

−1W1(t)− c1σ2t
−1W2(t)

≤c1t−1 ln
y1(t)

y1(0)
+ f1b1 − c1b2 − af1t

−1

∫ t

0

x(s)ds

+ f1σ1t
−1W1(t)− c1σ2t

−1W2(t).

(2.24)

According to (2.10), for arbitrary ε > 0, there exists T > 0 such that for t ≥ T ,

t−1f1 lnx(0) ≤ ε/3, c1t−1 ln
y1(t)

y1(0)
≤ ε/3, f1σ1t

−1W1(t)− c1σ2t
−1W2(t) ≤ ε/3.

Substituting these inequalities into (2.24), we can observe that for t ≥ T

t−1f1 lnx(t) ≤ ε+ f1b1 − c1b2. (2.25)

It then follows from b1
c1

< b2
f1

that we can let ε be sufficiently small such that

ε+ f1b1 − c1b2 < 0. Hence lim
t→+∞

x(t) = 0, a.s. The proof of lim
t→+∞

t−1
∫ t

0
y1(s)ds =

h1b2
f1

is similar to that of (ii) and hence is omitted. This completes the proof of (a).

(b): According to (2.20),

t−1 ln y1(t)− t−1 ln y1(0) = b2 − f1t
−1

∫ t

0

y1(s)

h1 + x(s)
ds+ σ2t

−1W2(t).

In view of (2.10) and lim
t→+∞

t−1W2(t) = 0, we can see that

lim
t→+∞

t−1

∫ t

0

y1(s)

h1 + x(s)
ds =

b2
f1
, a.s. (2.26)

At the same time, by virtue of (2.19),

t−1 lnx(t) =b1 − at−1

∫ t

0

x(s)ds− c1t−1

∫ t

0

y1(s)

h1 + x(s)
ds

+ t−1 lnx(0)− c2t−1

∫ t

0

y2(s)

h2 + x(s)
ds+ σ1W1(t)/t.

(2.27)

It therefore follows from lim
t→+∞

y2(t) = 0 and (2.26) that for arbitrary ε > 0, there

exists T > 0 such that for t ≥ T ,

−c1b2
f1
−ε ≤ −c1t−1

∫ t

0

y1(s)

h1 + x(s)
ds+t−1 lnx(0)−c2t−1

∫ t

0

y2(s)

h2 + x(s)
ds ≤ −c1b2

f1
+ε.
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When these inequalities are used in (2.27), one can derive that for t ≥ T ,

t−1 lnx(t) ≥ b1 −
c1b2
f1
− ε− at−1

∫ t

0

x(s)ds+ σ1t
−1W1(t), (2.28)

t−1 lnx(t) ≤ b1 −
c1b2
f1

+ ε− at−1

∫ t

0

x(s)ds+ σ1t
−1W1(t). (2.29)

Let ε be sufficiently small such that b1 − c1b2
f1
− ε > 0, and then using (I) and (II)

in Lemma 2.2 to (2.28) and (2.29) respectively, one derives

b1
a
− c1b2
af1

+
ε

a
≤ lim inf

t→+∞
t−1

∫ t

0

x(s)ds ≤ lim sup
t→+∞

t−1

∫ t

0

x(s)ds ≤ b1
a
− c1b2
af1

+
ε

a
, a.s.

According to the arbitrariness of ε, we have

lim
t→+∞

t−1

∫ t

0

x(s)ds =
b1
a
− c1b2
af1

, a.s.

This completes the proof of (vi).
The proof of (vii) is similar to (vi) and hence is omitted.
To completes the proof, we need only to show (viii).
(e): By (2.24)×f2 − (2.21)× c1f1,

t−1f1f2 ln
x(t)

x(0)
=c1f2t

−1 ln
y1(t)

y1(0)
+ c2f1t

−1 ln
y2(t)

y2(0)

+ f1b1f2 − c1b2f2 − c2f1b3 − af1f2t
−1

∫ t

0

x(s)ds

+ f1f2σ1t
−1W1(t)− c1f2σ2t

−1W2(t)− c2f1σ3t
−1W3(t).

(2.30)

It follows from (2.10) that for arbitrary ε > 0, there exists T > 0 such that for
t ≥ T ,

t−1f1f2 lnx(0) ≤ ε/4, c1f2t
−1 ln

y1(t)

y1(0)
≤ ε/4, c2f1t

−1 ln
y2(t)

y2(0)
≤ ε/4,

f1f2σ1t
−1W1(t)− c1f2σ2t

−1W2(t)− c2f1σ3t
−1W3(t) ≤ ε/4.

When these inequalities are used in (2.30), we obtain that for t ≥ T

t−1f1 lnx(t) ≤ ε+ f1b1f2 − c1b2f2 − c2f1b3. (2.31)

Note that b1 < c1
f1
b2 + c2

f2
b3, thus we can choose ε sufficiently small such that

f1b1f2 − c1b2f2 − c2f1b3 + ε < 0. Consequently, lim
t→+∞

x(t) = 0, a.s. The proof of

lim
t→+∞

t−1

∫ t

0

y1(s)ds =
h1b2
f1

, lim
t→+∞

t−1

∫ t

0

y2(s)ds =
h2b3
f2

is similar to that of (ii) and hence is omitted.
(f): Similar to (2.26), we can show that

lim
t→+∞

t−1

∫ t

0

y1(s)

h1 + x(s)
ds =

b2
f1
, lim
t→+∞

t−1

∫ t

0

y2(s)

h2 + x(s)
ds =

b3
f2
, a.s.
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It then follows from (2.27) that for sufficiently large t,

t−1 lnx(t) ≥ b1 −
c1b2
f1
− c2b3

f2
− ε− at−1

∫ t

0

x(s)ds+ σ1t
−1W1(t),

t−1 lnx(t) ≤ b1 −
c1b2
f1
− c2b3

f2
+ ε− at−1

∫ t

0

x(s)ds+ σ1t
−1W1(t).

Then using Lemma 2.2 and the arbitrariness of ε, we can derive the desired assertion
(2.18).

3. Numerical simulations

In this section, we shall work out some figures to validate our analytical results
by using the famous Milstein method (see e.g. [9]). Without loss of generality,
we suppose that b2 = r2 − 0.5σ2

2 > b3 = r3 − 0.5σ2
3 . Consider the discretization

equation:

x(k+1) =x(k) + x(k)

[
r1 − ax(k) − c1y

(k)
1

h1 + x(k)
− c2y

(k)
2

h2 + x(k)

]
∆t

+ σ1x
(k)
√

∆tξ(k) +
σ2

1

2
x(k)((ξ(k))2∆t−∆t),

y
(k+1)
1 = y

(k)
1 + y

(k)
1

[
r2 −

f1y
(k)
1

h1 + x(k)

]
∆t+ σ2y

(k)
1

√
∆tη

(k)
1 +

σ2
2

2
y

(k)
1 ((η

(k)
1 )2∆t−∆t),

y
(k+1)
2 = y

(k)
2 + y

(k)
2

[
r3 −

f2y
(k)
2

h2 + x(k)

]
∆t+ σ3y

(k)
2

√
∆tη

(k)
2 +

σ2
3

2
y

(k)
2 ((η

(k)
2 )2∆t−∆t),

where ξ(k), η
(k)
1 and η

(k)
2 ,k = 1, 2, . . . ,K, are the Gaussian random variables.

In Fig.1, we set r1 = 0.8, r2 = 0.25, r3 = 0.1, a = 0.4, c1 = 0.8, c2 = 0.6, h1 =
h2 = 1, f1 = 0.4, f2 = 0.3. The only difference between the conditions of Fig.1(a)-
Fig.1(h) is that the values of σ2

1 , σ2
2 and σ2

3 are different.

(a) In Fig.1(a), we choose σ2
1/2 = 0.85, σ2

2/2 = 0.26, σ2
3/2 = 0.15. Then b1 =

−0.05, b2 = −0.01 > b3 = −0.05. According to (i) in Theorem 2.1, all the
population become extinct. Fig.1(a) confirms these.

(b) In Fig.1(b), we choose σ2
1/2 = 0.85, σ2

2/2 = 0.2, σ2
3/2 = 0.15. Then b1 =

−0.05, b2 = 0.05 > b3 = −0.05. In view of (ii) in Theorem 2.1, both x and y2

go to extinction and

lim
t→+∞

t−1

∫ t

0

y1(s)ds =
h1b2
f1

=
0.05

0.4
= 0.125.

See Fig.1(b).

(c) In Fig.1(c), we choose σ2
1/2 = 0.85, σ2

2/2 = 0.2, σ2
3/2 = 0.08. Then b1 =

−0.05, b2 = 0.05 > b3 = 0.02. By virtue of (iv) in Theorem 2.1, x is extinct
and

lim
t→+∞

t−1

∫ t

0

y1(s)ds =
h1b2
f1

= 0.125, lim
t→+∞

t−1

∫ t

0

y2(s)ds =
h2b3
f2

= 0.0667.

Fig.1(c) confirms these.
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Figure 1. Solutions of (1.2) for r1 = 0.8, r2 = 0.25, r3 = 0.1, a = 0.4, c1 = 0.8, c2 = 0.6, h1 = h2 =

1, f1 = 0.4, f2 = 0.3, step size ∆t = 0.001. (a) is with σ2
1/2 = 0.85, σ2

2/2 = 0.26, σ2
3/2 = 0.15; (b)

is with σ2
1/2 = 0.85, σ2

2/2 = 0.2, σ2
3/2 = 0.15; (c) is with σ2

1/2 = 0.85, σ2
2/2 = 0.2, σ2

3/2 = 0.08; (d)

is with σ2
1/2 = 0.75, σ2

2/2 = 0.26, σ2
3/2 = 0.15; (e) is with σ2

1/2 = 0.75, σ2
2/2 = 0.2, σ2

3/2 = 0.15; (f)

is with σ2
1/2 = 0.6, σ2

2/2 = 0.2, σ2
3/2 = 0.15; (g) is with σ2

1/2 = 0.5, σ2
2/2 = 0.1, σ2

3/2 = 0.05; (h) is

with σ2
1/2 = 0.2, σ2

2/2 = 0.15, σ2
3/2 = 0.05.

(d) In Fig.1(d), we choose σ2
1/2 = 0.75, σ2

2/2 = 0.26, σ2
3/2 = 0.15. Then b1 =

0.05, b2 = −0.01 > b3 = −0.05. Using (v) in Theorem 2.1 results in that y1

and y2 go to extinction and

lim
t→+∞

t−1

∫ t

0

x(s)ds =
b1
a

= 0.125.

See Fig.1(d).

(e) In Fig.1(e), we choose σ2
1/2 = 0.75, σ2

2/2 = 0.2, σ2
3/2 = 0.15. Then b1 =

0.05, b2 = 0.05 > b3 = −0.05, b1 <
c1
f1
b2 = 0.1. Applying (a) in Theorem 2.1

gives that x and y2 go to extinction and

lim
t→+∞

t−1

∫ t

0

y1(s)ds =
h1b2
f1

= 0.125.
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Fig.1(e) confirms these.

(f) In Fig.1(f), we choose σ2
1/2 = 0.6, σ2

2/2 = 0.2, σ2
3/2 = 0.15. Then b1 =

0.2, b2 = 0.05 > b3 = −0.05, b1 >
c1
f1
b2 = 0.1. It then follows from (b) in

Theorem 2.1 that

lim
t→+∞

t−1

∫ t

0

x(s)ds =
b1
a
− c1b2
af1

= 0.25,

lim
t→+∞

t−1

∫ t

0

y1(s)

1 + x(s)
ds =

b2
f1

= 0.125.

See Fig.1(f).

(g) In Fig.1(g), we choose σ2
1/2 = 0.5, σ2

2/2 = 0.1, σ2
3/2 = 0.05. Then b1 =

0.3, b2 = 0.15 > b3 = 0.05, b1 <
c1
f1
b2 + c2

f2
b3 = 0.4. By (e) in Theorem 2.1, x

goes to extinction and

lim
t→+∞

t−1

∫ t

0

y1(s)ds =
h1b2
f1

= 0.375, lim
t→+∞

t−1

∫ t

0

y2(s)ds =
h2b3
f2

= 0.1667.

Fig.1(g) confirms these.

(h) In Fig.1(h), we choose σ2
1/2 = 0.2, σ2

2/2 = 0.15, σ2
3/2 = 0.05. Then b1 =

0.6, b2 = 0.1 > b3 = 0.05, b1 > c1
f1
b2 + c2

f2
b3 = 0.3. According to (f) in

Theorem 2.1,

lim
t→+∞

t−1

∫ t

0

x(s)ds =
b1
a
− c1b2
af1
− c2b3
af2

= 0.75,

lim
t→+∞

t−1

∫ t

0

y1(s)

1 + x(s)
ds =

b2
f1

= 0.25,

lim
t→+∞

t−1

∫ t

0

y2(s)

1 + x(s)
ds =

b3
f2

= 0.1667.

Fig.1(h) confirms these.

4. Concluding remarks

This paper is devoted to the asymptotic properties of a stochastic two-predators
one-prey model with modified Leslie-Gower and Holling-type II schemes. We have
carried out the almost complete parameters analysis of the model. From these
results, one can see that the stochastic noise play a key role in determining the
extinction and stability in time average of the species.

Some interesting topics deserve further investigation. It is interesting to consider
more realistic but complex models, for example, Markovian-switching (see e.g. [29])
or Lévy jumps (see e.g. [3]). The motivation is that the growth of population in the
natural world often suffer sudden-environmental shocks, e.g., epidemics, waterflood,
drought, etc. Moreover, it is interesting to study the stochastic one-predator two-
preys model.
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