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Abstract In this paper, we consider the axisymmetric Navier-Stokes equa-
tions, and provide a refined a priori estimate for the swirl component of the
vorticity. This extends Theorem 2 of [D. Chae, J. Lee, On the regularity of the
axisymmetric solutions of the Navier-Stokes equations, Math. Z., 239 (2002),
645–671].

Keywords Axisymmetric Navier-Stokes equations, a priori estimate.

MSC(2010) 35B65, 35Q35, 76D03.

1. Introduction

This paper concerns the following Navier-Stokes equations
∂tu + (u · ∇)u−4u +∇π = 0,

∇ · u = 0,

u(0) = u0,

(1.1)

where u = (u1, u2, u3) is the fluid velocity field, π is a scalar pressure, and u0 is
the prescribed initial data satisfying the compatibility condition ∇ · u0 = 0 in the
sense of distributions.

It is well-known that (1.1) possesses a global weak solution

u ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)) (1.2)

for initial data of finite energy, see [5, 9]. However, the issue of its regularity and
uniqueness is an outstanding open problem in mathematical fluid dynamics.

An interesting result on (1.1) is that the axially symmetric solutions without
swirl component exists globally (see [8, 10, 14]). However, if the swirl component
is non-zero, then it is still open for its global regularity. And many interesting
sufficient conditions to ensure the smoothness of the solution were established, see
[1–4,6, 7, 11,13,15,16] for example.
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In this paper, we concern ourselves with the a priori estimates for axisymmetric
solution of (1.1). By this, we mean a solution of the form

u = ur(r, z, t)er + uθ(r, z, t)eθ + uz(r, z, t)ez, (1.3)

where

er =
(x1
r
,
x2
r
, 0
)

= (cos θ, sin θ, 0) ,

eθ =
(
−x2
r
,
x1
r
, 0
)

= (− sin θ, cos θ, 0) ,

ez = (0, 0, 1),

are the standard bases in the cylindrical coordinate system. In (1.3), ur, uθ, uz

are called the angular, swirl and axial components of the velocity field u. For the
axisymmetric solutions, we can reformulate (1.1) as

D̃
Dtu

r −
(
∂2r + ∂2z + 1

r∂r −
1
r2

)
ur − (uθ)2

r + ∂rπ = 0,

D̃
Dtu

θ −
(
∂2r + ∂2z + 1

r∂r −
1
r2

)
uθ + uruθ

r = 0,

D̃
Dtu

z −
(
∂2r + ∂2z + 1

r∂r
)
uz + ∂zπ = 0,

∂r(ru
r) + ∂z(ru

z) = 0,

ur(0) = ur0, u
θ(0) = uθ0, u

z(0) = uz0,

(1.4)

where
D̃

Dt
= ∂t + ur∂r + uz∂z (1.5)

is the convection derivative (or material derivative). For the axisymmetric vector
field u, we can compute the vorticity ω = ∇× u as

ω = ωrer + ωθeθ + ωzez, (1.6)

where

ωr = −∂zuθ, ωθ = ∂zu
r − ∂ruz, ωz = ∂ru

θ +
uθ

r
. (1.7)

By taking curl of (1.1) or by applying suitable derivatives to (1.4), we may deduce
the governing equations of the ωr, ωθ and ωz as

D̃
Dtω

r −
(
∂2r + ∂2z + 1

r∂r −
1
r2

)
ωr − (ωr∂r + ωz∂z)u

r = 0,

D̃
Dtω

θ −
(
∂2r + ∂2z + 1

r∂r −
1
r2

)
ωθ − 2uθ∂zu

θ

r − urωθ

r = 0,

D̃
Dtω

z −
(
∂2r + ∂2z + 1

r∂r
)
ωz − (ωr∂r + ωz∂z)u

z = 0.

(1.8)

It is well-known that for any 2 ≤ p <∞,

|ruθ|
p
2 ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)) (1.9)

if ruθ0 ∈ Lp(R3), see [1, Proposition 1] for instance. In the same paper, Chae-Lee
established another a priori bounds

r3ωθ ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)), (1.10)

if ruθ0 ∈ L4(R3) and r3ωθ0 ∈ L2(R3).
The purpose of the present paper is to extend (1.10). Precisely, we have
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Theorem 1.1. If u is an axisymmetric smooth solution of the Navier-Stokes e-
quations with divergence-free initial data u0 ∈ L2(R3) satisfying rdωθ0 ∈ L2(R3) for
some 2 ≤ d ≤ 3 and ruθ0 ∈ L4(R3), then rdωθ ∈ L∞(0, T ;L2(R3))∩L2(0, T ;H1(R3)).

Remark 1.1. The case d = 3 in Theorem 1.1 was exactly the result of [1, Theorem
2]. Moreover, if Theorem 1.1 holds for d = 0, then [1, Theorem 1] tells us that
the solution can be extended smoothly beyond T . Thus our theorem is better
than [1, Theorem 2] in this sense.

Before proving Theorem 1.1 in Section 2, we recall the well-known Gagliardo-
Nirenberg inequality.

Lemma 1.1 (Gagliardo-Nirenberg inequality, see [12]). Let 1 ≤ p, q, r ≤ ∞, and
j,m are arbitrary integers satisfying 0 ≤ j < m. Assume f ∈ C∞c (Rn). Then∥∥Djf

∥∥
Lp
≤ C ‖f‖1−aLq ‖D

mf‖aLr ,

where
−j +

n

p
= (1− a)

n

q
+ a

(
−m+

n

r

)
,

and

a ∈

 [j/m, 1), if m− j − n/r is an nonnegative integer,

[j/m, 1] , otherwise.

The constant C depends only on n,m, j, q, r, a.

Choosing n = 3, j = 0, m = 1 and q = r = 2 in Lemma 1.1 yields

‖f‖Lp ≤ C ‖f‖
1−a
L2 ‖∇f‖aL2 , with a =

3

2
− 3

p
, ∀ 2 ≤ p ≤ 6. (1.11)

2. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Similar to [1], we multiply (1.8)2 by r2dωθ

with 2 ≤ d ≤ 3, and integrate over R3 to obtain

1

2

d

dt

∥∥rdωθ∥∥2
L2 +

∥∥∇(rdωθ)
∥∥2
L2

= (d+ 1)

∫
R3

urr2d−1|ωθ|2 dx+ 2

∫
R3

uθ∂zu
θ · r2d−1ωθ dx+ (d2 − 1)

∫
R3

|rd−1ωθ|2 dx

≡ I1 + I2 + I3.
(2.1)

We estimate Ii (1 ≤ i ≤ 3) term by term as

I1 = (d+ 1)

∫
R3

ur · (rdωθ)
2d−1
d · (ωθ) 1

d dx

≤ (d+ 1) ‖ur‖L2

∥∥rdωθ∥∥ 2d−1
d

L
2(2d−1)
d−1

∥∥ωθ∥∥ 1
d

L2 (by Hölder inequailty)

≤ C
∥∥rdωθ∥∥ d−2

2d

L2

∥∥∇(rdωθ)
∥∥ 3

2

L2

∥∥ωθ∥∥ 1
d

L2 (by (1.2) and (1.11))

≤ 1

3

∥∥ωθ∥∥2
L2 + C

∥∥rdωθ∥∥2
L2 +

1

6

∥∥∇(rdωθ)
∥∥2
L2 (by Young inequality) ,

(2.2)
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I2 =

∫
R3

∂z(|ruθ|2) · r2d−3ωθ dx

=

∫
R3

∂z(|ruθ|2) · (rdωθ)
2d−3
d · (ωθ)

3−d
d dx

≤
∥∥∂z(|ruθ|2)

∥∥
L2

∥∥rdωθ∥∥ 2d−3
d

L2

∥∥ωθ∥∥ 3−d
d

L2 (by Hölder inequailty)

≤ 1

3

∥∥ωθ∥∥2
L2 + C

∥∥rdωθ∥∥2
L2 +

∥∥∂z(|ruθ|2)
∥∥2
L2 (by Young inequality) ,

(2.3)

I3 = (d2 − 1)

∫
R3

(rdωθ)
2(d−1)
d

(
ωθ
) 2
d dx

≤ (d2 − 1)
∥∥rdωθ∥∥ 2(d−1)

d

L2

∥∥ωθ∥∥ 2
d

L2 (by Hölder inequailty)

≤ 1

3

∥∥ωθ∥∥2
L2 + C

∥∥rdωθ∥∥2
L2 (by Young inequality) .

(2.4)

Gathering (2.2), (2.3) and (2.4) into (2.1), we find

d

dt

∥∥rdωθ∥∥2
L2 +

∥∥∇(rdωθ)
∥∥2
L2 ≤

∥∥ωθ∥∥2
L2 +

∥∥∂z(|ruθ|2)
∥∥2
L2 + C

∥∥rdωθ∥∥2
L2 .

Applying Gronwall inequality, and utilizing (1.2) and (1.9), we deduce that

rdωθ ∈ L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3)),

as desired. The proof of Theorem 1.1 is completed.
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