
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 7, Number 2, May 2017, 702–712 DOI:10.11948/2017044

EXISTENCE OF POSITIVE SOLUTIONS FOR
FRACTIONAL BOUNDARY VALUE

PROBLEMS

Serife Muge Ege and Fatma Serap Topal†
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1. Introduction

In this paper we’ll consider the existence of multiplicity of positive solutions for the
following problem

Dq (ϕ (Drx(t))) + f (t, x(t)) = 0, t ∈ (0, 1),

α1x(0)− β1x
′(0) = −γ1x(ξ1),

α2x(1) + β2x
′(1) = −γ2x(ξ2),

Drx(0) = 0,

(1.1)

where α1, α2, β1, β2, γ1, γ2 are real constants with, α1, α2, β1, β2 > 0, β1 > γ1, β2 >
γ2, 0 < ξ1 ≤ ξ2 < 1, f ∈ C ([0, 1]×R+,R+) and Dr and Dq are the standard
Caputo fractional derivatives of fractional order r and q with 1 < r ≤ 2, 0 < q ≤ 1,
ϕ : R → R is an increasing homeomorphism and positive homomorphism with
ϕ(0) = 0.

A projection ϕ : R → R is called an increasing homeomorphism and positive
homomorphism, if the following conditions are satisfied;

1) If x ≤ y, then ϕ(x) ≤ ϕ(y), for all x, y ∈ R,

2) ϕ is a continuous bijection and its inverse mapping is also continuous,

3) ϕ(xy) = ϕ(x)ϕ(y), for all x, y ∈ R.

Due to the development of the theory of fractional calculus and its applica-
tions, such as in the fields of physics, rheology, dynamical processes in self similar
and porous structures, electrical networks, visco-elasticity, chemical physics, and
many other branches of science, many works on the basic theory of fractional cal-
culus and fractional order differential equations have been published. For details,
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see [5, 10,12–16,20]. Also, there have been many papers dealing with the existence
and multiplicity of solutions of boundary value problems for nonlinear fractional
differential equations, see [1–4,6–9,18,19,21–25] and the references therein. Very re-
cently, some authors considered the nonlinear fractional differential equations with
p-Laplacian operator (ϕ(u) = |u|p−2u, p > 1) and two-point, three-point, multi-
point boundary value conditions. It is well known that the p-Laplacian operator is
odd. In this paper we’ll use the operator which is not necessary odd improves and
generalizes a p-Laplacian operator. Moreover, for the increasing homeomorphism
and positive homomorphism operator, the research has proceeded very slowly. E-
specially for the existence of countable many positive solutions of boundary value
problems for fractional differential equations still remain unknown.

In [24], Zhao et al. investigated following fractional boundary value problem:

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u′(0)− βu(ξ) = 0, u′(1) + γu(η) = 0,

where α is a real constants with, 1 < α ≤ 2, 0 ≤ ξ ≤ η ≤ 1, 0 ≤ β, γ ≤ 1 and Dα
0+

is the Caputo fractional derivative.
In [9], Ji and Ge obtained positive solutions for the following four-point nonlocal

boundary value problems of fractional order:

Dα
0+u(t) + f(t, u(t)) = 0, t ∈ (0, 1),

u′(0)− βu′(ξ) = 0, u(1) + γu′(η) = 0,

where α is a real constants with, 1 < α ≤ 2, 0 ≤ ξ ≤ η ≤ 1, 0 < β < 1, γ > 0 and
Dα

0+ is the Caputo fractional derivative.
In [18], Lu et al. studied the following fractional differential equations with

p-Laplacian operator:

Dβ (ϕp (Dαu(t))) = f(t, u(t)), t ∈ [0, 1],

u(0) = u′(0) = u′(1) = 0, Dαu(0) = Dαu(1) = 0,

where α is a real constants with, 2 < α ≤ 3, 1 < β ≤ 2 and Dα, Dβ are the Caputo
fractional derivatives.

In [22], Yang studied the following fractional differential equations with p-
Laplacian operator:

Dβ (ϕp (Dαx(t))) = f(t, x(t)), t ∈ [0, 1],

x(0) = x(1) = 0, Dαx(0) = Dαx(1) = 0,

where α is a real constants with, 0 < α, β ≤ 1, 1 < α + β ≤ 2 and Dα, Dβ are the
Caputo fractional derivatives.

Motivated by the above-mentioned works, using Krasnoselskiis and Legget-
Williams fixed point theorems in a cone, we show that the problem (1.1) has at
least one and three positive solutions. The remainder of the paper is organized as
follows. In Section 2 we state some preliminary facts needed in the proof of the
main results. We also state a version of the Krasnoselskiis and Legget-Williams
fixed point theorems. In Section 3, we state the main results of the paper, that
establish existence of at least one or multiple positive solutions for the problem
(1.1).
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2. Preliminaries

In this section we collect some preliminary definitions and results that will be used
in subsequent section. Firstly, for convenience of the reader, we give some definitions
and fundamental results of fractional calculus.

Definition 2.1. For a function f given on the interval [a, b], the Caputo derivative
of fractional order r is defined as

Drf(t) =
1

Γ(n− r)

∫ t

0

(t− s)n−r−1f (n)(s)ds, n = [r] + 1, (2.1)

where [r] denotes the integer part of r.

Definition 2.2. The Riemann-Liouville fractional integral of order r for a function
f is defined as

Irf(t) =
1

Γ(r)

∫ t

0

(t− s)r−1f(s)ds, r > 0. (2.2)

Lemma 2.1. Let r > 0. Then the differential equation Drx(t) = 0 has solutions

x(t) = c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1, (2.3)

where ci ∈ R, i = 0, 1, 2, . . . , n, n = [r] + 1.

Lemma 2.2. Let r > 0. Then

Ir(Drx)(t) = x(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1, (2.4)

where ci ∈ R, i = 0, 1, 2, . . . , n, n = [r] + 1.

For finding a solution of the problem (1.1), we first consider the following frac-
tional differential equation

−Drx(t) = y(t),

α1x(0)− β1x
′(0) = −γ1x(ξ1),

α2x(1) + β2x
′(1) = −γ2x(ξ2),

(2.5)

where y ∈ C ([0, 1],R+).
Let we define d := α1(α2 + β2 + γ2ξ2) + γ1 (β2 + α2(1− ξ1) + γ2(ξ2 − ξ1)) +

β1(α2 + γ2).

Lemma 2.3. Let r ∈ (1, 2] and y ∈ C[0, 1]. The boundary value problem

−Drx(t) = y(t), 0 < t < 1,

α1x(0)− β1x
′(0) = −γ1x(ξ1),

α2x(1) + β2x
′(1) = −γ2x(ξ2)

(2.6)

has a unique solution x in the form

x(t) =

∫ 1

0

G(t, s)y(s)ds (2.7)
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where

G(t, s) =



− 1

Γ(r)
(t− s)r−1 +

γ1

dΓ(r)
[α2 + β2 + γ1ξ2

−t(α2 + γ2)] (ξ1 − s)r−1 +
1

dΓ(r)
[β1 − γ1ξ1

+(α1 + γ1)t]
[
γ2(ξ2 − s)r−1 + α2(1− s)r−1

+rβ2(1− s)r − 2] ,

s ≤ ξ1, s ≤ t,

γ1

dΓ(r)
[α2 + β2 + γ1ξ2 − t(α2 + γ2)] (ξ1 − s)r−1

1

dΓ(r)
[β1 − γ1ξ1 + (α1 + γ1)t]

[
γ2(ξ2 − s)r−1

+α2(1− s)r−1 + rβ2(1− s)r−2
]
,

s ≤ ξ1, s ≥ t,

− 1

Γ(r)
(t− s)r−1 +

1

dΓ(r)
[β1 − γ1ξ1 + (α1 + γ1)t][

γ2(ξ2 − s)r−1 + α2(1− s)r−1 + rβ2(1− s)r−2
]
,

ξ1 ≤ s ≤ ξ2, s ≤ t,

1

Γ(r)
[β1 − γ1ξ1 + (α1 + γ1)t]

[
γ2(ξ2 − s)r−1

+rβ2(1− s)r−2
]
,

ξ1 ≤ s ≤ ξ2, s ≥ t,

− 1

Γ(r)
(t− s)r−1 +

1

dΓ(r)
[β1 − γ1ξ1 + (α1 + γ1)t][

α2(1− s)r−1 + rβ2(1− s)r−2
]
,

ξ2 ≤ s, s ≤ t,

1

Γ(r)
[β1 − γ1ξ1 + (α1 + γ1)t]

[
α2(1− s)r−1

+rβ2(1− s)r−2
]
,

ξ2 ≤ s, s ≥ t.

(2.8)

Proof. The equation Drx(t) + y(t) = 0 has a unique solution

x(t) = − 1

Γ(r)

∫ t

0

(t− s)r−1y(s)ds+ c0 + c1t, (2.9)

where c0, c1 ∈ R.
By α1x(0)− β1x

′(0) = −γ1x(ξ1), α2x(1) + β2x
′(1) = −γ2x(ξ2), we have

c0 =
γ1(α2 + β2 + γ2ξ2)

dΓ(r)

∫ ξ1

0

(ξ1 − s)r−1y(s)ds− 1

d
(γ1ξ1 − β1)

×
[
α2

Γ(r)

∫ 1

0

(1− s)r−1y(s)ds+
β2

Γ(r)

∫ 1

0

(1− s)r−2y(s)ds

+
γ2

Γ(r)

∫ ξ2

0

(ξ2 − s)r−1y(s)ds

]
and

c1 =
α1 + γ1

d

[
α2

Γ(r)

∫ 1

0

(1− s)r−1y(s)ds+
β2

Γ(r − 1)

∫ 1

0

(1− s)r−2y(s)ds

+
γ2

Γ(r)

∫ ξ2

0

(ξ2 − s)r−1y(s)ds

]
− γ1(α2 + γ2)

dΓ(r)

∫ ξ1

0

(ξ1 − s)r−1y(s)ds.
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Substituting c0, c1 into equation (2.9) we find,

x(t) =− 1

Γ(r)

∫ 1

0

(t− s)r−1y(s)ds+
γ1(α2 + β2 + γ2ξ2)

dΓ(r)

∫ ξ1

0

(ξ1 − s)r−1y(s)ds

− 1

d
(γ1ξ1 − β1)

[
α2

Γ(r)

∫ 1

0

(1− s)r−1y(s)ds+
β2

Γ(r)

∫ 1

0

(1− s)r−2y(s)ds

+
γ2

Γ(r)

∫ ξ2

0

(ξ2 − s)r−1y(s)ds

]
+

[
α1 + γ1

d

[ α2

Γ(r)

∫ 1

0

(1− s)r−1y(s)ds

+
β2

Γ(r − 1)

∫ 1

0

(1− s)r−2y(s)ds+
γ2

Γ(r)

∫ ξ2

0

(ξ2 − s)r−1y(s)ds
]

− γ1(α2 + γ2)

dΓ(r)

∫ ξ1

0

(ξ1 − s)r−1y(s)ds

]
t

=

∫ 1

0

G(t, s)y(s)ds.

The proof is complete.
Throughout this study we will assume the following condition is satisfied:

(H1) (α2 + (r − 1)β2) (β1 − γ1ξ1) ≥ d.

Lemma 2.4. If (H1) holds, then there exist a constant N such that 0 ≤ G(t, s) ≤
N(1− s)r−2, t, s ∈ [0, 1], where

N :=
1

dΓ(r)
[γ1(α2 + β2 + γ1ξ2) + (α1 + β1) (γ2 + α2 + (r − 1)β2)] .

Proof. Obviously G(t, s) ≥ 0,

max
0≤t≤1

G(t, s) ≤ γ1

dΓ(r)

(
α2 + β2 + γ1ξ2 − (α2 + γ2)t

)
(ξ1 − s)r−1

+
γ2

dΓ(r)

(
β1 − γ1ξ1 + (α1 + γ1)t

)
(ξ2 − s)r−1

+
α2 + (r − 1)β2

dΓ(r)

(
β1 − γ1ξ1 + (α1 + γ1)t

)
(1− s)r−2

≤ γ1

dΓ(r)
(α2 + β2 + γ1ξ2)(1− s)r−2 +

γ2

dΓ(r)

(
β1 − γ1ξ1 + α1 + γ1

)
(1− s)r−2 +

α2 + (r − 1)β2

dΓ(r)

(
β1 − γ1ξ1 + α1 + γ1

)
(1− s)r−2

≤ 1

dΓ(r)

[
γ1(α2 + β2 + γ1ξ2) + (α1 + β1)

(
γ2 + α2 + (r − 1)β2

)]
(1− s)r−2

≤N(1− s)r−2.

The proof is completed.

Lemma 2.5. If 0 < s < 1, θ ∈ (0, 1
2 ), then there exists a constant Ω such that

G(t, s) ≥ ΩN(1− s)r−2, (2.10)
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where

Ω :=
−d+ (α2 + (r − 1)β2) (β1 − γ1ξ1 +min{θ, 1− θ}(α1 + γ1))

γ1(α2 + β2 + γ1ξ2) + (α1 + β1) (γ2 + α2 + (r − 1)β2)
. (2.11)

Proof. We have two cases:
Case 1. For 0 ≤ s ≤ t ≤ 1− θ, we get

G(t, s) ≥ − 1

Γ(r)
(1− s)r−2 +

α2 + (r − 1)β2

dΓ(r)
[β1 − γ1ξ1 + (α1 + γ1)t] (1− s)r−2.

(2.12)
Case 2. For θ ≤ t ≤ s ≤ 1, we get

G(t, s) ≥ α2 + (r − 1)β2

dΓ(r)
[β1 − γ1ξ1 + (α1 + γ1)t] (1− s)r−2. (2.13)

Hence we have

G(t, s) ≥ −d+ (α2 + (r − 1)β2) (β1 − γ1ξ1 + (α1 + γ1)min{θ, 1− θ})
dΓ(r)

(1− s)r−2.

(2.14)

Lemma 2.6. Let f ∈ C ([0, 1]× [0,∞]), then the problem (1.1) has a unique solu-
tion

x(t) =

∫ 1

0

G(t, s)ϕ−1 (Iqf(s, x(s))) ds. (2.15)

Proof. Let Drx(t) = g(t) and h = ϕ(g), then we have the following problem

Dqh(t) + f (t, x(t)) = 0,

h(0) = 0.
(2.16)

By Lemma 2.1, we have

h(t) = c1t
q−1 − Iq (f (t, x(t))) . (2.17)

Since h(0) = 0, we get

h(t) = −Iq (f (t, x(t))) , 0 < t < 1. (2.18)

So, the problem

Drx(t) = ϕ−1 (Iq (f (t, x(t)))) = −ϕ−1 (Iq (f(t, x(t)))) ,

α1x(0)− β1x
′(0) = −γ1x(ξ1),

α2x(1) + β2x
′(1) = −γ2x(ξ2)

(2.19)

has a unique solution

x(t) =

∫ 1

0

G(t, s)ϕ−1 (Iqf(s, x(s))) ds. (2.20)

To prove our results, we need the following fixed point theorems.
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Theorem 2.1 ( [11]). Let E = (E, ‖ . ‖) be a Banach space, P ⊂ E be a cone in E.
Suppose that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose
further that T : P ∩ (Ω2 \ Ω1) → P is a completely continuous operator such that
either

(1) ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2, or

(2) ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω1, ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω2

holds. Then T has a fixed point in P ∩ (Ω2 \ Ω1).

Define Pc := {x ∈ P :‖ x ‖< c}, P (α, a, b) := {x ∈ P : a ≤ α(x), ‖ x ‖≤ b}
where a, b, c > 0.

Theorem 2.2 ( [17]). Let E = (E, ‖ . ‖) be a Banach space, P ⊂ E a cone of E
and c > 0 a constant. Suppose that there exists a nonnegative continuous concave
functional α on P with α(x) ≤‖ x ‖ for x ∈ P c and let T : P c → P c be a completely
continuous map. Assume that there exist a, b, c, d with 0 < a < b < d ≤ c such that

(S1) {x ∈ P (α, b, d) : α(x) > b} 6= ∅ and α(Tx) > b for all x ∈ P (α, b, d);

(S2) ‖ Tu ‖< α for all x ∈ P a;

(S3) α(Tx) > b for all x ∈ P (α, b, c) with ‖ Tu ‖> d.

Then T has at least three fixed points x1, x2, x3 ∈ P such that ‖ x1 ‖< a, α(x2) >
b, ‖ x3 ‖> a and α(x3) < b.

3. Main Result

In this section, we prove the existence of multiple positive solutions of the problem
(1.1) by using Theorem 2.1 and Theorem 2.2. We consider the Banach space E =
C ([0, 1],R) endowed with the norm defined by ‖x‖ = sup0≤t≤1 |x(t)|. Let P = {x ∈
E : Ω ‖ x ‖≤ mint∈[θ,1−θ] x(t)}, then P is a cone in E.

Theorem 3.1. Assume that

(A1) There exist t1, t2 ∈ (0, 1) such that limx→∞
f(t,x)
x =∞ uniformly on [t1, t2],

(A2) R1 is a positive real number such that R1 ≥ ϕ−1( M
Γ(q+1) ) N

r−1 where M =

max{f(t, x) : (t, x) ∈ [0, 1]× [0, R1]},

then the problem (1.1) has at least one positive solution such that R1 ≤‖ x ‖≤ R2.

Proof. It is well known that the existence of positive solution to the boundary
value problem (1.1) is equivalent to the existence of fixed point of the operator T .
So, we shall seek a fixed point of T in our cone P where the operator T : E → E is
defined by

Tx(t) =

∫ 1

0

G(t, s)ϕ−1 (Iq (f (s, x(s)))) ds, t ∈ [0, 1]. (3.1)

First it is obvious that T is completely continuous. Now we will prove that T (P ) ⊂
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P .

Tx(t) =

∫ 1

0

G(t, s)ϕ−1 (Iq (f(s, x(s)))) ds

≤
∫ 1

0

N(1− s)r−2ϕ−1 (Iq (f(s, x(s)))) ds

≤ min
t∈[θ,1−θ]

∫ 1

0

1

Ω
G(t, s)ϕ−1 (Iq (f(s, x(s)))) ds.

Therefore

‖ Tx ‖= 1

Ω

∫ 1

0

min
t∈[θ,1−θ]

G(t, s)ϕ−1 (Iq (f(s, x(s)))) ds, t ∈ [0, 1]. (3.2)

Thus, we get
Ω ‖ Tx ‖≤ min

t∈[θ,1−θ]
Tx(t). (3.3)

This shows that T (P ) ⊂ P.
Let ΩR1 = {x ∈ E :‖ x ‖< R1}. We shall prove that ‖ Tx ‖≤‖ x ‖, for

x ∈ P
⋂
∂ΩR1

. Then ‖ x ‖= R1. Then, we find for t ∈ [0, 1],

Tx(t) =

∫ 1

0

G(t, s)ϕ−1 (Iq (f(s, x(s)))) ds

≤
∫ 1

0

G(t, s)ϕ−1 (Iq (M)) ds

≤
∫ 1

0

G(t, s)ϕ−1(M)ϕ−1 (Iq (1)) ds

≤
∫ 1

0

N(1− s)r−2ϕ−1(M)ϕ−1 (Iq (1)) ds

≤ ϕ−1(M)N

∫ 1

0

(1− s)r−2ϕ−1

(
1

Γ(q + 1)

)
ds

= ϕ−1(
M

Γ(q + 1)
)
N

r − 1
≤ R1,

since

Iq (1) =
1

Γ(q)

∫ 1

0

(t− s)q−1ds =
tq

Γ(q + 1)
≤ 1

Γ(q + 1)
.

Therefore ‖ Tx ‖≤ R1 =‖ x ‖ for y ∈ P
⋂
∂ΩR1

.
Let K be a positive real number such that

ΩN

r − 1
ϕ−1

(
KL

Γ(q + 1)

)
R−1

2 ≥ 1. (3.4)

In the view of (A2), there is a constant L > 0 such that f(t, x) ≥ Kx, ∀x ≥ L and
t ∈ [t1, t2].

Now set, R2 := R1 + L and define ΩR2
= {x ∈ E :‖ x ‖< R2}. Therefore for

x ∈ P
⋂
∂ΩR2

, we have

f(t, x(t)) ≥ Kx(t) ≥ KL, t ∈ [t1, t2]. (3.5)
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(3.26) implies that

Tx(t) =

∫ 1

0

G(t, s)ϕ−1 (Iq (f(s, x(s)))) ds

≥
∫ 1

0

ΩN(1− s)r−2ϕ−1 (Iq (KL)) ds

=
ΩN

r − 1
ϕ−1

(
KL

Γ(q + 1)

)
≥ R2 =‖ x ‖,

so we get ‖ Tx ‖≥ R2 =‖ x ‖.
Then it follows from Theorem 2.1 that T has a fixed point x with R1 ≤‖ x ‖≤ R2.
Hence, x is a positive solution of the problem (1.1) such that R1 ≤‖ x ‖≤ R2.

Theorem 3.2. Assume that there exist constants a, b, c, d with 0 < a < b < c = d
such that the following conditions hold:

(B1) f(t, x) ≤ ϕ
(
a(r−1)
N

)
Γ(q + 1), 0 ≤ x ≤ a,

(B2) f(t, x) ≥ ϕ
(
b(r−1)

ΩN

)
Γ(q + 1), b ≤ x ≤ c,

(B3) f(t, x) ≤ ϕ
(
c(r−1)
N

)
Γ(q + 1), 0 ≤ x ≤ c.

Then the boundary value problem (1.1) has at least three positive solutions x1, x2, x3

such that

max
t∈[0,1]

|x1(t)| < a, b < min
t∈[θ,1−θ]

|x2(t)| < max
t∈[0,1]

|x2(t)| ≤ c,

a < max
t∈[0,1]

|x3(t)| ≤ c, min
t∈[θ,1−θ]

|x3(t)| < b.

Proof. Let we define the nonnegative, continuous concave functional α : P →
[0,∞) by α(x) = mint∈[0,1] |x(t)|. For each x ∈ P , it is easy to see α(x) ≤‖ x ‖.

First we show that (S1) of Theorem 2.2 holds. To check the condition (1) of

Theorem 2.2, we choose x0(t) =
b+ c

2
, for t ∈ [0, 1]. It is easy to see that x0 ∈ P ,

‖ x0 ‖=
b+ c

2
≤ c and α(x0) =

b+ c

2
> b. That is x0 ∈ {x ∈ P (α, b, d) : α(x) >

b} 6= Ø. Moreover, if x ∈ P (α, b, d), we have b ≤ x(t) ≤ c for t ∈ [0, 1]. By (B2) and
Lemma 2.5, we have

α(Tx) = min
t∈[θ,1−θ]

|(Tx)(t)|

≥
∫ 1

0

ΩN(1− s)r−2ϕ−1 (Iq (f (s, x(s)))) ds

≥
∫ 1

0

ΩN(1− s)r−2ϕ−1

(
Iq
(
ϕ

(
b(r − 1)

ΩN

)
Γ(q + 1)

))
ds

= ΩN
b(r − 1)

ΩNΓ(q + 1)
Γ(q + 1)

1

r − 1
= b.

Hence condition (S1) of Theorem 2.2 is satisfied.
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If d = c, then the condition (S1) of Theorem 2.2 implies the condition (S3) of
Theorem 2.2. So condition (S3) of Theorem 2.2 is satisfied.

Next we show that (S2) of Theorem 2.2 holds. If x ∈ Pa, then ‖ x ‖≤ a. By
Lemma 2.4 and (B3), we get

‖ Tx ‖ = max
t∈[0,1]

∫ 1

0

G(t, s)ϕ−1 (Iq (f (s, x(s)))) ds

≤
∫ 1

0

N(1− s)r−2ϕ−1

(
Iq
(
ϕ

(
a(r − 1)

N

)
Γ(q + 1)

))
ds

≤
∫ 1

0

N(1− s)r−2ϕ−1

ϕ
(
a(r−1)
N

)
Γ(q + 1)

Γ(q + 1)

 ds

= N
c(r − 1)

NΓ(q + 1)
Γ(q + 1)

1

r − 1
= a.

Hence condition (S2) of Theorem 2.2 is satisfied.
In the same way, we can show that if (B3) holds, then T (Pc) ⊆ Pc.
To sum up, all the hypotheses of Theorem 2.2 are satisfied. The proof is com-

pleted.

References

[1] B. Ahmada and G. Wang, A study of an impulsive four-point nonlocal boundary
value problem of nonlinear fractional differential equations, Comput. Math.
Appl., 2011, 62, 1341–1349.

[2] B. Ahmad and S. Sivasundaram, On four-point nonlocal boundary value prob-
lems of nonlinear integro-differential equations of fractional order, Appl. Math.
Comput., 2010, 217, 480–487.

[3] A. Babakhani and V. D. Gejji, Existence of positive solutions of nonlinear
fractional differential equations, J. Math. Anal. Appl., 2003, 278, 434–442.

[4] Z. B. Bai and H.S. L, Positive solutions of boundary value problems of nonlinear
fractional differential equation, J. Math. Anal. Appl., 2005, 311, 495–505.

[5] D. Delbosco, Fractional calculus and function spaces, J. Fract. Calc., 1994, 6,
45–53.

[6] D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional
differential equation, J. Math. Anal. Appl., 1996, 204, 609–625.

[7] C. Goodrich, Existence of a positive solution to a class of fractional differential
equations, Appl. Math. Lett., 2010, 23, 1050–1055.

[8] J. Graef and B. Yang, Positive solutions of a nonlinear fourth order boundary
value problem, Commun. Appl. Nonlinear Anal., 2007, 14, 61–73.

[9] D. Ji and W. Ge, Positive solution for four-point nonlocal boundary value prob-
lems of fractional order, Math. Meth. Appl. Sci., 2014, 37, 1232–1239.

[10] A. A. Kilbas, H. M. Srivastava and Trujillo JJ, Theory and Applications of
Fractional Differential Equations, Elsevier B.V, Netherlands, 2006.

[11] M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral
Equations (A. H. Armstrong, Trans.), Pergamon, Elmsford, 1964.



712 S. M. Ege & F. S. Topal

[12] V. Lakshmikantham and S. Leela, Theory of fractional differential inequalities
and applications, Commun. Appl. Anal., 2007, 11, 395–402.

[13] V. Lakshmikantham and J. Devi, Theory of fractional differential equations in
a Banach space, Eur. J. Pure Appl. Math., 2008, 1, 38–45.

[14] V. Lakshmikantham and S. Leela, Nagumo-type uniqueness result for fractional
differential equations, Nonlinear Anal. TMA 2009, 71, 2886–2889.

[15] V. Lakshmikantham, S. Leela, A Krasnoselskii-Krein-type uniqueness result for
fractional differential equations, Nonlinear Anal. TMA 2009, 71, 3421–3424.

[16] V. Lakshmikantham, Theory of fractional differential equations, Nonlinear
Anal. TMA, 2008, 69, 3337–3343.

[17] R. W. Legget and L. R. Williams, Multiple positive fixed points of nonlinear
operators on ordered Banach spaces, Indiana Univ. Math. J., 1979, 28, 673–688.

[18] H. Lu, Z. Han, S. Sun and J. Liu, Existence on positive solutions for boundary
value problems of nonlinear fractional differential equations with p-Laplacian,
Adv. Differ. Equ., 2013, 2013, 30 pp. doi:10.1186/1687-1847-2013-30

[19] R. Ma and L. Xu, Existence of positive solutions of a nonlinear fourth order
boundary value problem, Appl. Math. Lett., 2010, 23, 537–543.

[20] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Frac-
tional Differential Equations, Wiley, New York. 1993,.

[21] M, Rehman and R. Khan, Existence and uniqueness of solutions for multi-point
boundary value problems for fractional differential equations, Appl. Math. Lett.,
2010, 23, 1038–1044.

[22] W.Yang, Positive solution for fractional q-difference boundary value problems
with -Laplacian operator, Bull. Malays. Math. Soc., 2013, 36, 1195–1203.

[23] C. Yu and G. Gao, Existence of fractional differential equations, J. Math. Anal.
Appl., 2005, 310, 26–29.

[24] X. Zhao, C. Chai and W. Ge, Positive solutions for fractional four-point bound-
ary value problems, Commun. Nonlinear Sci. Numer. Simul., 2011, 16, 3665–
3672.

[25] W. Zhou and Y. Chu, Existence of solutions for fractional differential equations
with multi-point boundary conditions, Commun. Nonlinear Sci. Numer. Simul.,
2012, 17, 1142–1148.


	Introduction
	Preliminaries
	Main Result

