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QUADRATIC TRIGONOMETRIC B-SPLINE
GALERKIN METHODS FOR THE

REGULARIZED LONG WAVE EQUATION∗

Dursun Irk1,† and Pınar Keskin2

Abstract In this study, a numerical solution of the Regularized Long Wave
(RLW) equation is obtained using Galerkin finite element method, based on
two and three steps Adams Moulton method for the time integration and
quadratic trigonometric B-spline functions for the space integration. After
two different linearization techniques are applied, the proposed algorithms are
tested on the problems of propagation of a solitary wave and interaction of
two solitary waves. For the first test problem, the rate of convergence and the
running time of the proposed algorithms are computed and the error norm
L∞ is used to measure the differences between exact and numerical solutions.
The three conservation quantities of the motion are calculated to determine
the conservation properties of the proposed algorithms for both of the test
problems.

Keywords Finite element method, spline approximation, solitary waves e-
quation.
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1. Introduction

The first observation of solitary wave or wave of translation in shallow water was
made in 1834 by John Scott Russell [15]. The solitary wave solutions are assumed
to be of the form

u(x, t) = f(x− vt),

where v is the speed of the wave propagation, and f(z), f ′(z), f ′′(z) → 0 as z →
±∞, z = x− vt [21].

In 1895, Korteweg and de Vries studied a partial differential equation (PDE)
known as the KdV equation to provide an explanation of the phenomenon observed
by Russell [10]. The KdV equation

ut + εuux + uxxx = 0, (1.1)

exhibits special solutions, describing the theory of water waves in shallow channels.
These water waves are known as solitons, which are stable and do not disperse with
time and they are also solitary waves that are not deformed after collision with
other solitons.
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1Eskişehir Osmangazi University, Department of Mathematics-Computer,
26480, Eskişehir, Turkey
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The RLW equation was formulated by Peregrine as an alternative to KdV e-
quation for studying soliton phenomenon with boundary conditions u → 0 as
x → ±∞ [14]. The regularized long wave (RLW) equation which can be shown
in the form

ut + ux + εuux − µuxxt = 0, (1.2)

where ε and µ are positive constants and u, x, t denote the amplitude, spatial and
time coordinate, respectively.

The spatial variable x of the problem is restricted over the finite region a ≤ x ≤ b
for the numerical treatment. Note that the space interval must be chosen to fit
u(a, t) = u(b, t) ≈ 0 because of the boundary conditions u→ 0 as x→ ±∞. In this
study the RLW equation will be considered with boundary condition over the space
region as

u(a, t) = u(b, t) = 0,

ux(a, t) = ux(b, t) = 0,
t ∈ (0, T ] (1.3)

and the initial condition

u(x, 0) = f(x) (1.4)

will be defined in the numerical experiments section.
Since the RLW equation has been solved analytically only for restricted set of

boundary and initial conditions [2], the numerical solution of the RLW equation
has been the subject of many papers over the last few years. Galerkin and Petrov
Galerkin methods based on different degrees B-spline finite elements have been
widely used to find numerical solutions of the RLW or similar equation [1, 3–9, 16–
19, 22]. As far as we know, no paper has been found for the numerical solutions
of the nonlinear partial differential equation using trigonometric B-spline Galerkin
method.

In this paper, the purpose of this study is to obtain numerical solution of the
RLW equation based on the application of two Adams Moulton methods for the
time discretization and quadratic trigonometric B-spline Galerkin method for the
space discretization using different two linearization techniques. After a description
of the proposed method is outlined in section 2, the propagation of a solitary wave
and interaction of two positive solitary waves test problems are investigated and
results are compared with published numerical solutions in terms of norm L∞ and
conservative quantities in the third section.

For computational work, the space-time plane is discretized by grid with the
time step ∆t and space step h. The exact solution of the unknown function at the
grid points is denoted by

u(xm, tn) = unm, m = 0, 1, . . . , N ; n = 0, 1, 2, . . . ,

where xm = a + mh, tn = n∆t and the notation Un
m is used to represent the

numerical value of unm.

1.1. Time Discretization

We consider the RLW equation of the form

vt = (u− µuxx)t = − (ux + εuux) . (1.5)
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For the time discretization of the Eq. (1.5), we use following one-step and two-
step Adams-Moulton methods:

vn+1 = vn +
∆t

2

(
(vt)

n+1 + (vt)
n
)

+O(∆t3), (1.6)

vn+1 = vn + ∆t

(
5

12
(vt)

n+1 +
2

3
(vt)

n − 1

12
(vt)

n−1

)
+O(∆t4). (1.7)

The first Adams-Moulton method is also called Crank–Nicolson or trapezium method.
The second Adams-Moulton method is typically more accurate than the first method
because its order is bigger than the Crank-Nicolson method.

The general form of the above two methods can be written as follows:

vn+1 = vn + ∆t
(
θ1(vt)

n+1 + θ2(vt)
n + θ3(vt)

n−1
)
. (1.8)

If θ1 = θ2 = 1/2, θ3 = 0, the method is of order 2 and is called Crank-Nicolson
method (CN method) and then if θ1 = 5/12, θ2 = 2/3, θ3 = −1/12, the method is
of order 3 and is called Adams Moulton method (AM method). Using the (1.8) for
the time discretization of the RLW equation, we have

un+1 + θ1∆t (ux)
n+1

+ θ1∆tεun+1 (ux)
n+1 − µ (uxx)

n+1

= un − µ (uxx)
n − θ2∆t (ux)

n − θ2∆tεun (ux)
n − θ3∆t (ux)

n−1

− θ3∆tεun−1 (ux)
n−1

. (1.9)

1.2. Quadratic Trigonometric B-spline Galerkin Methods

For the space discretization, the space domain [a, b] is discretized into partitions of
N finite elements of equal length h by the knots

a = x0 < x1 < . . . < xN−1 < xN = b.

Using the recurrence relation given in [11,20], the quadratic trigonometric B-spline
functions are defined at the knots as [12]

Tm(x) =
1

θ



g2(xm−1), x ∈ [xm−1, xm) ,

−g(xm−1)g(xm+1)− g(xm+2)g(xm), x ∈ [xm, xm+1) ,

g2(xm+2), x ∈ [xm+1, xm+2) ,

0, otherwise,

(1.10)

where

θ = sin

(
h

2

)
sin(h),

g(xm) = sin

(
x− xm

2

)
.

The global approximation to the analytical solution of the problem can be de-
fined by using quadratic trigonometric B-splines as

u(x, t) ≈ U(x, t) =

N∑
m=−1

Tm(x)δm(t), (1.11)
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where the coefficients δm are time dependent parameters to be determined from
boundary conditions and the quadratic trigonometric B-spline Galerkin form of
the RLW equation. Tm (m = −1(1)N) and their first derivatives with respect to
space variable x vanish outside the interval [xm−1, xm+2]. Since from (1.10) each
quadratic trigonometric B-splines covers 3 intervals, each element [xm, xm+1] is
covered by three splines. Therefore over the element [xm, xm+1], an approximation
to the exact solution u(x, t) in terms of quadratic trigonometric B-splines can be
written as

U(x, t) =

m+1∑
j=m−1

Tj(x)δj(t) = Tm−1δm−1 + Tmδm + Tm+1δm+1. (1.12)

Using (1.10) and the trial solution (1.12) the values of Um = U(xm, t) and their
first space derivatives at knots can be written in terms of the parameters δm as

Um = sin(h/2) csc(h) (δm−1 + δm) , (1.13)

U ′m =
1

2
csc(h/2) (−δm−1 + δm) . (1.14)

1.2.1. Linearization Technique 1

Applying Galerkin method to Eq. (1.9) with weight function W (x) and then inte-
grating by parts lead to the equation:∫ b

a

W (x)
(
Un+1 + θ1∆t (Ux)

n+1
+ θ1∆tεUn+1 (Ux)

n+1
)
dx

+ µ

∫ b

a

Wx(x) (Ux)
n+1

dx

=

∫ b

a

W (x)
(
Un − θ2∆t (Ux)

n − θ2∆tεUn (Ux)
n − θ3∆t (Ux)

n−1

−θ3∆tεUn−1 (Ux)
n−1
)
dx+ µ

∫ b

a

Wx(x) (Ux)
n
dx. (1.15)

Now, identifying the weight function W (x) with the quadratic trigonometric
B-spline Tm and using the expression (1.12) in equation (1.15), a fully discrete
approximation is obtained over the element [xm, xm+1] as

m+1∑
j=m−1

{(∫ xm+1

xm

TiTjdx

)
δn+1
j + µ

(∫ xm+1

xm

T ′iT
′
jdx

)
δn+1
j + θ1∆t

(∫ xm+1

xm

TiT
′
jdx

)

× δn+1
j + θ1∆tε

m+1∑
k=m−1

(∫ xm+1

xm

TiTk
(
δn+1
k

)
T ′jdx

)
δn+1
j

}

−
m+1∑

j=m−1

{(∫ xm+1

xm

TiTjdx

)
δnj + µ

(∫ xm+1

xm

T ′iT
′
jdx

)
δnj − θ2∆t

(∫ xm+1

xm

TiT
′
jdx

)
δnj

−θ2∆tε

m+1∑
k=m−1

(∫ xm+1

xm

TiTk (δnk )T ′jdx

)
δnj − θ3∆t

(∫ xm+1

xm

TiT
′
jdx

)
δn−1
j

−θ3∆tε

m+1∑
k=m−1

(∫ xm+1

xm

TiTk
(
δn−1
k

)
T ′jdx

)
δn−1
j

}
, (1.16)
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where i, j and k take only the values m − 1, m, m + 1 for this typical element
[xm, xm+1]. (1.16) can be written in the matrices form as

[
Ae+µDe+θ1∆tBe+θ1∆tεCe

(
(δe)

n+1
)]

(δe)
n+1

− [Ae+µDe−θ2∆tBe−θ2∆tεCe ((δe)
n
)] (δe)

n

+
[
θ3∆tBe + θ3∆tεCe

(
(δe)

n−1
)]

(δe)
n−1

,

(1.17)

where the element matrices and element parameters are

Ae
ij=

∫ xm+1

xm

TiTjdx, Be
ij =

∫ xm+1

xm

TiT
′
jdx,

Ce
ij

(
(δe)

n+1
)

=

∫ xm+1

xm

TiTk
(
δn+1
k

)
T ′jdx, D

e
ij =

∫ xm+1

xm

T ′iT
′
jdx,

(δe)
n+1

= (δn+1
m−1, δ

n+1
m , δn+1

m+1)T .

The 3× 3 element matrices Ae, Be and De are independent of the parameters δe

and 3× 3× 3 element matrices Ce depends on the parameters δe.

Combining contributions from all elements lead to the nonlinear matrix equation

[
A+µD+θ1∆tB+θ1∆tεC

(
δn+1

)]
δn+1

= [A+µD−θ2∆tB−θ2∆tεC (δn)] δn

−
[
θ3∆tB + θ3∆tεC

(
δn−1

)]
δn−1,

(1.18)

where global element parameters

δ= (δ−1, δ0, . . . , δN−1, δN )
T

and A, B, C, D are calculated from the corresponding element matrices Ae, Be,
Ce and De.

The pentadiagonal system of equations (1.18) consists of (N + 2) equations
of (N + 2) unknown parameters (δ−1, δ0, . . . , δN−1, δN ) . After the first and last
equations are deleted in the system (1.18), imposition of the boundary conditions
U(a, x) = U(b, x) = 0 at the both ends of the region yields to eliminate δn+1

−1 and

δn+1
N from the above system. Therefore the solution of the pentadiagonal matrix

equations with the dimensions N × N is obtained by way of Thomas algorithms.
After initial vector d0 = (δ0

−1, . . . , δ
0
N−1, δ

0
N ) is found with the help of the boundary

and initial conditions, d1 = (δ1
−1, . . . , δ

1
N−1, δ

1
N ) unknown vector is obtained using

Crank-Nicolson method (CN1). Therefore dn+1, (n = 1, 2, . . .) unknown vectors can
be found repeatedly by solving the recurrence relation (1.18) using two previous dn

and dn−1 unknown vectors (AM1). Note that since the system (1.18) is an implicit
system, we have proposed the following inner iteration algorithm for all time steps
to increase the accuracy of the system:
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Step 1: Set error = 1 and δ∗m = δn+1
m in C

(
δn+1

)
and taking δ∗m = δnm

find U∗m,

Step 2: While error ≥ 10−10 do Steps 3–4,

Step 3: Find Un+1
m ,

Step 4: Find max
m

∣∣Un+1
m − U∗m

∣∣ and set δ∗m = δn+1
m ,

Step 5: Stop and go to next time step.

1.2.2. Linearization Technique 2

One of the main purposes of this work is to use the new linearization technique for
the linearization of the terms (UUx)

n+1
in the following manner

(UUx)
n+1 ≈2λ1

(
Un+1Un

x + UnUn+1
x − 2λ1U

nUn
x

)
+ λ2

(
−Un+1Un−1

x − Un−1Un+1
x + 2UnUn−1

x + 2Un−1Un
x − Un−1Un−1

x

)
.

(1.19)

Using (1.19) in Eq. (1.9), we have

Un+1 + θ1∆t (Ux)
n+1

+ θ1∆tε
[
2λ1(Ux)nUn+1 − λ2(Ux)n−1Un+1

+2λ1U
n(Ux)n+1 − λ2U

n−1(Ux)n+1
]
− µ (Uxx)

n+1

=Un − µ (Uxx)
n − θ2∆t (Ux)

n
+ ∆tε(4λ2

1θ1 − θ2)Un(Ux)n − 2λ2θ1∆tε(Un−1 (Ux)
n

+ (Ux)n−1Un)− θ3∆t (Ux)
n−1

+ ∆tε(λ2θ1 − θ3)Un−1 (Ux)
n−1

.
(1.20)

If θ1 = θ2 = 1/2, θ3 = 0, λ1 = 1/2 and λ2 = 0, the proposed time discretization
method (CN) is of order 2 and then if θ1 = 5/12, θ2 = 2/3, θ3 = −1/12 and
λ1 = λ2 = 1, the proposed time discretization method (AM) is of order 3. Applying
Galerkin method to Eq. (1.20) with weight function W (x) and then integrating by
parts lead to the equation:

∫ b

a

W (x)
[
Un+1 + θ1∆t (Ux)

n+1
+ θ1∆tε

(
2λ1(Ux)nUn+1 − λ2(Ux)n−1Un+1

+2λ1U
n(Ux)n+1 − λ2U

n−1(Ux)n+1
)]
dx+

∫ b

a

µWx(x) (Ux)
n+1

dx

=µ

∫ b

a

Wx(x) (Ux)
n
dx+

∫ b

a

W (x) [Un − θ2∆t (Ux)
n

+ ∆tε(4λ2
1θ1 − θ2)Un(Ux)n

− 2λ2θ1∆tε× (Un−1 (Ux)
n

+ (Ux)n−1Un)− θ3∆t (Ux)
n−1

+∆tε(λ2θ1 − θ3)Un−1 (Ux)
n−1
]
dx.

(1.21)

Now, identifying the weight function W (x) with the quadratic trigonometric
B-spline Tm and using the expression (1.12) in Eq. (1.21), a fully discrete approxi-
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mation is obtained over the element [xm, xm+1] as

m+1∑
j=m−1

{(∫ xm+1

xm

TiTjdx

)
δn+1
j + µ

(∫ xm+1

xm

T ′iT
′
jdx

)
δn+1
j

+ θ1∆t

(∫ xm+1

xm

TiT
′
jdx

)
δn+1
j + θ1∆tε

[
2λ1

m+1∑
k=m−1

(∫ xm+1

xm

TiT
′
k (δnk )Tjdx

)
δn+1
j

− λ2

m+1∑
k=m−1

(∫ xm+1

xm

TiT
′
k

(
δn−1
k

)
Tjdx

)
δn+1
j

+ 2λ1

m+1∑
k=m−1

(∫ xm+1

xm

TiTk (δnk )T ′jdx

)
δn+1
j

− λ2

m+1∑
k=m−1

(∫ xm+1

xm

TiTk
(
δn−1
k

)
T ′jdx

)
δn+1
j

]}
−

m+1∑
j=m−1

{(∫ xm+1

xm

TiTjdx

)
δnj

+ µ

(∫ xm+1

xm

T ′iT
′
jdx

)
δnj − θ2∆t

(∫ xm+1

xm

TiT
′
jdx

)
δnj + ∆tε(4λ2

1θ1 − θ2)

×
m+1∑

k=m−1

(∫ xm+1

xm

TiTk (δnk )T ′jdx

)
δnj − 2λ2θ1∆tε

m+1∑
k=m−1

(∫ xm+1

xm

TiTk
(
δn−1
k

)
T ′jdx

+

∫ xm+1

xm

TiT
′
k

(
δn−1
k

)
Tjdx

)
δnj − θ3∆t

(∫ xm+1

xm

TiT
′
jdx

)
δn−1
j

+∆tε(λ2θ1 − θ3)

m+1∑
k=m−1

(∫ xm+1

xm

TiTk
(
δn−1
k

)
T ′jdx

)
δn−1
j

}
, (1.22)

where i, j and k take only the values m − 1, m, m + 1 for this typical element
[xm, xm+1]. (1.22) can be written in the matrices form as[
Ae+µDe+θ1∆tBe+θ1∆tε

(
2λ1E

e ((δe)
n
)−λ2E

e
(

(δe)
n−1
)

+2λ1C
e ((δe)

n
)

−λ2C
e
(

(δe)
n−1
))]

(δe)
n+1 −

[
Ae+µDe−θ2∆tBe + ∆tε(4λ2

1θ1 − θ2)Ce ((δe)
n
)

−2λ2θ1∆tε
(
Ce
(

(δe)
n−1
)

+Ee
(

(δe)
n−1
))]

(δe)
n

−
[
−θ3∆tBe + ∆tε(λ2θ1 − θ3)Ce

(
(δe)

n−1
)]

(δe)
n−1

,

(1.23)
where the element matrices and element parameters are

Ae
ij=

∫ xm+1

xm

TiTjdx, Be
ij=

∫ xm+1

xm

TiT
′
jdx, Ce

ij ((δe)
n
) =

∫ xm+1

xm

TiTk (δnk )T ′jdx,

De
ij =

∫ xm+1

xm

T ′iT
′
jdx, Ee

ij ((δe)
n
) =

∫ xm+1

xm

TiT
′
k (δnk )Tjdx,

(δe)
n

= (δnm−1, δ
n
m, δ

n
m+1)T .

Assembling together contributions from all elements leads to the matrix equation[
A+µD+θ1∆tB+θ1∆tε

(
2λ1E (δn)−λ2E

(
δn−1

)
+2λ1C (δn)−λ2C

(
δn−1

))]
δn+1
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=
[
A+µD−θ2∆tB + ∆tε(4λ2

1θ1 − θ2)C (δn)− 2λ2θ1∆tε(C
(
δn−1

)
+ E

(
δn−1

)
)
]
δn

+
[
−θ3∆tB + ∆tε(λ2θ1 − θ3)C

(
δn−1

)]
δn−1, (1.24)

where global element parameters

δ= (δ−1, δ0, . . . , δN−1, δN )
T

and A, B, C, D, E are calculated from the corresponding element matrices Ae,
Be, De, Ce and Ee.

The pentadiagonal system of equations (1.24) consists of (N + 2) equations
of (N + 2) unknown parameters (δ−1, δ0, . . . , δN−1, δN ) . After the first and last
equations are deleted in the system (1.24), imposition of the boundary conditions
U(a, x) = U(b, x) = 0 at the both ends of the region yields to eliminate δn+1

−1 and

δn+1
N from the system (1.24). Therefore the solution of the pentadiagonal matrix

equations with the dimensions N × N is obtained by way of Thomas algorithms.
After initial vector d0 = (δ0

−1, . . . , δ
0
N−1, δ

0
N ) is found with the help of the boundary

and initial conditions, d1 = (δ1
−1, . . . , δ

1
N−1, δ

1
N ) unknown vector is obtained using

Crank-Nicolson method (CN2). Therefore dn+1, (n = 1, 2, . . .) unknown vectors can
be found repeatedly by solving the recurrence relation (1.24) using two precious dn

and dn−1 unknown vectors (AM2).

2. Numerical Experiments

Since an accurate numerical scheme must keep the conservation properties of the
RLW equation, we will monitor the three invariants of numerical solution for the
equation corresponding to conservation of mass, momentum and energy given by
the following integrals [13]:

I1 =

∫ ∞
−∞

udx ≈
∫ b

a

Udx,

I2 =

∫ ∞
−∞

(u2 + µ(ux)2)dx ≈
∫ b

a

(U2 + µ(Ux)2)dx,

I3 =

∫ ∞
−∞

(
u3 + 3u2

)
dx ≈

∫ b

a

(U3 + 3U2)dx.

(2.1)

Integrals for the conservation invariants are computed approximately with the
trapezoidal rule for the space interval at all time steps. For the first test problem,
accuracy of the proposed algorithms is worked out by measuring error norm L∞

L∞ = max
m
|um − Um| , (2.2)

and the order of convergence is computed with fixed space step by the formula

order=

log

∣∣∣∣ u− U∆tm

u− U∆tm+1

∣∣∣∣
log

∣∣∣∣ ∆tm
∆tm+1

∣∣∣∣ , (2.3)

where u is the exact solution and U∆tm is the numerical solution with time step
∆tm.
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2.1. Motion of Single Solitary Wave for the RLW Equation

The solitary wave theoretical solution of the RLW equation is

u(x, t) = 3csech2(k[x− x̃0 − vt]), (2.4)

and the initial condition of the equation is

u(x, 0) = 3csech2(k[x− x̃0]), (2.5)

where v = 1+εc is the wave velocity, 3c is amplitude of the solitary wave, x̃0 is peak

position of the initially centered wave and k =

√
εc

4µv
. This solution corresponds to

a solitary wave of magnitude 3c, initially centered on the position x̃0 propagating
towards the right across the interval [a, b] up to the time T without change of shape
at a steady velocity v.

In this test problem, firstly single solitary wave simulation is carried out over
the solution domain −80 ≤ x ≤ 100 in the time period 0 ≤ t ≤ 20 with the
parameters ε = µ = 1, x̃0 = 0 and the amplitude 3c = 0.3. Using these parameters
and h = ∆t = 0.01, the initial and numerical solutions are drawn in Fig. 1 for
visual view of the the solution up to time t = 20 for AM2. According to the figure
we can say that numerical solution profile keeps its initial form.
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Figure 1. U(x, t) at various time with h = ∆t = 0.01 for AM2.

Three invariants (2.1) for the RLW equation using the initial condition (2.5) can
be determined analytically as

I1 =
6c

k
, I2 =

12c2

k
+

48kc2µ

5
, I3 =

36c2

k

(
1 +

4c

5

)
.

After the program is run up to time t = 20 with fixed space and various time
steps error norm L∞, invariants, Cpu time and Order of convergence for the pro-
posed algorithms are presented in Table 1. According to Table 1, we observe that
while h = 0.01 and ∆t are decreased from 1 to 0.01, the error norms L∞ are also
decreased for the all algorithms. When we compare the performance of the algo-
rithms by their order of convergence, it can be seen that AM1 and AM2 have a cubic
order of convergence whereas CN1 and CN2 have a quadratic order of convergence.
Comparing the Cpu time of the all proposed algorithms, CN2 and AM2 require up
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Table 1. Error norms L∞ and invariants for a single solitary wave at time t = 20 with c = 0.1,
−80 ≤ x ≤ 100 h = 0.01 and various time step.

∆t L∞ I1 I2 I3 Cpu Order
1 8.41×10−3 3.9799497 0.8105456 2.5791817 7.769 1.95
0.5 2.17×10−3 3.9799497 0.8104679 2.5790192 11.20 1.99
0.2 3.51×10−4 3.9799497 0.8104624 2.5790077 22.31 2.00

CN1 0.1 8.79×10−5 3.9799497 0.8104623 2.5790075 43.63 2.00
0.05 2.20×10−5 3.9799497 0.8104623 2.5790074 70.61 2.00
0.02 3.52×10−6 3.9799497 0.8104623 2.5790074 172.0 2.00
0.01 8.79×10−7 3.9799497 0.8104623 2.5790074 266.5

∆t L∞ I1 I2 I3 Cpu Order
1 8.56×10−3 3.9799497 0.8104906 2.5789980 2.636 1.98
0.5 2.19×10−3 3.9799497 0.8104660 2.5790129 3.713 1.99
0.2 3.51×10−4 3.9799497 0.8104624 2.5790077 6.873 2.00

CN2 0.1 8.79×10−5 3.9799497 0.8104623 2.5790075 12.68 2.00
0.05 2.20×10−5 3.9799497 0.8104623 2.5790074 23.98 2.00
0.02 3.52×10−6 3.9799497 0.8104623 2.5790074 57.95 2.00
0.01 8.79×10−7 3.9799497 0.8104623 2.5790074 114.6

∆t L∞ I1 I2 I3 Cpu Order
1 2.05×10−3 3.9799497 0.8129323 2.5871508 8.674 3.00
0.5 2.56×10−4 3.9799497 0.8107781 2.5800497 12.26 3.00
0.2 1.64×10−5 3.9799497 0.8104828 2.5790751 24.71 3.00

AM1 0.1 2.05×10−6 3.9799497 0.8104648 2.5790159 48.47 3.00
0.05 2.57×10−7 3.9799497 0.8104626 2.5790085 76.75 3.00
0.02 1.64×10−8 3.9799497 0.8104623 2.5790074 194.1 3.02
0.01 2.03×10−9 3.9799497 0.8104623 2.5790074 286.1

∆t L∞ I1 I2 I3 Cpu Order
1 2.10×10−3 3.9799497 0.8128778 2.5869703 2.434 3.00
0.5 2.62×10−4 3.9799497 0.8107766 2.5800445 3.744 3.00
0.2 1.68×10−5 3.9799497 0.8104828 2.5790750 6.880 3.00

AM2 0.1 2.09×10−6 3.9799497 0.8104648 2.5790159 13.20 3.00
0.05 2.62×10−7 3.9799497 0.8104626 2.5790085 24.38 2.99
0.02 1.69×10−8 3.9799497 0.8104623 2.5790074 58.30 2.96
0.01 2.17×10−9 3.9799497 0.8104623 2.5790074 115.6

to 50% less Cpu time than CN1 and AM1. Finally according to the table, we can
see that three invariants I1, I2 and I3 remain almost constants during the computer
run for all algorithms so that propagation of the solitary wave represented faithfully.
Absolute error (analytical–numerical) distributions for all of the proposed methods
are drawn at time t = 20 in Fig. 2. As seen from all of the figures, the maximum
errors occurred at the middle of the interval and are compatible with Table 1.

Comparisons are made with several previous works listed in Table 2 and Table
3. The present methods especially AM1 and AM2 provide smaller errors than the
results of papers [3–5,17,22] for solitary wave amplitudes 0.3 and 0.09. In the table
it can also be seen the effect of changing the range of x from −40 ≤ x ≤ 60 to
−80 ≤ x ≤ 100.

Finally when ε and µ are much smaller than 1, error norms L∞.are presented
in Table 4 at time t = 20. As seen from the table, the proposed all of the methods
produced almost the same results while ε and µ are reducing from 1 to 1/256.
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Figure 2. Absolute errors with h = ∆t = 0.01.

Table 2. Solitary wave amplitude= 0.3 at t = 20 with h = 0.125,∆t = 0.1.

L∞ × 105 I1 I2 I3
CN1(−80 ≤ x ≤ 100) 8.78896 3.9799498 0.8104273 2.5790075

CN2(−80 ≤ x ≤ 100) 8.79019 3.9799498 0.8104273 2.5790075

AM1(−40 ≤ x ≤ 60) 1.26845 3.9798823 0.8104298 2.5790159

AM1(−80 ≤ x ≤ 100) 0.20615 3.9799498 0.8104625 2.5790074

AM2(−40 ≤ x ≤ 60) 1.26845 3.9798822 0.8104298 2.5790159

AM2(−80 ≤ x ≤ 100) 0.21010 3.9799498 0.8104298 2.5790159

[22](−40 ≤ x ≤ 60) 25.398 3.97989 0.80925 2.57501

[22](−80 ≤ x ≤ 120, h = 0.2) 14.240 3.97829 0.80983 2.57692

[5](−40 ≤ x ≤ 60) 8.6 3.97988 0.810465 2.57901

[4]QBGM1(−40 ≤ x ≤ 60) 7.3 3.97988 0.81046 2.57900

[4]QBGM2(−40 ≤ x ≤ 60) 12.8 3.97988 0.81046 2.57900

[17](−40 ≤ x ≤ 60) 7.344 3.9798879 0.8104622 2.5790063

[3](−40 ≤ x ≤ 60) 19.8 3.98206 0.811164 2.58133

Exact 3.9799497 0.8104625 2.5790074

2.2. Interaction of Two Solitary Waves for RLW Equation

We consider interaction of two solitary waves using the following initial condition

u(x, 0) = 3c1sech2(k1[x− x̃1]) + 3c2sech2(k2[x− x̃2]), (2.6)

where ki =

√
εci

4µ (1 + εci)
, i = 1, 2.

To ensure an interaction of two solitary waves and for the purpose of comparing
with the earlier works, all of the computations are done for the parameters ε = µ =
1, c1 = 0.2, c2 = 0.1, x̃1 = −177 and x̃2 = −147 over the region −200 ≤ x ≤ 600.
These parameters provide two well separated solitary waves of magnitudes 0.6 and
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Table 3. Solitary wave amplitude= 0.09 at t = 20 with h = 0.125,∆t = 0.1.

L∞ × 104 I1 I2 I3
CN1(−40 ≤ x ≤ 60) 4.31512 2.1045731 0.1273043 0.3888024

CN1(−100 ≤ x ≤ 120) 0.04381 2.1094073 0.1272998 0.3888060

CN2(−40 ≤ x ≤ 60) 4.31512 2.1045708 0.1273043 0.3888024

CN2(−100 ≤ x ≤ 120) 0.04380 2.1094073 0.1272998 0.3888060

AM1(−40 ≤ x ≤ 60) 4.31512 2.1045735 0.1273044 0.3888024

AM1(−100 ≤ x ≤ 120) 0.00070 2.1094073 0.1272999 0.3888061

AM2(−40 ≤ x ≤ 60) 4.31512 2.1045667 0.1273044 0.3888024

AM2(−100 ≤ x ≤ 120) 0.00070 2.1094073 0.1272999 0.3888061

[22](−40 ≤ x ≤ 60) 1.2464 2.10641 0.12723 0.38859

[22](−80 ≤ x ≤ 120, h = 0.1) 0.1193 2.10938 0.38879 0.02746

[4]QBGM1(−40 ≤ x ≤ 60) 2.05 2.10460 0.12730 0.38880

[4]QBGM2(−40 ≤ x ≤ 60) 2.07 2.10457 0.12730 0.38880

[17](−40 ≤ x ≤ 60) 1.9806 2.1047075 0.1273006 0.3888025

[3](−40 ≤ x ≤ 60) 1.98 2.10906 0.127305 0.388815

Exact 2.1094075 0.1273017 0.3888060

Table 4. Error norms L∞ for a single solitary wave at time t = 20 with h = 0.125, ∆t = 0.1.
c = 0.03,−100 ≤ x ≤ 120 c = 0.1,−80 ≤ x ≤ 100

ε = µ CN1×106 CN2×106 AM1×108 AM2×108 CN1×105 CN2×105 AM1×106 AM2×106

1/256 3.98 3.99 7.01 7.01 8.10 8.10 2.53 2.53

1/128 3.99 3.99 7.01 7.01 8.13 8.13 2.53 2.53

1/64 3.99 3.99 7.01 7.01 8.18 8.18 2.53 2.53

1/32 4.00 4.00 7.02 7.02 8.27 8.27 2.53 2.53

1/16 4.02 4.02 7.04 7.03 8.43 8.43 2.51 2.51

1/8 4.06 4.06 7.05 7.05 8.63 8.63 2.45 2.46

1/4 4.12 4.12 7.07 7.06 8.79 8.79 2.34 2.35

1/2 4.23 4.23 7.06 7.06 8.83 8.83 2.19 2.22

1 4.38 4.38 7.01 7.03 8.79 8.79 2.06 2.10

0.3 and peak positions of them are located at x = −177 and −147. The analytical
invariants can be found as

I1 =
6c1
k1

+
6c2
k2
, I2 =

12c21
k1

+
48k1c

2
1µ

5
+

12c22
k2

+
48k2c

2
2µ

5
,

I3 =
36c21
k1

(
1 +

4c1
5

)
+

36c22
k2

(
1 +

4c2
5

)
.

The program is run until t = 400 with h = 0.12, ∆t = 0.1 and numerical
solutions of U(x, t) at several times are drawn for visual views of the solutions in
Fig. 3 for the algorithm AM2. The interaction process can be observed clearly
from the figure. The nonlinear interaction takes place about time 200. Then, two
solitary waves regain their original shapes after the interaction. At t = 400, the
amplitude of the larger wave is 0.5999903 at the point x = 311.56, whereas the
amplitude of the smaller wave is 0.2999681 at the point x = 281.56. The absolute
difference in amplitude is 0.0000319 for the smaller wave and 0.0000601 for the
larger wave. Table 5 displays a comparison of the values of the invariants obtained
by the proposed methods CN1, CN2, AM1, AM2 with those obtained in [3, 5] at
some selected time t.
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Figure 3. Interaction of two solitary waves.

Table 5. Invariants for interaction of two solitary waves with amplitude 0.6 and 0.3.

[5] [3] CN1
t I1 I2 I3 I1 I2 I3
0 9.8583 3.2448 10.7783 9.8586 3.2449 10.7788 9.8582 3.2446 10.7783
80 9.8583 3.2448 10.7783 9.8683 3.2475 10.7872 9.8582 3.2446 10.7783
160 9.8583 3.2449 10.7785 9.8751 3.2506 10.7979 9.8581 3.2448 10.7785
240 9.8583 3.2449 10.7785 9.8825 3.2544 10.8109 9.8580 3.2448 10.7785
320 9.8583 3.2448 10.7783 9.8883 3.2569 10.8197 9.8579 3.2446 10.7781
400 9.8583 3.2448 10.7782 9.8930 3.2585 10.8251 9.8577 3.2445 10.7779

CN2 AM1 AM2
0 9.8582 3.2446 10.7783 9.8582 3.2446 10.7783 9.8582 3.2446 10.7783
80 9.8582 3.2446 10.7784 9.8582 3.2448 10.7789 9.8582 3.2448 10.7789
160 9.8581 3.2448 10.7787 9.8581 3.2450 10.7793 9.8581 3.2450 10.7794
240 9.8580 3.2449 10.7787 9.8580 3.2450 10.7795 9.8581 3.2450 10.7796
320 9.8580 3.2446 10.7784 9.8579 3.2451 10.7799 9.8580 3.2451 10.7801
400 9.8579 3.2446 10.7783 9.8578 3.2452 10.7805 9.8579 3.2453 10.7807

3. Conclusion

In this study, four numerical algorithms for the numerical solution of the RLW
equation have been presented using Galerkin method based on quadratic trigono-
metric B-splines as weight and trial functions for space discretization and one-two
step Adams-Moulton method for time discretization. The proposed methods are
tested on the propagation of single solitary wave and the interaction of two solitary
waves. To see the accuracy of the methods error norms L∞ for the first test problem
and conservation quantities for both of the test problems are documented based on
the obtained results. To compare all the proposed methods, AM2 gives accurate,
reliable results and less Cpu time for the RLW equation. Also all of the methods
have an advantage due to their small matrix operations. Therefore, the obtained
results show that proposed algorithms, especially AM2, exhibit high accuracy and
efficiency in both conservation of the invariants and error norm for the numerical
solution of the RLW equation.
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