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Abstract In this paper, we present a splitting algorithm with computational
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1. Introduction and preliminaries

In this paper, we always assume that H is a real Hilbert space with inner product
〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty closed convex subset of H and let ProjC
be the metric projection from H onto C.

Let A : C → H be a mapping. Recall that A is said to be monotone iff

〈Ax−Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

A is said to be strongly monotone iff there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ C.

For such a case, we also call A is an α-strongly monotone mapping. A is said to be
inverse-strongly monotone iff there exists a constant α > 0 such that

〈Ax−Ay, x− y〉 ≥ α‖Ax−Ay‖2, ∀x, y ∈ C.

For such a case, we also call A is an α-inverse-strongly monotone mapping. It is
clear that A is inverse-strongly monotone if and only if A−1 is strongly monotone.
We also remark here that every α-inverse-strongly monotone mapping is strongly
monotone and 1

α -Lipschitz continuous.
Recall that a set-valued mapping T : H → 2H is said to be monotone iff for

all x, y ∈ H, f ∈ Tx and g ∈ Ty imply 〈x − y, f − g〉 ≥ 0. A monotone mapping
T : H → 2H is maximal iff the graph G(T ) of T is not properly contained in the
graph of any other monotone mapping. It is known that a monotone mapping T is
maximal iff, for any (x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for all (y, g) ∈ G(T ) implies
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f ∈ Tx. Let A be a monotone mapping of C into H and NCv the normal cone to
C at v ∈ C, i.e.,

NCv = {w ∈ H : 〈v − u,w〉 ≥ 0, ∀u ∈ C}

and define a mapping T on C by

Tv =

{
Av +NCv, v ∈ C,
∅, v /∈ C.

Then T is maximal monotone and 0 ∈ Tv iff 〈Av, u− v〉 ≥ 0 for all u ∈ C; see [20]
and the references therein.

Let S be a mapping on C. Fix(S) stands for the fixed point set of S. In what
follows, we use → and ⇀ to denote the strong convergence and weak convergence,
respectively. S is said to be demiclosed at y iff Sxn → y and xn ⇀ x, then x is a
fixed point of S, that is, Sx = y.

Recall that S is said to be firmly nonexpansive iff

‖Sx− Sy‖2 ≤ 〈Sx− Sy, x− y〉, ∀x, y ∈ C.

S is said to be nonexpansive iff

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

If C is closed, convex and bounded, then Fix(S) is not empty; see [2] and the
references therein.

Let I denote the identity operator onH and T : H → 2H be a maximal monotone
operator. Then we can define, for each r > 0, a nonexpansive single valued mapping
JBr : H → H by JBr = (I + rT )−1. It is called the resolvent of T. We know that
T−10 = Fix(JBr ) for all r > 0 and JBr is firmly nonexpansive.

One of classical methods of studying the problem 0 ∈ Tx, where T is a maximal
monotone operator, is the proximal point algorithm (PPA) which was initiated by
Martinet [13, 14] and further developed by Rockafellar [20, 21] . The PPA and its
dual version in the context of convex programming, the method of multipliers of
Hesteness and Powell, have been extensively studied and are known to yield as
special cases decomposition methods such as the method of partial inverses [23],
the Douglas-Rachford splitting method, and the alternating direction method of
multipliers [8,9]. In the case of T = A+B, where A and B are monotone mappings,
the splitting method xn+1 = (I + rnB)−1(I − rnA)xn, n = 0, 1, . . . , where rn > 0,
was proposed by Lions and Mercier [12] and by Passty [15].

Let F be a bifunction of C×C into R, where R denotes the set of real numbers.
We consider the following equilibrium problem in the terminology of Blum and
Oettli [1], which is also known as the Ky Fan inequality [10].

Find x ∈ C such that F (x, y) ≥ 0,∀y ∈ C. (1.1)

In this paper, the set of such an x ∈ C is denoted by EP (F ), i.e., EP (F ) = {x ∈
C : F (x, y) ≥ 0, ∀y ∈ C}.

To study equilibrium problem 1.1, we assume that F satisfies the following
conditions:

(A1) F (x, x) = 0 for all x ∈ C;
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(A2) F is monotone, i.e., F (x, y) + F (y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, lim supt↓0 F (tz + (1− t)x, y) ≤ F (x, y);

(A4) for each x ∈ C, y 7→ F (x, y) is convex and lower semi-continuous.

There are many nonlinear problems arising in engineering areas needing more
than one constraint. Solving such problems, we have to obtain some solution which
is simultaneously the solution of two or more subproblems or the solution of one
subproblem on the solution set of another subproblem; see [3–5,7, 11,16–19,25–30]
and the references therein.

The aim of this paper is to investigate a splitting algorithm with computational
errors for solving common solutions of zero point, fixed point and equilibrium prob-
lems. The organization of this paper is as follows. In Section 1, we provide some
necessary preliminaries. In Section 2, a splitting algorithm with computational er-
rors is introduced and investigated. A weak convergence theorem is established. In
Section 4, Applications of the main results are discussed.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 ( [1]). Let C be a nonempty closed convex subset of H and let F :
C × C → R be a bifunction satisfying (A1)-(A4). Then, for any r > 0 and x ∈ H,
there exists z ∈ C such that

F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C.

Further, define

Trx = {z ∈ C : F (z, y) +
1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all r > 0 and x ∈ H. Then, the following hold:

(a) Tr is single-valued;

(b) Tr is firmly nonexpansive;

(c) Fix(Tr) = EP (F );

(d) EP (F ) is closed and convex.

Lemma 1.2 ( [6]). Let C be a nonempty closed convex subset of H. Let A : C →
H be a mapping and let B : H ⇒ H be a maximal monotone operator. Then
Fix(Jr(I − rA)) = (A+B)−1(0).

Lemma 1.3 ( [24]). Let {an}, {bn}, and {cn} be three nonnegative sequences sat-
isfying the following relation:

an+1 ≤ (1 + bn)an + cn, ∀n ≥ n0,

where n0 is some nonnegative integer,
∑∞
n=1 bn <∞ and

∑∞
n=1 cn <∞. Then the

limit limn→∞ an exists.

Lemma 1.4 ( [22]). Let 0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Suppose that {xn}, and
{yn} are sequences in H such that

lim sup
n→∞

‖xn‖ ≤ d, lim sup
n→∞

‖yn‖ ≤ d
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and

lim
n→∞

‖tnxn + (1− tn)yn‖ = d

hold for some r ≥ 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 1.5 ( [2]). Let C be a nonempty closed and convex subset of H and S :
C → C a nonexpansive mapping. If {xn} is a sequence in C such that xn ⇀ x, and
limn→∞ ‖xn − Sxn‖ = 0, then x = Sx.

2. Main results

Theorem 2.1. Let C be a nonempty closed convex subset of H and let F be a
bifunction from C × C to R which satisfies (A1)-(A4). Let A : C → H be an
α-inverse-strongly monotone mapping and let B : H ⇒ H be a maximal monotone
mapping. Let S : C → C be a nonexpansive mapping. Assume that Fix(S) ∩
EP (F ) ∩ (A + B)−1(0) is nonempty. Let {rn} and {sn} be positive real number
sequences. Let {αn}, {βn} and {γn} be real number sequences in (0, 1) such that
αn+βn+γn = 1. Let {xn} be a sequence generated in the following process: x1 ∈ C
and {

F (yn, y) + 1
sn
〈y − yn, yn − Jrn

(
xn − rnAxn + en

)
〉 ≥ 0, ∀y ∈ C,

xn+1 = αnSxn + βnyn + γnfn, n ≥ 1,

where {en} is a bounded sequence in H such that
∑∞
n=1 ‖en‖ < ∞ and {fn} is

bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0 < β ≤ βn ≤ β′ < 1 and
∑∞
n=1 γn <∞,

(b) 0 < lim infn→∞ sn and 0 < r ≤ rn ≤ r′ < 2α,

where β, β′, r and r′ are real constants. Then {xn} converges weakly to some point
in Fix(S) ∩ EP (F ) ∩ (A+B)−1(0).

Proof. First, we show that the mapping I−rnA is nonexpansive. For any x, y ∈ C,
we see that

‖(I − rnA)x− (I − rnA)y‖2

=‖x− y‖2 − 2rn〈x− y,Ax−Ay〉+ r2n‖Ax−Ay‖2

≤‖x− y‖2 − rn(2α− rn)‖Ax−Ay‖2.

In view of restriction (b), we see that ‖(I − rnA)x − (I − rnA)y‖ ≤ ‖x − y‖. This
proves that I − rnA is nonexpansive. Let p ∈ Fix(S) ∩ EP (F ) ∩ (A+ B)−1(0) be
fixed arbitrarily. By use of Lemmas 1.1 and 1.2, we find that yn = TsnJrn

(
xn −

rnAxn + en). It follows that

‖xn+1 − p‖
≤αn‖Sxn − p‖+ βn‖yn − p‖+ γn‖fn − p‖
≤αn‖xn − p‖+ βn‖Jrn

(
xn − rnAxn + en)− Jrn

(
p− rnAp)‖+ γn‖fn − p‖

≤αn‖xn − p‖+ βn‖
(
xn − rnAxn + en)−

(
p− rnAp)‖+ γn‖fn − p‖

≤‖xn − p‖+ λn,



Weak convergence of a splitting algorithm in Hilbert spaces 431

where λn = γn‖fn− p‖+ ‖en‖. From restriction (a), we find that
∑∞
n=1 ‖λn‖ <∞.

This implies from Lemma 1.3 that the limit limn→∞ ‖xn − p‖ exists. Hence, we
have {xn} is bounded, so is {yn}. Since {xn} is bounded, we may assume that a
subsequence {xni} of {xn} converges weakly to ξ. Put zn = Jrn

(
xn− rnAxn + en

)
.

Since A is inverse-strongly monotone, we find that

‖zn − p‖2 ≤ ‖(xn − rnAxn)− (p− rnAp) + en‖2

≤ ‖(xn − p)− rn(Axn −Ap)‖2 + ‖en‖(‖en‖+ 2‖en‖‖xn − p‖)
≤ ‖xn − p‖2 − rn(2α− rn)‖Axn −Ap‖2 + ‖en‖(‖en‖+ 2‖en‖‖xn − p‖).

(2.1)
Hence, we have

‖xn+1 − p‖2

≤αn‖xn − p‖2 + βn‖yn − p‖2 + γn‖fn − p‖2

≤‖xn − p‖2 − rn(2α− rn)βn‖Axn −Ap‖2 + ‖en‖(‖en‖+ 2‖en‖‖xn − p‖)
+ γn‖fn − p‖2.

That is,

rn(2α− rn)βn‖Axn −Ap‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2

+ ‖en‖(‖en‖+ 2‖en‖‖xn − p‖) + γn‖fn − p‖2.

By use of restrictions (a) and (b), we find that

lim
n→∞

‖Axn −Ap‖ = 0. (2.2)

Since Jrn is firmly nonexpansive, we find that

‖zn − p‖2 = ‖Jrn
(
xn − rnAxn + en)− Jrn

(
p− rnAp)‖2

≤ 〈
(
xn − rnAxn + en)−

(
p− rnAp), zn − p〉

=
1

2

(
‖
(
xn − rnAxn + en)−

(
p− rnAp)‖2 + ‖zn − p‖2

− ‖
(
(xn − rnAxn + en)−

(
p− rnAp)

)
− (zn − p)‖2

≤ 1

2

(
‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖) + ‖zn − p‖2

− ‖xn − zn − rn(Axn −Ap) + en‖2
)

≤ 1

2

(
‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖) + ‖zn − p‖2 − ‖xn − zn‖2

− ‖rn(Axn −Ap)− en‖2 + 2‖xn − zn‖‖rn(Axn −Ap)− en‖
)
.

It follows that

‖zn − p‖2 ≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖)− ‖xn − zn‖2

+ 2rn‖xn − zn‖‖Axn −Ap‖+ 2‖xn − zn‖‖en‖.

Hence, we have

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + βn‖yn − p‖2 + γn‖fn − p‖2

≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖)− βn‖xn − zn‖2

+ 2rn‖xn − zn‖‖Axn −Ap‖+ 2‖xn − zn‖‖en‖+ γn‖fn − p‖2.
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It follows that

βn‖xn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖)
+ 2rn‖xn − zn‖‖Axn −Ap‖+ 2‖xn − zn‖‖en‖+ γn‖fn − p‖2.

By use of restrictions (a) and (b), we find from (2.2) that

lim
n→∞

‖xn − zn‖ = 0. (2.3)

It follows that the subsequence {zni
} of {zn} converges weakly to ξ. Notice that

xn − zn + en
rn

−Axn ∈ Bzn.

Let µ ∈ Bν. Since B is monotone, we find that〈
xn − zn + en

rn
−Axn − µ, zn − ν

〉
≥ 0.

It follows from (2.2) that 〈−Aξ − µ, ξ − ν〉 ≥ 0. This implies that −Aξ ∈ Bx̄, that
is, ξ ∈ (A+B)−1(0).

Next, we show that ξ ∈ EP (F ). Since Tsn is firmly nonexpansive, we find that

‖yn − p‖2 ≤ 〈zn − p, yn − p〉

=
1

2

(
‖zn − p‖2 + ‖yn − p‖2 − ‖yn − zn‖2

)
.

It follows from (2.1) that

‖yn − p‖2 ≤ ‖zn − p‖2 − ‖yn − zn‖2

≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖)− ‖yn − zn‖2.

This implies that

‖xn+1 − p‖2 ≤ αn‖xn − p‖2 + βn‖yn − p‖2 + γn‖fn − p‖2

≤ ‖xn − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖)− βn‖yn − zn‖2 + γn‖fn − p‖2.

Hence, we have

βn‖yn − zn‖2 ≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + ‖en‖(‖en‖+ 2‖xn − p‖) + γn‖fn − p‖2.

By use of restriction (a), we find that

lim
n→∞

‖yn − zn‖ = 0. (2.4)

Notice that

F (yn, y) +
1

sn
〈y − yn, yn − zn〉 ≥ 0, ∀y ∈ C.

By use of condition (A2), we see that 1
sn
〈y − yn, yn − zn〉 ≥ F (y, yn), ∀y ∈ C.

Replacing n by ni, we arrive at

〈y − yni
,
yni
− zni

sni

〉 ≥ F (y, yni
), ∀y ∈ C.
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By use of restriction (b) and (2.4), we find that {yni
} converges weakly to ξ. It

follows that 0 ≥ F (y, ξ). For t with 0 < t ≤ 1, and y ∈ C, let yt = ty + (1 − t)ξ.
Since y ∈ C, and ξ ∈ C, we have yt ∈ C. It follows that F (yt, ξ) ≤ 0. Notice that

0 = F (yt, yt) ≤ tF (yt, z) + (1− t)F (yt, ξ) ≤ tF (yt, y),

which yields that F (yt, y) ≥ 0, ∀y ∈ C. Letting t ↓ 0, we obtain from restriction
(A3) that F (ξ, y) ≥ 0, ∀y ∈ C. This implies that ξ ∈ EP (F ). This proves that
ξ ∈ EP (F ).

Now, we are in a position to show that ξ ∈ Fix(S). Since limn→∞ ‖xn − p‖
exists, we put limn→∞ ‖xn − p‖ = d > 0. It follows that

lim
n→∞

‖(1− αn)
(
(yn − p) + γn(fn − yn)

)
+ αn

(
(Sxn − p) + γn(fn − yn)

)
‖ = d.

Notice that

‖(Sxn − p) + γn(fn − yn)‖ ≤ ‖xn − p‖+ γn‖fn − xn‖.

This shows that lim supn→∞ ‖(Sxn−p)+γn(fn−yn)‖ ≤ d. By use of (2.1), we find
that

‖(yn − p) + γn(fn − yn)‖
≤‖yn − p‖+ γn‖fn − xn‖
≤‖xn − p‖2 + ‖en‖(‖en‖+ 2‖en‖‖xn − p‖) + γn‖fn − xn‖.

It follows that lim supn→∞ ‖(yn− p) +γn(fn− yn)‖ ≤ d. It follows from Lemma 1.4
that

lim
n→∞

‖Sxn − yn‖ = 0. (2.5)

Since S is nonexpansive, we find from (2.3) and (2.4) that limn→∞ ‖xn−Sxn‖ = 0.
This implies from Lemma 1.5 that ξ ∈ Fix(S). Finally, we show that the whole
sequence {xn} weakly converges to ξ. Let {xnj} be another subsequence of {xn}
converging weakly to ξ′, where ξ′ 6= ξ. In the same way, we can show that ξ′ ∈
(A + B)−1(0) ∩ EP (F ). Since H has the Opial’s condition, we, therefore, obtain
that

d = lim inf
i→∞

‖xni − ξ‖ < lim inf
i→∞

‖xni − ξ′‖

= lim inf
j→∞

‖xj − ξ′‖ < lim inf
j→∞

‖xj − ξ‖ = d.

This is a contradiction. Hence ξ = ξ′. This proves that {xn} converges weakly to
ξ ∈ Fix(S) ∩ EP (F ) ∩ (A+B)−1(0). This completes the proof.

From Theorem 2.1, the following results are not hard to derive.

Corollary 2.1. Let C be a nonempty closed convex subset of H and let F be a
bifunction from C × C to R which satisfies (A1)-(A4). Let S : C → C be a
nonexpansive mapping with a nonempty fixed point set. Let {sn} be a positive real
number sequence. Let {αn}, {βn} and {γn} be real number sequences in (0, 1) such
that αn + βn + γn = 1. Let {xn} be a sequence generated in the following process:
x1 ∈ C and {

F (yn, y) + 1
sn
〈y − yn, yn − xn − en〉 ≥ 0, ∀y ∈ C,

xn+1 = αnSxn + βnyn + γnfn, n ≥ 1,
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where {en} is a bounded sequence in H such that
∑∞
n=1 ‖en‖ < ∞ and {fn} is

bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0 < β ≤ βn ≤ β′ < 1 and
∑∞
n=1 γn <∞,

(b) 0 < lim infn→∞ sn,

where β are β′ are real constants. Then {xn} converges weakly to some point in
Fix(S) ∩ EP (F ).

Corollary 2.2. Let C be a nonempty closed convex subset of H and Let A : C → H
be an α-inverse-strongly monotone mapping and let B : H ⇒ H be a maximal
monotone mapping. Let S : C → C be a nonexpansive mapping. Assume that
Fix(S)∩(A+B)−1(0) is nonempty. Let {rn} be a positive real number sequence. Let
{αn}, {βn} and {γn} be real number sequences in (0, 1) such that αn+βn+γn = 1.
Let {xn} be a sequence generated in the following process: x1 ∈ C and

xn+1 = αnSxn + βnJrn
(
xn − rnAxn + en

)
+ γnfn, n ≥ 1,

where {en} is a bounded sequence in H such that
∑∞
n=1 ‖en‖ < ∞ and {fn} is

bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0 < β ≤ βn ≤ β′ < 1 and
∑∞
n=1 γn <∞,

(b) 0 < r ≤ rn ≤ r′ < 2α,

where β, β′, r and r′ are real constants. Then {xn} converges weakly to some point
in Fix(S) ∩ (A+B)−1(0).

3. Applications

In this section, we give some results on solutions variational inequalities and mini-
mizers of convex functions.

Let C be a nonempty closed and convex subset of H and A : C → H be a
mapping. Recall that the classical variational inequality is to find an x ∈ C such
that

〈Ax, y − x〉 ≥ 0, ∀y ∈ C. (3.1)

The solution set of (3.1) is denoted by V I(C,A). Projection methods have been
recently investigated for solving variational inequality (3.1). It is known that x is
a solution to (3.1) iff x is a fixed point of the mapping ProjC(I − rA), where I
denotes the identity on H. If A is inverse-strongly monotone, then ProjC(I − rA)
is nonexpansive. Moreover, if C is bounded, closed and convex, then the existence
of solutions of the variational inequality is guaranteed by the nonexpansivity of the
mapping ProjC(I − rA). Let iC be a function defined by

iC(x) =

{
0, x ∈ C,
∞, x /∈ C.

It is easy to see that iC is a proper lower and semicontinuous convex function on
H, and the subdifferential ∂iC of iC is maximal monotone. Define the resolvent
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Jr := (I + r∂iC)−1 of the subdifferential operator ∂iC . Letting x = Jry, we find
that

y ∈ x+ r∂iCx⇐⇒ y ∈ x+ rNCx

⇐⇒ 〈y − x, v − x〉 ≤ 0,∀v ∈ C
⇐⇒ x = ProjCy,

where NCx := {e ∈ H : 〈e, v − x〉,∀v ∈ C}. Putting B = ∂iC in Theorems 2.1, we
find the following results immediately.

Theorem 3.1. Let C be a nonempty closed convex subset of H and let F be a
bifunction from C × C to R which satisfies (A1)-(A4). Let A : C → H be an α-
inverse-strongly monotone mapping and let S : C → C be a nonexpansive mapping.
Assume that Fix(S)∩EP (F )∩V I(C,A) is nonempty. Let {rn} and {sn} be positive
real number sequences. Let {αn}, {βn} and {γn} be real number sequences in (0, 1)
such that αn + βn + γn = 1. Let {xn} be a sequence generated in the following
process: x1 ∈ C and{

F (yn, y) + 1
sn
〈y − yn, yn − ProjC

(
xn − rnAxn + en

)
〉 ≥ 0, ∀y ∈ C,

xn+1 = αnSxn + βnyn + γnfn, n ≥ 1,

where {en} is a bounded sequence in H such that
∑∞
n=1 ‖en‖ < ∞ and {fn} is

bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0 < β ≤ βn ≤ β′ < 1 and
∑∞
n=1 γn <∞,

(b) 0 < lim infn→∞ sn and 0 < r ≤ rn ≤ r′ < 2α,

where β, β′, r and r′ are real constants. Then {xn} converges weakly to some point
in Fix(S) ∩ EP (F ) ∩ V I(C,A).

Putting F (x, y) = 0 for any x, y ∈ C and sn = 1 in Theorem 3.1, we have the
following result.

Corollary 3.1. Let C be a nonempty closed convex subset of H . Let A : C → H
be an α-inverse-strongly monotone mapping and let S : C → C be a nonexpansive
mapping. Assume that Fix(S) ∩ V I(C,A) is nonempty. Let {rn} be a positive real
number sequence. Let {αn}, {βn} and {γn} be real number sequences in (0, 1) such
that αn + βn + γn = 1. Let {xn} be a sequence generated in the following process:
x1 ∈ C and

xn+1 = αnSxn + βnProjC
(
xn − rnAxn + en

)
+ γnfn, n ≥ 1,

where {en} is a bounded sequence in H such that
∑∞
n=1 ‖en‖ < ∞ and {fn} is

bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0 < β ≤ βn ≤ β′ < 1 and
∑∞
n=1 γn <∞,

(b) 0 < r ≤ rn ≤ r′ < 2α,

where β, β′, r and r′ are real constants. Then {xn} converges weakly to some point
in Fix(S) ∩ V I(C,A).
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Now, we are in a position to consider the problem of finding minimizers of
proper lower semicontinuous convex functions. For a proper lower semicontinuous
convex function g : H → (−∞,∞], the subdifferential mapping ∂g of g is defined
by ∂g(x) = {x∗ ∈ H : g(x) + 〈y − x, x∗〉 ≤ g(y),∀y ∈ H}, ∀x ∈ H. Rockafellar [21]
proved that ∂g is a maximal monotone operator. It is easy to verify that 0 ∈ ∂g(v)
if and only if g(v) = minx∈H g(x).

Theorem 3.2. Let g : H → (−∞,∞] be a proper convex and lower semicontinuous
function. Let {rn} be a positive real number sequence. Let {αn}, {βn} and {γn} be
real number sequences in (0, 1) such that αn + βn + γn = 1. Let {xn} be a sequence
generated in the following process: x1 ∈ C and{

yn = arg minz∈H{g(z) + ‖z−xn+en‖2
2rn

},
xn+1 = αnxn + βnyn + γnfn, n ≥ 1,

where {en} is a bounded sequence in H such that
∑∞
n=1 ‖en‖ < ∞ and {fn} is

bounded sequence in C. Assume that the control sequences satisfy restrictions: 0 <
β ≤ βn ≤ β′ < 1,

∑∞
n=1 γn < ∞, and 0 < r ≤ rn ≤ r′ < 2α, where β, β′, r and r′

are real constants. Then {xn} converges weakly to some point in (∂g)−1(0).

Proof. Since g : H → (−∞,∞] is a proper convex and lower semicontinuous
function, we see that subdifferential ∂g of g is maximal monotone. Put F (x, y) = 0
for any x, y ∈ C, sn = 1, and A = 0. Then yn = Jrn(xn + en). It follows that

yn = arg minz∈H{g(z)+ ‖z−xn−en‖2
2rn

} is equivalent to 0 ∈ ∂g(yn)+ 1
rn

(yn−xn−en).
It follows that xn + en ∈ yn + rn∂g(yn). By use of Theorem 2.1, we find the desired
conclusion immediately.
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