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WEAK CONVERGENCE OF A SPLITTING
ALGORITHM IN HILBERT SPACES*
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Abstract In this paper, we present a splitting algorithm with computational
errors for solving common solutions of zero point, fixed point and equilibrium
problems. Weak convergence theorems of common solutions are established in
the framework of real Hilbert spaces.
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1. Introduction and preliminaries

In this paper, we always assume that H is a real Hilbert space with inner product
(-,-) and norm || - ||. Let C' be a nonempty closed convex subset of H and let Projc
be the metric projection from H onto C.

Let A: C — H be a mapping. Recall that A is said to be monotone iff

(Azx — Ay,z —y) >0, Vz,yeC.
A is said to be strongly monotone iff there exists a constant o > 0 such that
(Az — Ay, x —y) > allz —y||?, Va,yeC.

For such a case, we also call A is an a-strongly monotone mapping. A is said to be
inverse-strongly monotone iff there exists a constant o > 0 such that

<A$—Ay,x—y> ZO{HAJ}—AyHQ, V%yea

For such a case, we also call A is an a-inverse-strongly monotone mapping. It is
clear that A is inverse-strongly monotone if and only if A=! is strongly monotone.
We also remark here that every a-inverse-strongly monotone mapping is strongly
monotone and i—LipSChitZ continuous.

Recall that a set-valued mapping 7 : H — 2 is said to be monotone iff for
all z,y € H, f € Tx and g € Ty imply (x —y, f —g) > 0. A monotone mapping
T : H — 2% is maximal iff the graph G(T) of T is not properly contained in the
graph of any other monotone mapping. It is known that a monotone mapping T is
maximal iff, for any (z, f) € H x H, (x —y, f —g) > 0 for all (y,g) € G(T) implies
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f € Tx. Let A be a monotone mapping of C into H and Ngov the normal cone to
Catved,ie.,

Nev={we H:{(v—u,w) >0, YueC}
and define a mapping 7" on C' by

Av+ Nov, wveC,
Tv =
0, v C.

Then T is maximal monotone and 0 € Tv iff (Av,u —v) > 0 for all u € C; see [20]
and the references therein.

Let S be a mapping on C. Fiz(S) stands for the fixed point set of S. In what
follows, we use — and — to denote the strong convergence and weak convergence,
respectively. S is said to be demiclosed at y iff Sx,, — y and x,, — x, then x is a
fixed point of S, that is, Sx = y.

Recall that S is said to be firmly nonexpansive iff

HSI'—Sy||2§<SfE—Sy,(E—y>, VCL’7y€C.
S is said to be nonexpansive iff
[Sz — Syl < [lz —yll, Vz,yeC.

If C is closed, convex and bounded, then Fiz(S) is not empty; see [2] and the
references therein.

Let I denote the identity operator on H and T : H — 2 be a maximal monotone
operator. Then we can define, for each r > 0, a nonexpansive single valued mapping
JB:H — H by JB = (I +rT)~!. It is called the resolvent of 7. We know that
T710 = Fixz(JB) for all r > 0 and JP is firmly nonexpansive.

One of classical methods of studying the problem 0 € T'x, where T is a maximal
monotone operator, is the proximal point algorithm (PPA) which was initiated by
Martinet [13,14] and further developed by Rockafellar [20,21] . The PPA and its
dual version in the context of convex programming, the method of multipliers of
Hesteness and Powell, have been extensively studied and are known to yield as
special cases decomposition methods such as the method of partial inverses [23],
the Douglas-Rachford splitting method, and the alternating direction method of
multipliers [8,9]. In the case of T'= A+ B, where A and B are monotone mappings,
the splitting method x,,41 = (I +7,B)"'(I —r,A)z,,n =0,1,..., where r, > 0,
was proposed by Lions and Mercier [12] and by Passty [15].

Let F be a bifunction of C' x C into R, where R denotes the set of real numbers.
We consider the following equilibrium problem in the terminology of Blum and
Oettli [1], which is also known as the Ky Fan inequality [10].

Find = € C such that F(z,y) > 0,Vy € C. (1.1)

In this paper, the set of such an z € C is denoted by EP(F), i.e., EP(F) = {z €
C:F(x,y) >0, VyeC}.

To study equilibrium problem 1.1, we assume that F' satisfies the following
conditions:

(Al) F(z,z) =0 for all z € C,
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(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;
(A3) for each z,y,2 € C, limsup, o F(tz + (1 —t)z,y) < F(z,y);

(A4) for each z € C, y — F(z,y) is convex and lower semi-continuous.

There are many nonlinear problems arising in engineering areas needing more
than one constraint. Solving such problems, we have to obtain some solution which
is simultaneously the solution of two or more subproblems or the solution of one
subproblem on the solution set of another subproblem; see [3-5,7,11,16-19,25-30]
and the references therein.

The aim of this paper is to investigate a splitting algorithm with computational
errors for solving common solutions of zero point, fixed point and equilibrium prob-
lems. The organization of this paper is as follows. In Section 1, we provide some
necessary preliminaries. In Section 2, a splitting algorithm with computational er-
rors is introduced and investigated. A weak convergence theorem is established. In
Section 4, Applications of the main results are discussed.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 ( [1]). Let C be a nonempty closed convex subset of H and let F' :
C x C — R be a bifunction satisfying (A1)-(A4). Then, for anyr >0 and x € H,
there exists z € C' such that

1
Flzy)+ (y—zz-2) 20, el
Further, define
1
T”‘x:{ZEC:F(Z7y)+;<y_sz_x> 207 VyGC}

for allr >0 and x € H. Then, the following hold:
(a) T, is single-valued;
(b) T, is firmly nonexpansive;
(¢) Fiz(T,) = EP(F);
(d) EP(F) is closed and convezx.

Lemma 1.2 ( [6]). Let C be a nonempty closed convex subset of H. Let A : C' —

H be a mapping and let B : H = H be a maximal monotone operator. Then
Fiz(J.(I —rA)) = (A+ B)~Y0).

Lemma 1.3 ( [24]). Let {a,}, {bn}, and {c,} be three nonnegative sequences sat-
1sfying the following relation:

ant1 < (14 bp)an + cn, V0 > ng,

where ng is some nonnegative integer, Y - by, < 00 and Y~ ¢, < co. Then the
limit lim,,—, o a,, exists.

Lemma 1.4 ( [22]). Let 0 <p <t, <q<1 foralln > 1. Suppose that {x,}, and

{yn} are sequences in H such that

limsup ||, ]| < d, limsup |ly,| <d
n— oo

n—oo
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and
hold for some r > 0. Then lim, o ||Tn — yn|| = 0.

Lemma 1.5 ( [2]). Let C be a nonempty closed and convex subset of H and S :
C — C a nonexpansive mapping. If {x,} is a sequence in C such that x, — x, and
lim, 00 ||Tn — Szp|| =0, then x = Sx.

2. Main results

Theorem 2.1. Let C be a nonempty closed convexr subset of H and let F be a
bifunction from C x C to R which satisfies (A1)-(A4). Let A : C — H be an
a-inverse-strongly monotone mapping and let B : H = H be a maximal monotone
mapping. Let S : C — C be a nonexpansive mapping. Assume that Fiz(S) N
EP(F) N (A + B)~Y0) is nonempty. Let {r,} and {s,} be positive real number
sequences. Let {an}, {Bn} and {yn} be real number sequences in (0,1) such that
an+Bn+7vn =1. Let {x,} be a sequence generated in the following process: x; € C
and

F(yn7y) + é<y - yn7yn - Jrn (mn - rnA-rn + en)> 2 07 Vy S Ca
Tn+1 :ansxn+6nyn+7nfna TlZ ]-7

where {e,} is a bounded sequence in H such that Y . |len|| < oo and {fn} is
bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0<B<B, <p <1 andzzozl'yn<oo,

(b) 0 <liminf, o 8, and 0 <r <r, <7’ < 20,
where B, ', r and v’ are real constants. Then {x,} converges weakly to some point
in Fiz(S)N EP(F) N (A+ B)~(0).

Proof. First, we show that the mapping I —r, A is nonexpansive. For any z,y € C,

we see that )
(I —rnA)z — (I —rnA)y|l

=|le —yl* - 2z — y, Az — Ay) + r} || Az — Ay||?

<llw = yl* = ra (20 — ra) || Az — Ay|*.
In view of restriction (b), we see that ||(I —r,A)z — (I — r, A)y| < ||x — y||. This
proves that I — 7, A is nonexpansive. Let p € Fiz(S) N EP(F)N (A+ B)~(0) be

fixed arbitrarily. By use of Lemmas 1.1 and 1.2, we find that y, = Ts, J,, (:Cn —
ranAz, + e,). It follows that

[#n41 =Dl
<anllSwy = pll + Bullyn — 2l +vullfo — pll
<an|lzn = pll + BullJr, (20 — rnAzn + €n) = Jr, (p — raAP)|| + Vull fn — 2
<ap|lzn = pll + Bull(zn — rnAzn 4 en) = (p = raAP)|| + Yull fn — 1l
<zn = pll + An,



Weak convergence of a splitting algorithm in Hilbert spaces 431

where A, = 7| fn — p|| + ||len||. From restriction (a), we find that > 7 | [|A,[| < oc.
This implies from Lemma 1.3 that the limit lim, o ||, — p|| exists. Hence, we
have {z,} is bounded, so is {y,}. Since {z,} is bounded, we may assume that a
subsequence {x,,} of {z,} converges weakly to . Put z, = J,, (xn —rpAx, + en).
Since A is inverse-strongly monotone, we find that
20 = plI* < (@0 = rnAzn) = (p — 0 Ap) + enl|®

< @~ 2) — ra(Azo — AP + leall(leall + 2Nenln — )

< lzn = pl* = ra(2ac = )| Azn — Ap|1® + [leall(llenll + 2llenll [z — pI)-
(2.1)
Hence, we have

|Znt1 = plI?
<an|zy = plI* + Ballyn = plI* + 70l fu = pII?
<llzn = plI? = ra (20 = 72) Bull Az, — Ap|1 + llenll(lenll + 2llenllllzn — )
+ %l fu = 2l
That is,
" (20 = 1) Bn || Az — Apl® < [lzn = pl* — 2041 — )2
+lleall(llenll + 2llenllllzn — ) +nll fa — pII>.
By use of restrictions (a) and (b), we find that
nhﬂn;o Az, — Ap|| = 0. (2.2)
Since J,., is firmly nonexpansive, we find that

ll2n — p||2 = |, (mn — AT, +en) = Jp, (p - TnAp)”Z
< <(In —rpAx, + en) - (p - TnAp), Zn _p>

1
§(||(a7n —rpAr, + en) - (p - TnAp)“Q + ||Zn - pH2
- ||(($n — rpAx, + en) - (p - rnAp)) - (Zn _p)||2

1
< g(llxn —pl* + llenll(llenll + 2llzn — pll) + 120 — pII?
—||zn — 2n — rn(Az, — Ap) + en||2)
1
< §(|I$n —plI> + lleall(lenll + 2llzn — pll) + 120 — PI* = |20 — 2al?

— |lrn(Azy — Ap) — enl|* + 2|0 — 2| |rn(Azy, — Ap) — en]]).
It follows that

20 = plI? < 0 — I + lleall(lenll + 2llzn — pll) = llzn — 2al
+ 2rpllen — 2ol | Azn — Apl + 2|20 — 20 lllen |-

Hence, we have
2011 = plI* < anllzn — ol + Ballyn — plI* + A0l fu — pII?
<z — I + lenll(lenll + 2llzn — pll) = Bullzn — 2nl?
+2rp ||z — 2n|l[|Azn — Apl + 2[|zn — zullllenll + Yol fr _pH2~
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It follows that

Bullzn = 2nl* < llzn = pI* = lZnts = plI* + llenll(lenll + 2llzn — pll)
+ 21|20 = 2nlll Azn — Apll + 2[lzn = zallllenll + vl fo = plI*.

By use of restrictions (a) and (b), we find from (2.2) that

lim ||z, — z,] = 0. (2.3)

n— oo
It follows that the subsequence {z,,} of {z,} converges weakly to £. Notice that

Ty — Zp +€n
—— — Az, € Bz,.
Tn

Let ¢ € Br. Since B is monotone, we find that

<$n_zn+en

Tn

—Axn—u,zn—u>20.

It follows from (2.2) that (—A& — p, & — v) > 0. This implies that —A¢ € BZ, that
is, £ € (A+ B)~Y0).
Next, we show that £ € EP(F). Since T, is firmly nonexpansive, we find that

—~

||yn _pH2 < {zn —D,YUn _p>

(lzn =PI + lyn — 21> = Y — 2all?).

N |

It follows from (2.1) that
lym = 2l < ll2n = pI” = llyn — 2al?
< lzn = plI* + llenll (lenll + 2llzn = pI) = llyn = zall*.
This implies that
lznt1 = plI* < anllen = plI* + Ballyn — 21 + vl fu = pII?
< llon = pI? + lenll(lenll + 2llzn = pl) = Ballyn = 2nll* +ynll fu = plI*.

Hence, we have

Bullyn = zull* < llon = plI* = N2n41 = 2l + lenll(lenll + 2llzn = pll) +all fn = pII*.

By use of restriction (a), we find that
Jim |y — 20| = 0. (2.4)
Notice that

1
F(yn7y)+7<y_yn7yn_zn>207 Vyec

n
By use of condition (A2), we see that %(y — YnyYn — 2n) = F(y,yn), Yy € C.
Replacing n by n;, we arrive at
Yn, — 2

87m> ZF(yaym)v VyeC.

i

<y — Yny»
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By use of restriction (b) and (2.4), we find that {y,,} converges weakly to £. It
follows that 0 > F'(y,£). For t with 0 <t <1, and y € C, let y; = ty + (1 — t)¢.
Since y € C, and £ € C, we have y; € C. It follows that F(y:, &) < 0. Notice that

0 - F(yhyt) S tF(yt7Z) + (]- - t)F(ytag) S tF(yhy)u

which yields that F'(y:,y) > 0, Vy € C. Letting ¢ | 0, we obtain from restriction
(A3) that F(§,y) > 0, Vy € C. This implies that £ € EP(F). This proves that
¢ € EP(F).

Now, we are in a position to show that £ € Fixz(S). Since lim,_ [|zn — ||
exists, we put lim,, o ||2n — p|| = d > 0. It follows that

lim [|(1— O‘n)((yn =)+ fn — yn)) + O‘n((szn —p) + Y frn — yn)) | =d.

n—oo

Notice that

[(Szr = p) + Y0 (fr = )| < |20 = pll + Wullfr — 2all-

This shows that limsup,,_, o [|(Szn —D) +7n(fr —yn)|| < d. By use of (2.1), we find
that
”(yn - p) + Vn(fn - yn)H

SHyn _pH +’7n||fn - wn”
Lzn =l + llenll(lenll + 2llenllllzn = pll) +vall fo — zal-

It follows that limsup,, o [|(¥n —P) +7n(fn —yn)|| < d. It follows from Lemma 1.4
that

nhﬁn;o ISz, — ynl|| = 0. (2.5)

Since S is nonexpansive, we find from (2.3) and (2.4) that lim, o ||z, — Szy| = 0.
This implies from Lemma 1.5 that £ € Fiz(S). Finally, we show that the whole
sequence {z,} weakly converges to £. Let {z,,} be another subsequence of {z,}
converging weakly to &', where & # £. In the same way, we can show that & €
(A+ B)~1(0) N EP(F). Since H has the Opial’s condition, we, therefore, obtain
that
d = liminf ||z, — £|| < liminf ||z,, — &
1—> 00 1—> 00

= liminf [|z; — ¢'|| < liminf|jz; — £|| = d.
j—o0 j—o0

This is a contradiction. Hence £ = ¢’. This proves that {z,} converges weakly to
¢ € Fiz(S)NEP(F)N (A+ B)~1(0). This completes the proof. O
From Theorem 2.1, the following results are not hard to derive.

Corollary 2.1. Let C be a nonempty closed convexr subset of H and let F be a
bifunction from C x C to R which satisfies (A1)-(A4). Let S : C — C be a
nonexrpansive mapping with a nonempty fized point set. Let {s,} be a positive real
number sequence. Let {a,}, {Bn} and {vn} be real number sequences in (0,1) such
that an + Bn +vn = 1. Let {x,} be a sequence generated in the following process:
z1 € C and

F(yn7y)+é<y_ynayn_$n_en>20, Vyecv
Tntl = O[nSl’n + Bnyn + ’Ynfna n Z 17
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where {e,} is a bounded sequence in H such that Y . |len|| < oo and {fn} is
bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0<B< By <P <1and Y )", yn < 0,
(b) 0 < liminf,, Sn,

where B8 are B are real constants. Then {x,} converges weakly to some point in
Fix(S)N EP(F).

Corollary 2.2. Let C be a nonempty closed convex subset of H and Let A: C — H
be an a-inverse-strongly monotone mapping and let B : H = H be a maxrimal
monotone mapping. Let S : C — C be a nonexpansive mapping. Assume that
Fiz(S)N(A+B)~1(0) is nonempty. Let {r,} be a positive real number sequence. Let
{an}, {Bn} and {v,} be real number sequences in (0,1) such that ay, + By +vn = 1.
Let {x,,} be a sequence generated in the following process: x1 € C and

Tn+l = OénSJ}n + 6nJrn (xn - rnAxn + en) + ’Ynfn; n> 17

where {e,} is a bounded sequence in H such that Y . |len|| < oo and {fn} is
bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0<B<B, <P <land Y )" | vn <00,
) 0<r<r,<r <2aq,

where B, B, r and v’ are real constants. Then {x,} converges weakly to some point
in Fiz(S)N (A+ B)~1(0).

3. Applications

In this section, we give some results on solutions variational inequalities and mini-
mizers of convex functions.

Let C be a nonempty closed and convex subset of H and A : C — H be a
mapping. Recall that the classical variational inequality is to find an « € C such
that

(Az,y —x) >0, YyeC. (3.1)

The solution set of (3.1) is denoted by VI(C, A). Projection methods have been
recently investigated for solving variational inequality (3.1). It is known that x is
a solution to (3.1) iff x is a fixed point of the mapping Projc(I — rA), where I
denotes the identity on H. If A is inverse-strongly monotone, then Projo(I —rA)
is nonexpansive. Moreover, if C' is bounded, closed and convex, then the existence
of solutions of the variational inequality is guaranteed by the nonexpansivity of the
mapping Projc(I —rA). Let ic be a function defined by

) 0, =z€C,
io(@) = oo, z¢C

It is easy to see that i¢ is a proper lower and semicontinuous convex function on
H, and the subdifferential dic of i¢ is maximal monotone. Define the resolvent
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Jy = (I + rdic)~! of the subdifferential operator dic. Letting x = J,.y, we find
that
y€x+rdicr < yecx+rNcx
— (y—z,v—x)<0,YWwel
<=z = Projcy,

where Nox := {e € H : (e,v — z),Vv € C}. Putting B = di¢ in Theorems 2.1, we
find the following results immediately.

Theorem 3.1. Let C be a nonempty closed convexr subset of H and let F be a
bifunction from C x C to R which satisfies (A1)-(A4). Let A : C — H be an -
inverse-strongly monotone mapping and let S : C'— C be a nonexpansive mapping.
Assume that Fiz(S)NEP(F)NVI(C, A) is nonempty. Let {r,} and {s,} be positive
real number sequences. Let {an}, {Bn} and {yn} be real number sequences in (0, 1)
such that a, + B + vn = 1. Let {x,} be a sequence generated in the following
process: 1 € C and

F(ynay) + é<y —YnsYn — P’I“Ojc(l‘n - rnA‘T’ﬂ + en)> > 07 Vy € C>
Tn+l = STy + BrYn + Ynfn, n=>1,

where {e,} is a bounded sequence in H such that Y .- |len|| < oo and {fn} is
bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0<B<B,<B <1and Y 0| vn < 00,
(b) 0 <liminf, , $p and 0 <7 <71, <7/ < 2a,

where B, B, r and v’ are real constants. Then {x,} converges weakly to some point
in Fiz(S) N EP(F) N VI(C, A).

Putting F(z,y) = 0 for any z,y € C and s, = 1 in Theorem 3.1, we have the
following result.

Corollary 3.1. Let C be a nonempty closed convex subset of H . Let A:C — H
be an a-inverse-strongly monotone mapping and let S : C' — C be a nonexpansive
mapping. Assume that Fix(S)NVI(C, A) is nonempty. Let {r,} be a positive real
number sequence. Let {a,}, {Bn} and {vn} be real number sequences in (0,1) such
that oy, + Bn + v = 1. Let {x,} be a sequence generated in the following process:
z1 € C and

Tng1 = 0 STn + BpProjo(zn — raAn + en) + nfn, n>1,
where {e,} is a bounded sequence in H such that Y . |len|| < oo and {fn} is

bounded sequence in C. Assume that the control sequences satisfy the following
restrictions:

(a) 0<B< By <P <1and Y0y < o0,
(b)O<T§Tn§T/<2a7

where B, B, r and v’ are real constants. Then {x,} converges weakly to some point
in Fiz(S)NVI(C,A).
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Now, we are in a position to consider the problem of finding minimizers of
proper lower semicontinuous convex functions. For a proper lower semicontinuous
convex function g : H — (—00, 00|, the subdifferential mapping dg of g is defined
by 0g(z) = {z* € H : g(z) + (y — x,2*) < g(y),Yy € H}, Vo € H. Rockafellar [21]
proved that dg is a maximal monotone operator. It is easy to verify that 0 € dg(v)
if and only if g(v) = minge gy g(x).

Theorem 3.2. Let g : H — (—o00, 0] be a proper convex and lower semicontinuous
function. Let {r,} be a positive real number sequence. Let {ay,}, {Bn} and {y,} be
real number sequences in (0, 1) such that o, + fn +yn = 1. Let {z,} be a sequence
generated in the following process: x1 € C and

yn = argmin, e {g(2) + LE=tenlly,
T4l = QnTp + Bnln + ’Ynfn, n>1,

where {e,} is a bounded sequence in H such that Y . |len|| < oo and {fn} is
bounded sequence in C'. Assume that the control sequences satisfy restrictions: 0 <
B<Br <B <1, 307 1 An <00, and 0 <1 <r, <1’ <2a, where 8, 8/, r and 1’
are real constants. Then {x,} converges weakly to some point in (9g)~1(0).

Proof. Since g : H — (—00,00] is a proper convex and lower semicontinuous
function, we see that subdifferential dg of ¢ is maximal monotone. Put F(z,y) =0
for any z,y € C, s, = 1, and A = 0. Then y, = J,. (¢, + e,). It follows that

Yp = argmin.cy{g(z) + W} is equivalent to 0 € 9g(yn) + = (Y — Tn — €n).
It follows that x,, +e, € y, + rnag(yn) By use of Theorem 2.1, we ﬁnd the de51red
conclusion immediately. O
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