
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 7, Number 2, May 2017, 644–658 DOI:10.11948/2017040

SIZE-STRUCTURED DYNAMICS IN A
JUVENILE-ADULT POPULATION WITH

FIXED SEX-RATIO∗

Yan Liu

Abstract We present and analyze a nonlinear size-structured juvenile-adult
model with a fixed sex-ratio, in which juveniles are structured by size, while
adults by age. Global or local stability results are investigated by the method
of characteristics and prior estimations, which show that, if the net repro-
duction rate is less than one, the population will be extinct for any initial
distributions; On the other hand, the population may be extinct or increase in
a manner faster than exponential style if the net reproduction rate is greater
than one. By using Laplace transform methods, asymptotic behavior of solu-
tions is analyzed too.
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1. Introduction

For many animal species (e.g. amphibians, insects and crustaceans), the individu-
als take on different morphological shapes between juvenile stage and adult stage.
In resent decades, many discrete and continuous juvenile-adult models have been
developed and studied in the literature(see [1–7,11,13,15,18,19] and the references
therein). We briefly comment on a few of them. In [11], J. M. Cushing discussed a
general discrete juvenile-adult model with periodically varying coefficients by using
bifurcation theory. The authors in [18] studied two lumped age-structured models
of juvenile against adult competition. They discussed existence and stability of
positive equilibria and existence of oscillatory solutions, and investigated the effects
of the competitive interactions between juveniles and adults on the dynamics of the
population too. In [19], the authors studied the evolution of a spatially structured
population with two age classes using spatial moment equations. In their model,
adults can either help juveniles by increasing their survival, or adopt a cannibalistic
behaviour and consume juveniles. In [13], J. Z. Farkas and T. Hagen develope-
d a nonlinear size-structured juvenile-adult population model, and analyzed the
linearized dynamical behavior of stationary solutions by using semigroup theory.
In [15], X. Fu and D. Zhu discussed the asymptotic behavior of a size-structured
juvenile-adult population equation with resource-dependent and delayed birth pro-
cess. In [1–7], A. S. Ackleh and his coauthors studied an amphibian population
using discrete and continuous juvenile-adult models. In these articles, they divided
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individuals into juveniles (tadpoles) and adults (frogs). Since juveniles and adult-
s depend on different resources, and no resource competition takes place between
them. In [1], they developed a non-autonomous nonlinear continuous amphibian
juvenile-adult model, and obtained the existence-uniqueness results and long-time
behavior via a comparison principle. In [7], they established a second-order explicit
high-resolution scheme to approximate the solution of the urban amphibian mod-
el. Therein, convergence of the finite difference approximation to the unique weak
solution with bounded total variation is proved.

On the other hand, since R. A. Fisher developed the famous argument that
parental expenditure on sons and daughters should be equal in [14], sex-ratio pop-
ulation models and relevant models have been widely investigated(see [9, 10,17,20]
and the references therein). À. Calsina and J. Ripoll considered an origin (age and
sex)-structured model for a sequential hermaphrodite population with general pa-
rameters accounting for the birth, transition and death processes in [9]. The most
particular feature of the model is the transition from one sex to the other which
is described by a given probability law. Then, in [19] they analyzed the long-term
evolution of sex-reversal, through the long-term evolution of the probability law of
the age at sex-reversal as a function-valued trait. In [20], T. Schmickl and I. Karsai
investigated a population model with consideration of the factors sex-ratio, male
success and gender-specific density-independent mortality. They analyzed how these
factors affect population dynamics. In [17], M. Iannelli and J. Ripoll considered a
two sex population with a fixed sex ratio. Therein, existence and stability of steady
states are established, the population ergodicity is studied, survival thresholds are
discussed and the effect of intraspecific competition is analysed too.

Taking both stage factor and sex-ratio factor into account, we present a juvenile-
adult population model with a fixed sex-ratio for adults. In juvenile stage we
consider size difference while age in adult stage. Our model is composed of two
first-order partial differential equations with initial and boundary conditions. The
remainder of the paper is organized as follows. In Section 2, we introduce the basic
model and deduce the equilibria solution of model. In Section 3, we obtain some
conditions for stability/instability of the equilibria. By applying Laplace transform
methods, asymptotic behavior of solutions is analyzed in Section 4. The final Section
contains some concluding remarks.

2. The basic model and its equilibria

We propose the following model to describe the dynamics of a juvenile-adult pop-
ulation with a fixed sex-ratio:

Jt(s, t) + (g(s)J(s, t))s + µ(s)J(s, t) = 0 , s1 ≤ s ≤ s2, t > 0, (2.1)

g(s1)J(s1, t) = Φ(M(t))

∫ a†

0

β(a)A(a, t)da , t > 0, (2.2)

J(s, 0) = J0(s) , s1 ≤ s ≤ s2, (2.3)

At(a, t) +Aa(a, t) + v(a)A(a, t) = 0 , 0 ≤ a < a†, t > 0, (2.4)

A(0, t) = g(s2)J(s2, t) , t > 0 , (2.5)

A(a, 0) = A0(a) , 0 ≤ a < a†, (2.6)

M(t) =

∫ a†

0

γ(a)A(a, t)da , t > 0, (2.7)
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where J(s, t) and A(a, t) denote the densities of juveniles of size s and adults of age
a, respectively, at time t. The parameters µ and g are the mortality and growth
rates of juveniles, respectively. s1 and s2 denote the minimum and maximum size
of juveniles, respectively. The functions β and v are the fertility and mortality of
adults, respectively. a† denotes the maximum age of adults. Equation (2.5) says
that s2 is the size at which juveniles mature into adults. γ denotes the proportion
of males in adults. The function Φ is relative to the number of males of adults that
a female of adults meets in the time unit, and has the same properties as described
in [17]. That is, the function Φ is increasing and takes all the values between 0 to
1, see [17] for a detailed description.

Throughout this paper the following assumptions hold:

(A1): µ ∈ L1
loc,+(s1, s2), β ∈ L∞+ (0, a†);

(A2): g ∈ C1
+(s1, s2),

∫ s2
s1

1
g(x)dx < +∞, this condition will guarantee that juveniles

reach the maximum size in a finite time;

(A3): γ ∈ L∞+ (0, a†), v ∈ L1
loc,+(0, a†),

∫ a†
0
v(a)da = +∞;

(A4): J0 ∈ L1
+(s1, s2), A0 ∈ L1

+(0, a†);

(A5): All of variables and parameters are nonnegative in their domains and are
extended by zero outside their domains.

We first introduce the definition of the solution of problem (2.1)-(2.7) via the
method of characteristics.

Definition 2.1. A couple of integrable nonnegative functions (J(s, t), A(s, t)) is
said to be a solution of system (2.1)-(2.7) if it satisfies the following equations:

DJ(s, t) = −[µ(s) +
∂g(s)

∂s
]J(s, t),

DA(a, t) = −v(a)A(a, t),

with

DJ(s, t) = lim
h→0

J
(
τ−1(τ(s) + h), t+ h

)
− J(s, t)

h
,

DA(a, t) = lim
h→0

A(a+ h, t+ h)−A(a, t)

h
,

where τ(s) =
∫ s
s1

1
g(x)dx, which denotes the time required for a newborn with the

minimum size s1 to reach a size s.

Any equilibrium (J∗(s), A∗(a)) of the system (2.1)-(2.7) satisfies the equations:

(g(s)J∗(s))s + µ(s)J∗(s) = 0, (2.8)

g(s1)J∗(s1) = Φ(M∗)

∫ a†

0

β(a)A∗(a)da, (2.9)

A∗a(a) + v(a)A∗(a) = 0, (2.10)

A∗(0) = g(s2)J∗(s2), (2.11)

M∗ =

∫ a†

0

γ(a)A∗(a)da. (2.12)
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The general solution of Eq. (2.8) and Eq. (2.10) are found as

J∗(s) = J∗(s1)Π1(s), (2.13)

and

A∗(a) = A∗(0)Π0(a), (2.14)

respectively. Hereafter,

Π0(a) = exp {−
∫ a

0

v(x)dx}, Π1(s) = exp

{
−
∫ s

s1

µ(x) + gx(x)

g(x)
dx

}
.

From Eq. (2.12) and Eq. (2.14) we obtain

A∗(a) =
M∗Π0(a)∫ a†

0
γ(a)Π0(a)da

. (2.15)

Setting s = s2 in Eq. (2.13), we have J∗(s2) = J∗(s1)Π1(s2), together with Eq.
(2.11) and Eqs. (2.13-2.15), it yields that

J∗(s) =
M∗Π1(s)

g(s2)Π1(s2)
∫ a†

0
γ(a)Π0(a)da

. (2.16)

Substituting Eq.(2.13) and Eqs.(2.15)-(2.16) into Eq.(2.9) we see that M∗ must
satisfy the following nonlinear equation:

RΦ(M∗) = 1, (2.17)

where

R =
g(s2)

g(s1)
Π1(s2)

∫ a†

0

β(a)Π0(a)da. (2.18)

The term g(s2)
g(s1)Π1(s2) represents the probability that a juvenile survives and reaches

the maturation size s2(see [12]). Π0(a) denotes the survival probability for an adult
to reach age a, together with the adult fertility β(a) give the so-called maternity
function for age-structured models(see [16]). So that the parameter R in (2.18),
which can be called the net reproduction rate, gives the expected number of offspring
produced by an individual during his lifespan in the case of a complete availability
of males considering both stages juvenile and adult.

So, we have shown that, to each positive solution M∗ of Eq. (2.17), there belongs
a uniquely determined equilibrium (J∗(s), A∗(a)). According to the properties of
Φ, it is not difficult to see that there is no non-trivial equilibrium if R ≤ 1 whereas
there exists a unique non-trivial equilibrium if R > 1.

3. Stability of equilibria

In this section we study the stability of the equilibria of system (2.1)-(2.7). Some
sufficient conditions for stability/instability of equilibria will be given here.
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Utilizing the method of curve technique, the solution of adult system (2.4)-(2.6)
can be given as:

A(a, t) =

A0(a− t) Π0(a)
Π0(a−t) , t ≤ a,

g(s2)J(s2, t− a)Π0(a), t > a,
(3.1)

Substituting Eq. (3.1) into Eq. (2.2), we obtain

Jt(s, t) + g(s)Js(s, t) = −[µ(s) + gs(s)]J(s, t) , s1 ≤ s ≤ s2, t > 0, (3.2)

g(s1)J(s1, t) =


Φ(M(t))

∫ a†
t
β(a)A0(a− t) Π0(a)

Π0(a−t)da

+Φ(M(t))
∫ t

0
β(a)g(s2)J(s2, t− a)Π0(a)da , 0 < t ≤ a†,

Φ(M(t))
∫ a†

0
β(a)g(s2)J(s2, t− a)Π0(a)da , t > a†,

(3.3)

J(s, 0) = J0(s) , s1 ≤ s ≤ s2. (3.4)

Then, a standard calculation for system (3.2)-(3.4) leads to:

J(s, t) =

J0(τ−1(τ(s)− t)) Π1(s)
Π1(τ−1(τ(s)−t)) , 0 < t ≤ τ(s),

J(s1, t− τ(s))Π1(s), t > τ(s).
(3.5)

Noting that τ(s2) < +∞, and denoting B(t) = J(s2, t), we have, for t > τ(s2)

J(s2, t) = J(s1, t− τ(s2))Π1(s2),

hence, from Eqs. (3.1), (3.3) and (3.5), and introducing the notations,

Π0(a) = exp {−
∫ a

0

v(x)dx}, Π1(s) = exp

{
−
∫ s

s1

µ(x) + gx(x)

g(x)
dx

}
,

F0(t) = J0(τ−1(τ(s2)− t)) Π1(s2)

Π1(τ−1(τ(s2)− t))
,

K0(a) = β(a)Π0(a), H0(a) = γ(a)Π0(a),

K(a) =
g(s2)

g(s1)
Π1(s2)K0(a), H(a) = g(s2)H0(a),

F (t) =
Π1(s2)

g(s1)

∫ a†−t

0

K0(a+ t)
A0(a)

Π0(a)
da,

G(t) =

∫ a†−t

0

H0(a+ t)
A0(a)

Π0(a)
da,

with all the functions extended by zero outside the interval [0, a†], we obtain the
following integral systemB(t) = F0(t) + Φ(M(t− τ(s2)))

(∫ t−τ(s2)

0
K(a)B(t− τ(s2)− a)da+ F (t− τ(s2))

)
,

M(t) =
∫ t

0
H(a)B(t− a)da+G(t),

(3.6)



Size-structured population model with fixed sex-ratio 649

which is equivalent to the juvenile system (3.2)-(3.4). From the non-negative solu-
tion of (3.6) we can get the solution of the basic system as

A(a, t) =

A0(a− t) Π0(a)
Π0(a−t) , t ≤ a,

B(t− a)g(s2)Π0(a), t > a,
(3.7)

J(s, t) =



J0(τ−1(τ(s)− t)) Π1(s)
Π1(τ−1(τ(s)−t)) , 0 < t ≤ τ(s),

Π1(s)
g(s1) Φ(M(t− τ(s)))

{∫ a†−t+τ(s)

0
K0(a+t−τ(s))A0(a)

Π0(a) da

+
∫ t−τ(s)

0
g(s2)K0(a)B(t− τ(s)− a)da

}
, τ(s) < t ≤ τ(s) + a†,

Π1(s)
g(s1) Φ(M(t− τ(s)))

∫ a†
0
g(s2)K0(a)B(t− τ(s)− a)da , t > τ(s) + a†.

(3.8)

Based on these formulations, we first have a global result concerning the trivial
equilibrium.

Theorem 3.1. If R < 1, that is the net reproduction rate is less than one, then
the trivial equilibrium is globally asymptotically stable.

Proof. From the first equation in (3.6) we have

max
x∈[0,t]

B(x) ≤ R max
x∈[0,t]

B(x) + max
x∈[τ(s2),τ(s2)+a†]

F (x) + max
x∈[0,τ(s2)]

F0(x)

consequently

sup
t≥0

B(t) ≤ 1

1−R

(
max

x∈[τ(s2),τ(s2)+a†]
F (x) + max

x∈[0,τ(s2)]
F0(x)

)
≤ 1

1−R

(
Π1(s2)

g(s1)
‖β‖L∞(0,a†)‖A0(·)‖L1(0,a†) + ‖J0(·)‖L1(s1,s2)

)
,

which means that B(t) is bounded.

Then, using this estimate and the form (3.7)-(3.8) of the solution, a straightfor-
ward calculation leads to

‖A(·, t)‖L1(0,a†) + ‖J(·, t)‖L1(s1,s2)

≤‖A0(·)‖L1(0,a†) + g(s2)a†sup
t≥0

B(t)

+ ‖J0(·)‖L1(s1,s2) +
‖β‖L∞(0,a†)

g(s1)
‖A0(·)‖L1(0,a†) +

2g(s2)

g(s1)
a†‖β‖L∞(0,a†)sup

t≥0
B(t)

≤η1‖A0(·)‖L1(0,a†) + η2‖J0(·)‖L1(s1,s2),

where

η1 = 1 +
g(s2)Π1(s2)a†‖β‖L∞(0,a†)

(1−R)g(s1)
+
‖β‖L∞(0,a†)

g(s1)
+

2g(s2)Π1(s2)a†‖β‖2L∞(0,a†)

(1−R)g2(s1)
,

η2 = 1 +
g(s2)a†
1−R

+
2g(s2)a†‖β‖L∞(0,a†)

(1−R)g(s1)
,
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which shows that the solution is stable. For t > τ(s2) + a†, the first equation in
(3.6) implies that

B(t) = Φ(M(t− τ(s2)))

∫ t−τ(s2)

0

K(a)B(t− τ(s2)− a)da,

hence,

lim
t→∞

supB(t) ≤ R lim
t→∞

supB(t),

since R < 1 and B(t) is bounded, it follows that

lim
t→∞

B(t) = 0.

By (3.7) and (3.8) we finally obtain

lim
t→∞
‖A(·, t)‖L1(0,a†) = 0, lim

t→∞
‖J(·, t)‖L1(s1,s2) = 0,

which yield what we desire.
Now we discuss the stability of equilibria in the case of R > 1. The following two

Theorems show that the population will be extinct or increase in suitable conditions.

Theorem 3.2. If R > 1, and suppose that the following additional assumptions
are satisfied:

(A6): A0(a) ≤ δ1A∗(a), a.e. in [0, a†], δ1 < 1;

(A7): J0(s) ≤ δ2 Π1(s2)
Π1(s) J

∗(s), a.e. in [s1, s2], δ2 < 1.

Then we have

lim
t→∞
‖A(·, t)‖L1(0,a†) = 0, lim

t→∞
‖J(·, t)‖L1(s1,s2) = 0.

Proof. From the second equation in (3.6) we have

M(0) = G(0) =

∫ ∞
0

γ(a)A0(a)da ≤
∫ ∞

0

γ(a)δ1A
∗(a)da = δ1M

∗.

Then we define

t0 = sup
{
T |M(t) ≤ δ̃M∗, t ∈ [0, T ]

}
,

where δ̃ is chosen such that

δ1 < δ̃ < 1, and δ̃(1−RΦ(δ̃M∗)) > δ2. (3.9)

If t0 <∞, a straightforward calculation from (3.6) yields

max
x∈[0,t0]

B(x)

≤Φ(δ̃M∗)

(
max
x∈[0,t0]

B(x)

∫ t

0

K(a)da+
δ1M

∗ ∫∞
t
K(a)da∫ a†

0
H(a)da

)
+

δ2M
∗∫ a†

0
H(a)da

≤RΦ(δ̃M∗) max
{

max
x∈[0,t0]

B(x),
δ1M

∗∫ a†
0
H(a)da

}
+

δ2M
∗∫ a†

0
H(a)da

.
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If max
x∈[0,t0]

B(x) ≤ δ1M
∗∫ a†

0 H(a)da
, then putting this inequality into the second of (3.6) we

have

δ̃M∗ = M(t0) =

∫ t0

0

H(a)B(t0 − a)da+G(t0) ≤ δ1M∗,

which is a contradiction.
On the other hand, if max

x∈[0,t0]
B(x) > δ1M

∗∫ a†
0 H(a)da

, and noting that RΦ(δ̃M∗) < 1,

we have

max
x∈[0,t0]

B(x) ≤ δ2M
∗

(1−RΦ(δ̃M∗))
∫ a†

0
H(a)da

.

Plugging the above relation into the second of (3.6), it follows that

δ̃M∗ = M(t0) =

∫ t0

0

H(a)B(t0 − a)da+G(t0)

≤
∫ t0

0

H(a)da
δ2M

∗

(1−RΦ(δ̃M∗))
∫ a†

0
H(a)da

+

∫ a†

t0

H(a)da
δ1M

∗∫ a†
0
H(a)da

≤ max
{ δ2M

∗

(1−RΦ(δ̃M∗))
, δ1M

∗
}
,

which contradicts the condition (3.9).
Up to now, we have shown that t0 = ∞. Hence, sup

t≥0
M(t) ≤ δ̃M∗, sup

t≥0
B(t) <

+∞, and from the first equation in (3.6), we get

lim
t→∞

supB(t) ≤ RΦ(δ̃M∗) lim
t→∞

supB(t),

which implies lim
t→∞

B(t) = 0 by RΦ(δ̃M∗) < 1.

By (3.7) and (3.8) we finally obtain

lim
t→∞
‖A(·, t)‖L1(0,a†) = 0, lim

t→∞
‖J(·, t)‖L1(s1,s2) = 0.

Now we present the population increasing result.

Theorem 3.3. If R > 1, and suppose the following additional assumption holds
too:

(A8) : A0(a) ≥ δ3A∗(a), a.e. in [0, a†], δ3 > 1;
Then

lim
t→∞
‖A(·, t)‖L1(0,a†) = +∞, lim

t→∞
‖J(·, t)‖L1(s1,s2) = +∞.

Proof. Let t0 = sup
{
T |M(t) ≥ δ̃M∗, t ∈ [0, T ]

}
with 1 < δ̃ < δ3. If t0 < ∞,

from the equation (3.6), we have

min
x∈[0,t0]

B(x) ≥ RΦ(δ̃M∗) min
{

min
x∈[0,t0]

B(x),
δ3M

∗∫ a†
0
H(a)da

}
.
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If we could prove that B(t) > 0 for all t, together with the fact that RΦ(δ̃M∗) > 1,
it leads to

min
x∈[0,t0]

B(x) ≥ δ3M
∗∫ a†

0
H(a)da

,

then from the second equation in (3.6) we have δ̃M∗ = M(t0) ≥ δ3M
∗, which is a

contradiction. That is t0 =∞, from this and the above inequality we draw

inf
t≥0

M(t) ≥ δ̃M∗, inf
t≥0

B(t) > 0,

considering the first equation of (3.6) again, we obtain

lim
t→∞

inf B(t) ≥ RΦ(δ̃M∗) lim
t→∞

inf B(t),

which yields the conclusion we desire by (3.7) and (3.8).
In what follows we show that B(t) > 0 for all t. For t < τ(s2), we get B(t) =

F0(t) from Eq. (3.6). Since F0(t) > 0 by the assumption (A4), we have B(t) > 0
for t < τ(s2).

Applying the assumption (A8), it is not hard to show that M(0) ≥ δ3M
∗ > 0,

and consequently we have

B(τ(s2)) = Φ(M(0))F (0) + F0(τ(s2)) > RΦ(M(0))
δ3M

∗∫ a†
0
H(a)da

> 0.

If there exists t0 ∈ [τ(s2),∞) such that

B(t0) = 0, B(t) > 0 for t ∈ [τ(s2),∞),

we have

0 = B(t0) ≥
∫ t0−τ(s2)

0

K(a+ τ(s2)− t0)B(a)da

+
Π1(s2)δ3M

∗

g(s1)
∫ a†

0
H(a)da

∫ a†

t0−τ(s2)

K(a)da,

which implies the wrong conclusion K(a) = 0 for a ∈ [0, a†]. Hence, we have
B(t) > 0 for all t, and the proof is complete.

Therefore, we have the following corollary.

Corollary 3.1. If R > 1, then the trivial equilibrium is locally asymptotically stable
and the non-trivial one is unstable.

The following theorem shows that the population will increase in a manner faster
than exponential style, if the net reproduction rate is greater than one.

Theorem 3.4. If R > 1 and the assumption (A8) are satisfied, then we have

B(t) > Ceωt, ‖A(·, t)‖L1(0,a†) > Ceωt,

M(t) > Ceωt, ‖J(·, t)‖L1(s1,s2) > Ceωt,

where C and ω are suitable positive constants.
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Proof. From the proof of Theorem 3.3 we have, for t ≥ 0,

B(t) > 0, M(t) ≥ δ̃M∗.

Setting

Bn = min
t∈[n(τ(s2)+a†),(n+1)(τ(s2)+a†)]

B(t), n = 0, 1, 2, · · · .

By the first equation of (3.6) and the assumption (A8), we obtain

Bn ≥ RΦ(δ̃M∗) min{Bn, Bn−1}, n = 1, 2, · · · .

Since Bn > 0 and RΦ(δ̃M∗) > 1, we have Bn ≥ RΦ(δ̃M∗)Bn−1. By iteration it
yields Bn ≥ (RΦ(δ̃M∗))nB0. Then, if t ∈ [n(τ(s2)+a†), (n+1)(τ(s2)+a†)], that is

B(t) > (RΦ(δ̃M∗))−1B0(RΦ(δ̃M∗))
t

τ(s2)+a† . Therefore, we have B(t) > Ceωt with
suitable positive C and ω. Finally the conclusion follows because, using (3.6)-(3.8),
for t > τ(s2) + a† we have

‖A(·, t)‖L1(0,a†) =

∫ a†

0

B(t− a)g(s2)Π0(a)da > Ceωt,

‖J(·, t)‖L1(s1,s2) =

∫ s2

s1

Φ(M(t− τ(s)))

∫ t

0

Π1(s)g(s2)K0(a)

g(s1)
B(t− τ(s)− a)dads,

> Ceωt,

M(t) =

∫ t

0

H(a)B(t− a)da+G(t) > Ceωt,

with a suitable constant C.

4. Asymptotic behavior of solutions

In this section, we will investigate the asymptotic behavior of solutions of system
(2.1)-(2.7) by virtue of Laplace transform methods (see [8, 16]). To this end, we
start by discussing the asymptotic behavior of B(t). By (3.6) we may infer via
Bellman’s lemma that

B(t) ≤
(
‖J0‖L1(s1,s2) +

‖β‖L∞(0,a†)‖A0‖L1(0,a†)

g(s1)

)
e
t
g(s2)

g(s1)
‖β‖L∞(0,a†) , ∀t ∈ [0,∞)

and this implies that B(t) is absolutely Laplace transformable. Now rewriting the
first equation of (3.6) as

B(t) = F0(t) + F (t− τ(s2))− h(t− τ(s2)) +

∫ t−τ(s2)

0

K(a)B(t− τ(s2)− a)da,

where

h(t) =
(

1− Φ(M(t))
)(∫ t

0

K(a)B(t− a)da+ F (t)

)
,

then we obtain in the same manner that |h(t)| ≤ Ceωt with some positive constants
C and ω. Thus h(t) is also Laplace transformable.
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Setting L(B)(λ) to denote the Laplace transform of B(t), we have

L(B)(λ)

=

∫ τ(s2)

0

e−λtF0(t)dt+

∫ τ(s2)+a†

τ(s2)

e−λtF (t− τ(s2))dt

−
∫ ∞
τ(s2)

e−λth(t− τ(s2))dt+

∫ ∞
τ(s2)

e−λt
∫ t−τ(s2)

0

K(a)B(t− τ(s2)− a)dadt

=L(F0)(λ) + e−λτ(s2)(L(F )(λ)− L(h)(λ)) + e−λτ(s2)L(K)(λ)L(B)(λ),

and in conclusion

L(B)(λ) =
L(F0)(λ) + e−λτ(s2)(L(F )(λ)− L(h)(λ))

1− e−λτ(s2)L(K)(λ)
. (4.1)

It is well known that the asymptotic behavior of B(t) is related to the singularities
of L(B)(λ). By (4.1) we conclude that L(B)(λ) can have poles only among the
roots of the equation

1− e−λτ(s2)L(K)(λ) = 0. (4.2)

With respect to this latter equation we have:

Theorem 4.1. Equation (4.2) has a unique real solution α∗, which is a simple
root. This solution is negative if and only if R < 1. Any other solution α of (4.2)
satisfies Reα < α∗ and within any strip σ1 < Reλ < σ2 there is at most a finite
number of roots.

Proof. Let ϕ(λ) = e−λτ(s2)L(K)(λ), then it is strictly decreasing on R because

ϕ′(λ) = −(t+ τ(s2))

∫ ∞
0

e−λ(t+τ(s2))K(t)dt < 0

and satisfies

lim
λ→−∞

ϕ(λ) = +∞, lim
λ→+∞

ϕ(λ) = 0.

It follows that there exists a unique α∗ ∈ R such that ϕ(α∗) = 1, and since ϕ′(α∗) <
0 we get that α∗ is simple. Comparing relation (2.18) with the notation K(a)
leads to R =

∫ a†
0
K(a)da. Therefore, it is obvious that α∗ < 0 if and only if

ϕ(0) =
∫∞

0
K(a)da < 1.

Let α be another solution of (4.2), then∫ ∞
0

e−α
∗(t+τ(s2))K(t)dt = 1 = Re

(∫ ∞
0

e−α(t+τ(s2))K(t)dt
)

=

∫ ∞
0

e−(Reα)(t+τ(s2)) cos((Imα)(t+ τ(s2)))K(t)dt

<

∫ ∞
0

e−(Reα)(t+τ(s2))K(t)dt

and as a consequence we obtain that Reα < α∗.
Finally, since ϕ(λ)→ 0 as |λ| → +∞, all the roots within the strip σ1 < Reλ <
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σ2 must lie in some bounded subset and be finite in number because otherwise ϕ(λ)
would vanish identically.

Now we are ready to formulate the result concerning the asymptotic behavior
of B(t).

Theorem 4.2. Let R > 1 so that α∗ > 0. Suppose the assumption (A8) are
satisfied. Then the solution B(t) of (3.6) satisfies

B(t) = b0e
α∗t(1 + Ω(t)),

where b0 > 0 and lim
t→+∞

Ω(t) = 0.

Proof. To simplify the notation, we first set

L(ζ)(λ) = L(F0)(λ) + e−λτ(s2)L(F )(λ),

L(ξ)(λ) = e−λτ(s2)L(h)(λ),

L(η)(λ) = e−λτ(s2)L(K)(λ).

Then the relation (4.1) can be rewritten as

L(B)(λ) =
L(ζ)(λ)− L(ξ)(λ)

1− L(η)(λ)
. (4.3)

Since, by a classical result we get that

lim
|λ|→+∞,Reλ>α

L(ζ)(λ) = lim
|λ|→+∞,Reλ>α

L(ξ)(λ) = lim
|λ|→+∞,Reλ>α

L(η)(λ) = 0,∀α ∈ R.

(4.4)

We conclude that

lim
|λ|→+∞,Reλ>α

L(ζ)(λ)− L(ξ)(λ)

1− L(η)(λ)
= 0.

On the other hand∫ +∞

−∞

∣∣∣L(ζ)(x+ iy)− L(ξ)(x+ iy)

1− L(η)(x+ iy)

∣∣∣dy < +∞, (4.5)

where x ∈ R is such that L(η)(x+ iy) 6= 1, ∀y ∈ R. Indeed, relation (4.4) implies
that m(x) = inf

y∈R
|1− L(η)(x+ iy)| > 0.

Define the functions

ζx(t) =

 e−xtζ(t), t ≥ 0,

0, t < 0,
ξx(t) =

 e−xtξ(t), t ≥ 0,

0, t < 0.

It is evident that

ζ̂x(y) = L(ζ)(x+ iy), ξ̂x(y) = L(ξ)(x+ iy),

with ζ̂x and ξ̂x are Fourier transforms of ζx and ξx, respectively.
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Thus ∣∣∣L(ζ)(x+ iy)− L(ξ)(x+ iy)

1− L(η)(x+ iy)

∣∣∣ ≤ |̂ζx(y)− ξ̂x(y)|
m(x)

,

and consequently∫ +∞

−∞

∣∣∣L(ζ)(x+ iy)− L(ξ)(x+ iy)

1− L(η)(x+ iy)

∣∣∣ ≤ ‖ζ̂x − ξ̂x‖L1(R)

m(x)
,

which shows that (4.5) is satisfied.
For any fixed x > α∗ we consider the Laplace transform inversion formula

g(t) :=
1

2πi

∫ x+i∞

x−i∞
eλt
L(ζ)(λ)− L(ξ)(λ)

1− L(η)(λ)
dλ, (4.6)

which has the Laplace transform

L(g)(t) =
L(ζ)(λ)− L(ξ)(λ)

1− L(η)(λ)
.

Using (4.3) we may infer that g(t) = B(t), t ≥ 0.
Finally, chosen x1 < α∗, such that any root α of (4.2), other than α∗, satisfies

Reα < x1. By (4.4) and (4.5) we shift the integration in (4.6), from x to x1. Then,
applying the theorem of residuals, it follows that

g(t) = eα
∗t(b0 + ω(t)),

where

b0 = Res
(L(ζ)(λ)− L(ξ)(λ)

1− L(η)(λ)

)
(α∗) =

L(ζ)(α∗)− L(ξ)(α∗)∫∞
0

(t+ τ(s2))e−α∗(t+τ(s2))K(t)dt
6= 0,

|ω(t)| = e−α
∗t

2π

∣∣∣ ∫ x1+i∞

x1−i∞
eλt
L(ζ)(λ)− L(ξ)(λ)

1− L(η)(λ)
dλ
∣∣∣ ≤ e−(α∗−x1)t

m(x1)
‖ζ̂x − ξ̂x‖L1(R).

Let Ω(t) = ω(t)
b0

, then B(t) = b0e
α∗t(1 + Ω(t)). Noting that limt→∞ ω(t) = 0 and

B(t) > 0, and as a consequence we get limt→∞Ω(t) = 0 and b0 > 0.
Bearing in mind expressions (3.5) and (3.7), together with the relation J(s2, t) =

J(s1, t − τ(s2))Π1(s2) valid for t > τ(s2), the distributions of juveniles and adults
can be described in terms of B(t) as

J(s, t) =
Π1(s)

Π1(s2)
B(t+ τ(s2)− τ(s)), t > τ(s2),

A(a, t) = B(t− a)g(s2)Π0(a), t > a†.

Then, by using Theorem 4.2, we establish the asymptotic behavior of solutions
of system (2.1)-(2.7) as follows.

Theorem 4.3. The asymptotic behavior of the distributions of juveniles and adults
is given by

lim
t→+∞

e−α
∗tJ(s, t) =

b0Π1(s)

Π1(s2)
eα
∗(τ(s2)−τ(s)),

lim
t→+∞

e−α
∗tA(a, t) = b0g(s2)Π0(a)e−α

∗a.

These results show an exponential growth of the distributions of juveniles and
adults, determined by the constant α∗, the unique real solution to Eq. (4.2).
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5. Concluding remarks

In this paper, we study a nonlinear system of hyperbolic partial differential equa-
tions with boundary and initial conditions. The system represents a model of a
fixed sex-ratio population based on a size-structured juvenile-adult model. The ju-
venile stage is structured by size, while the adult stage simply by age. By using the
characteristics method and prior estimations, we discuss the existence and stability
of steady states. The asymptotic behavior of the solutions of juveniles and adults
are analyzed via Laplace transform methods.

Compared with the existing works in the literature, our research is three-featured.
First, to our best knowledge, this paper is the first attempt to consider both stage
factor and sex-ratio factor in one population model. Second, we derive a set of new
stability conditions rather than applying some existing results. Third, we reduce
the basic model to a delayed renewal equation with constant delay for the distri-
bution of juveniles at the maturation size. More challenging behavioral analysis
problems concerning the realistic indexes and complex population dynamics, such
as a non-autonomous system or a system with diffusion process, will be explored in
our future research.
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[8] S. Aniţa, Analysis and Control of Age-dependent Population Dynamics, Kluw-
er, Dordrecht, 2000.



658 Y. Liu
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