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STABILITY AND BIFURCATION ANALYSIS
OF A VIRAL INFECTION MODEL WITH
DELAYED IMMUNE RESPONSE*

Hui Chen'? and Rui Xu!

Abstract In this paper, we study a viral infection model with an immuni-
ty time delay accounting for the time between the immune system touching
antigenic stimulation and generating CTLs. By calculation, we derive two
thresholds to determine the global dynamics of the model, i.e., the reproduc-
tion number for viral infection Ry and for CTL immune response R;. By
analyzing the characteristic equation, the local stability of each feasible equi-
librium is discussed. Furthermore, the existence of Hopf bifurcation at the
CTL-activated infection equilibrium is also studied. By constructing suitable
Lyapunov functionals, we prove that when Ro < 1, the infection-free equilib-
rium is globally asymptotically stable; when Ry > 1 and R; < 1, the CTL-
inactivated infection equilibrium is globally asymptotically stable; Numerical
simulation is carried out to illustrate the main results in the end.

Keywords Immunity time delay, thresholds, CTL immune response, Hopf
bifurcation, global stability.

1. Introduction

Viral infection models have received great attention in recent years [5,10,11]. In
most virus infections, cytotoxic T lymphocytes play a key role in antiviral defense
by attacking virus infected cells. Therefore, in the last few decades, more attention
has been paid to the population dynamics of viral infection with CTL response
[13,18,21]. In [18], a basic mathematical model describing HIV-1 infection dynamics
with CTL immune response is of the form:

(1.1)

where z(t), y(t), v(t) and z(t) represent the densities of uninfected target cells,
infected cells, virions and CTL cells at time ¢, respectively. Uninfected cells are
produced at rate s and die at rate d, and become infected at rate Sxv, where /3
is the constant rate describing the infection process; infected cells are produced at
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rate Sxv and die at rate ay; free virions are produced from infected cells at rate ky
and are removed at rate uv. The parameter p accounts for the strength of the lytic
component. The parameter b is the death rate for CTL cells, cyz describes the rate
of CTL immune response activated by the infected cells.

In (1.1), the parasite-induced host mortality (parasite virulence) and the repro-
duction rate of the parasite are assumed to be independent of the infecting parasite
dose. In fact, many experiments suggest that, for microparasitic infections, para-
sitic virulence may increase with the parasite dose, whereas the reproduction rate
of the parasite within the host tends to be negatively correlated with the parasite
dose [3,7,8,12,14]. Rogeoes et al. [12] proposed a sigmoidal infection model with the
dose-dependent virulence in the form of (d + av)y and the dose-dependent parasite
reproduction rate in the form of ¢4, (1 —v/(LD))y, where ¢paz, @, LD are positive
constants and LD denotes the lethal dose that immediately kills a host.

Noting that it is important to choose the infectious rate in modeling viral in-
fection dynamics, since it may allow us to have a more reasonable qualitative de-
scription for the dynamics. Experiments reported in [3,12] strongly suggested that
the infection rate of the microparasitic infections is an increasing function of the
parasite dose, and is usually sigmoidal and shape (see, e.g., [12]). In [14], a more
general saturation infection rate Sxv?/(1 4+ avP) was suggested by Song and Neu-
mann, where ¢, p and « are positive constants. For p = 1 and ¢ = 1, the infectious
rate becomes monotone and describes the saturation effect(see, e.g., [9,19]).

Time delays can not be ignored in virus infection models [1, 15,16, 22,23]. In
(1.1), we note that the process of the producing new virus was assumed to occur
instantaneously. This is not biologically sensible. In fact, antigenic stimulation
generating CTLs may need a period of time 7, i.e. the CTL response at time ¢ may
depend on the population of antigen at a previous time ¢ — 7. Kaifa Wang et al. [17]
studied the effects of the time delay for immune response on a three-dimensional
system with 2'= cy(t —7) —bz. Assuming that the production of CTLs also depends
on the population of CTL cells, Canabarro et al. [2] investigated the effects of a
time delay on a four-dimensional system with 2’ = cy(t — 7)z(t — 7) — bz.

Motivated by the works of Nowak and Bangham [18], Regoes et al. [12] and
Canabarro et al. [2], in this paper, we are concerned about the effect of time delay
and saturation infection rate on the dynamics of a viral infection model. The model
is given by

= (a+ov(t)y(t) — py(t)(t), (1.2)
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where 7 is the time delay of CTL response; vy represents the dose-dependent viru-
lence and (k — qv)y represents the dose-dependent reproduction rates, respectively.
d and ¢ are positive constants. The initial conditions for system (1.2) take the form:

z(0) = ¢1(0), y(0) = p2(0), v(0) =3(0), =2(0) = da(0),
¢:i(0) >0, Oe[-7,0], i=1,2,34,
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where

(¢1(0), 2(0), ¢3(0), 6a(0)) € C([~7,0], RY),

Ry = (z1,22,23,24 1 7; > 0,i=1,2,3,4).

This paper is organized as follows. In Section 2, by analyzing the corresponding
characteristic equations, we study the local stability of an infection-free equilibrium
and a CTL-inactivated infection equilibrium of system (1.2). In Section 3, we dis-
cuss the local stability and the existence of Hopf bifurcations at the CTL-activated
infection equilibrium. In Section 4, the formulate determining the direction of the
Hopf bifurcations on the center manifold are obtained by using the normal form
theory and the center manifold theorem due to Hassard et al. [4]. In Section 5,
by constructing suitable Lyapunov functionals, we discuss the global stability of
the infection-free equilibrium and the CTL-inactivated infection equilibrium, re-
spectively. In Section 6, numerical simulation is carried out to illustrate the main
results.

2. Local stability

In this section, by analyzing the corresponding characteristic equations, we discuss
the local stability of the infection-free equilibrium and the CTL-inactivated infection
equilibrium, respectively.

Clearly, system (1.2) has an infection-free equilibrium Ey = (20,0, 0,0), where
xg = s/d.

Let X = (y,v,2,2)T. The system (1.2) can be written to the following form:

dX
— = F(X) - V(a), (2.1)
dt
where
T (a+ 6v)y + pyz
0 —(k —
FX) = V) = w — (k= qu)y
0 bz —cy(t—7)z(t — 1)
0 dx + 1&’2’” —s

The Jacobian matrix of F(X) at Ey is as follows:

0 B0 00 a 0 00
0 0 00 -k uw 00
DF(Ey) = , DV(E,) =
0 0 00 0 0 b0
0 0 00 0 Bxo0d
Let

0Bs/d 0 a 00

F=10 0 0], V=|-ku0

0 0 0 0 0b
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It follows that

1 ksB Bs

EO 0 aud@o
Vi=| EL o |, FV'=| 0 00

0 01/b 0 00

Therefore, the spectral radius of matrix £V ! is the basic reproduction number
for viral infection of system (1.2), it follows that

_ ksp

R, —
0~ qud

(2.2)

Define the basic reproduction number for CTL immune response as follows:

kcusf(cu + gb)

R = o dtcu T qb + akb) + kupbl[alcu + qb) + kob]”

(2.3)

If Ry <1< Ry, k—qu; > 0, system (1.2) has a CTL-inactivated infection
equilibrium Fj (z1,y1,v1,0) besides the equilibrium Ey, where

S u(l 4 avi)(a + ovy) uwg
1 B(k_qvl) ) Y1 k—qvl’
and
U+ /U? + daud(duad + uB8)(Ry — 1) (2.4)
"= 2(duad + u39) ’ '
where

U = dud + adua + aPu + gsp.

If Ry > 1, system (1.2) has a CTL-activated infection equilibrium Es (2, y2, v2, 22),
where

s(1 4+ awg) b kb (a+dvg)(Ry — 1)
s Y2=, V2= 22 = .
d(1 + avy) + Pvg c cu+ gb P

T =

From (2.2) and (2.3), it is easy to prove that Ry > R; always holds.

Theorem 2.1. If Ry < 1, the infection-free equilibrium Eq of system (1.2) is locally
asymptotically stable.

Proof. The characteristic equation of system (1.2) at Ejy is as follows:

kpBs
A+ d) A+ )N + (a+u)\ + au — %] =0. (2.5)
For Ry < 1, that is au — kBs/d > 0. It is easy to prove that all roots of
equation (2.5) have negative real parts. By Routh-Hurwitz criterion, the infection-
free equilibrium Ejy of system (1.2) is locally asymptotically stable. This completes
the proof. O

Lemma 2.1. Ry — 1 has the same sign as y1 — Y.
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Proof. From the first equation of system (1.2), we derive that

Bs(vy — va)

To — 21 = . 2.6
2T T A+ avs) + Bua][d(1 + avy) + oy (26)
It is clear that xo — x1 has the same sign as v; — vs.
Noting that the expression of v is equivalent to the following equation
(duad + ufd)v? + (dud + aduc + afu + qsf)vy + adu — ks = 0. (2.7)

From (2.7), it is clear to show that

sB(k — qu1)

u[d(1 + awvy) + Bui](a + dvq) =L

Therefore, we have

Bs k—qua Bs k— qup
u[d(1 4 avg) + fua] a+ dve  u[d(l + avy) + Bui] a + dvy

B 5s{k(ada + aB + db) + adq + (dad + B6)[kvy + (k — qvl)vg]}(vl — vy)
u(a + 0vy)(a + dva)[d(1 4 avy) + Pu1][d(1 4+ avs) + Pog]

So, Ry — 1 has the same sign as v; — vs.
Again from the third equation of system (1.2), we derive that

Ri—1=

uvy Uy ku(vy — vg)

—qui k—qus (k—qui)(k—qus)’

Y1 —Y2= i
Therefore, the expressions v; — vy has the same sign as y; — y2. This completes
the proof. 0

Theorem 2.2. If R < 1 < Ry, the CTL-inactivated infection equilibrium E, of
system (1.2) is locally asymptotically stable.

Proof. The characteristic equation of system (1.2) at F; is as follows:
(A+b—cy1e ) (N + AN + BA+C) =0, (2.8)
where
A:qyl—i—u—&-a—i—évl—i—% >0,

aduv? auavy
1+ avy 1+ avy

B =(=+0v)(qys +u) + (a+0v1) -+ agys + >0,
1 1

C :i(a + 6v1)(qyr +u) + Suvy— > 0.
X1 T

We firstly consider the following equation:

N+ AN 4+ B A+ C =0. (2.9)
Since
S S S
AB = C =—(qy1 +u+ —)(qy1 +u) + (qy1 +u + a + dvy + —)dvigy
T T1 I

s . auau
+ (qy1 +u + a+ dvy)duvy + (qy1 +u + a+ dvy + —) !
1 14+ avy

s aduv?

s
+ (g1 +u+a+6v1+;)[aqy1+(a+6v1) ]>0.
1

T 1+ av;
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Therefore, by Routh-Hurwitz criterion, all roots of equation (2.9) have negative
real parts. Now, we discuss the distribution of the roots of the following equation

A+b—cye ™ =0. (2.10)

Denote
FA)=A+b—cyie ™ =0.

If iw(w > 0) is a root of Eq. (2.10), separating real and imaginary parts, it
follows that
b = cyjcoswr,

(2.11)
—w = cy; Sinwr.
Squaring and adding the two equations of (2.11), we obtain that
w? = (b4 cy1)(b— cyr). (2.12)

Therefore, w? has the same sign as b — cy;. Again from Lemma 2.1, we have
w? has the same sign as Ry — 1. When R; < 1, we derive that Eq. (2.12) has
no positive roots. Noting that F; is globally asymptotically stable when 7 = 0,
by general theory on characteristic equations of delay differential equations from
Kuang [6, Theorem 3.4.1], we see that F; is always locally asymptotically stable.
This completes the proof. O

3. Hopf bifurcation

In this section, we shall study the existence of the Hopf bifurcation at the activated
infection equilibrium Fs(z2, ya, va, 22).

The characteristic equation of system (1.2) at the CTL-activated infection equi-
librium FE» is of the form

M4 p3A® + pad? + p1d + o — (3N + @A+ @ d + qo)e T =0, (3.1)

where
s c

3 =qy2 +u+b+ — 4 (s — dxa) -,
o b

s c
D2 :[;2 — (dzg — S)E](qu +u+b) + b(qy2 + u)
S c Bxo
— x—z(de — 3)5 + (k' — q'UQ)[(SyQ — m],

O

S S C
p1 =b[— — (dxs — 8)7)(qy2 + u) + — (s — dw2) = (qy2 + u + b)
X9 o b

By s B(s — dxs)(k — qua)
+ (k — qu2)[dy2 — m]({g*‘bﬂ' 0+ av)? ;
_ s Bry  bs  bB(s — dwz)(k — qu2)
Do —;2(5 — dwz)c(qya +u) + (k — qu2)[6y2 — m]g + 1+ avy)? )

S C
— — (dxg — 5)5 + qya + u] — cpy222,
X2 b

S C CS
T :b[xj + (s — d$2)5](qy2 +u) + g(dxz —5)

qs :b7 q2 = b[
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+ b(k = qu2)[oy2 — (14;8221)2)2] - cprzQ(x% + qy2 +u),
qo0 :ziz(s —dxa)e(qye + u) + bk — qua)[dy2 — (1_5221}2)2 g%
= (qy2 + U)czxyzz%i2 + 2 zldfiif)z_ )
When 7 =0, (3.1) becomes
A+ (ps — g3)A® + (p2 — @2) A + (p1 — 1) A + po — qo = 0. (3:2)

Clearly,
S
Po — qo = (qy2 + u)CP!JzZz; >0,
2

s c
P3—q3 = qy2 +u+ — + (s — dwy); > 0.
Zo b

In view of Routh-Hurwitz criterion, all the roots of (3.2) have negative real parts
if the following conditions hold

(H1) (ps—a3)(p2 —q2) — (p1 —q1) >0,
(p3 — a3)(p2 — @2)(p1 — @1) — (p3 — 3)*(po — q0) > (p1 — @1)*.

Therefore, the CTL-inactivated infection equilibrium Fs is locally asymptotically
stable.

In the following, we investigate the existence of purely imaginary roots to (3.1)
following the framework of that in [16].

For 7 > 0, if iw(w > 0) is a root of (3.1), separating real and imaginary parts,
it follows that

(g0 — qaw?) coswT + (1w — qzw?) sinwr = w* — paw? + po,

(3.3)
(q2w? — qo) sinwT + (1w — qzw?) coswT = —paw? + prw.
Squaring and adding the two equations of (3.3), we obtain that
w® + G1w® + Gow? + G3w? + G4 =0, (3.4)
where ) ) ) )
G1=p5—q35 —2p2, Gz =p3+2po — 2p1p3 — G5 + 2¢1G3,
Gs = pi +2q0g2 — 2pop2 — 47, Ga = p§ — 45
Let 4 = w?. Then from (3.4), we have that
,Lt4 + G1/L3 + GQ/lz +Gsu+ Gy =0. (3.5)
Denote h(u) = p* + Gip® + Gop?® + Gap + Gy, then we get
B (1) = 4p® + 3G1p® + 2Gou + Gs. (3.6)

Assuming that pu < pe < pusz < pg are four positive real roots of (3.5), then we
derive that (3.4) has four positive real roots:

W1 = /M1, W2 = /H2, W3 = \/[t3, Wqg = /4.
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From (3.3), we have

(—qawd + q0)(wg — p2wd + po) + (—g3wi + qrwo ) (—pswi + prwo)
(—qow? + 90)? + (—q3w§ + qrwo)?

(3.7)

COSWT =

Assuming that
(HZ) G1 >0, G2>0, G4<0,

according to the Inference 2.1 in [20], we derive that (3.4) has a unique positive
root wp, then (3.1) has a pair of purely imaginary roots +iwg. Thus, from (3.7) we
have

- L recos [(—(Dw% + q0) (W — pawh +po) + (—g3wi + q1wo) (—paw +p1w0)]
Wo (—@2w§ + 90)* + (—gswi + q1wo)?
29m
4 Hn
wo

where 7 =0,1,2,....
Let A(7) = a(7) + iw(7T) be the root of (3.1) near 7 = 7, satisfying a(r;) =
0, w(7x) = wg. Then we have the following result.

Theorem 3.1. Suppose that jig = wd, h'(10) # 0, where h'(p) is defined by (3.6).

Then J
(@)
dr

and da(y)/dT and —h'(uo) have the same sign.

Proof. Let A = A(7), calculating the derivative of (3.1) with respective to 7, we
obtain

dA
(403 4 3p3A? + 2pa A + p1) = + [T(g3A> + @ A2 + @A + qo)
dr (3.8)

Ly dX -
—@%V+2@A+mﬂe*3;=—M%ﬁ+qﬁ2+mA+%k*.

Then we derive from (3.8) that

AN\ TN =3 = 2p303 — a2+ o
<dT) T =A2(M o p3 A3+ paA? + p1A + po)
203\ + A% — qo T
AN+ X2+ At q) N

Therefore, we have

P Wi (wi — pawi 4+ po)? + wi (p1 — pswi)?
—2q3wi (g1 — gswi) + (Bwi — a3)
W;%(*szﬁ +qo)? + w;‘i(lh - QBW;%)Q

{d(ReA(T))} T (=3wf + paw? + po) (Wi — paw? + po) + 2p3wi(p1 — p3)wd
dr

Let uj, = wi, from (3.4) and (3.5)

(17 — P2tk +10)* + pe(p1 — P3pe)® = (—2pf + @) + p (a1 — qspun)®,
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and
Py — dp = Ga = — (i + G, + Gopj, + Gapu).

Then, we get that

[d(qu T~ = 3G — 2Gau} — G
dr . pe(=qapk + 0)% + pi(ar — gap)?
B ()
(—qapi + q0)% + pr(qn — q3pe)?’
Therefore,
i [H0] g [ 403
dT T=Tk dT T=Tk
Y
— sign [ ’ /) !
(—qopi + q0)% + (a1 — g3per)
— sign [~A (ue)]
This completes the proof. O

Applying the Hopf bifurcation theorem for functional differential equation [6],
we can conclude the existence of a Hopf bifurcation at E5 as stated in the following
theorem.

Theorem 3.2. Suppose that (3.5) has at least one simple positive root and g is
the last such root. Then there is a Hopf bifurcation for system (1.2) as T passes
through T leading to a periodic solution that bifurcates from Eo, where

B (—q2tt0 + qo) (13 — patio + po) + po(—gspo + q1)(p1 — P3po)
Tj; =——— arccos 5 5
Ho (—q2pt0 + q0)? + pol(qr — qafio)
25T

o

4. Direction

In the above sections, we have obtained some conditions under which a family of
periodic solutions bifurcate from the positive equilibrium F5 at the critical value of
7. As pointed out in Hassard et al. [4], it is important to determine the direction,
stability and period of the periodic solutions bifurcating from the positive equilib-
rium F5. In this section, we will study the direction of these Hopf bifurcations and
stability of bifurcated periodic solutions arising through Hopf bifurcations. The ap-
proach we used here is based on the normal form approach and the center manifold
theory introduced by Hassard et al.

Let ui(t) = z(t) — xa, ua(t) = y(t) — y2, us(t) = v(t) — va, ug(t) = 2(t) — 22,
T = v + 7. Then system (1.2) is translated into

w(t) = Ly(ug) + f(v,uy), (4.1)

where u(t) = (u1(t), ua(t), us(t), us(t))” € R* and L, : C — R*, f : Rx C — R*
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are given by

—d— 7 0 ~atay 0| | u(0)
Ly(6) =(7 +v) Tram;  —(a+0v2) —pz ik — Oy —pya | | 92(0)
0 k — quo —qy2 —u 0 $3(0)
0 0 0 —b $4(0)
0000 | |¢i(—-1)
e A (12)
0000 | |¢s(-1)
0czo 0cya | | pa(—1)
and
_ T A F 61(0)65(0) '
1)z
1 (1) 4 J0) _ _
f(U7¢>) _ (TkJrv) i+%:22 i!j!sz ¢1(0)¢3(0) 5¢2(0)¢3(0) p¢2(0)¢4(0) ’ (4.3)
—q$2(0)$3(0)
I cpa(—1)pa(—1) |
where
F(Ul(t)7US(t)) _ B(ul(t> +(E2)(U3(t> ""UQ)7 Fzgl) — w , 273 Z 0.

1+ o(us(t) + v2) Quitdus? |
By the Riesz representation theorem, there exists a function 7(8,v) of bounded

variation for 6 € [—1, 0], such that

0
Lu@) = [ dn6.00060), oeC. (4.4)
—1
In fact, we can choose
Bv Bz
—d - 1+0421)2 0 — (H_ajz)Q 0
i B
Tre—  —(a+dv2) — pz — Suo —
n(0,v) =(1 +v) I+avs ( 2) = pz2 (1+avz)? Y2 —PY2 5(0)
0 k— qua —qy2 —u 0
0000
00060
= (1 +0) (0 +1), (45)
0000

0 cz9 0 cyo
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where § denotes the Dirac delta function. For ¢ € ([—1,0], R*), define

%?7 AS [7170%
Av)o = 0
[ lantsolets), o0,
and
o Oa RS [71v 0)7
fitw)e = { f(v,8), 6=0.
The system (4.1) is equivalent to
w(t) = A(v)ur + R(v)uy, (4.6)
where u;(0) = uy1g for 8 € [—1,0].
For ¢ € ! ([O, 1], (R4)*), define
dz/)(s), s €(0,1],

A =4 0P
/_1¢(—t)d77(t70), s = 07

and a bilinear inner product

0 4
(¥(s), 6(0)) = ¥ (0)$(0) — /71 5201/7(5 — 0)dn(0)p(£)de, (4.7)

where n(0) = 7(0,0). Then A(0) and A* are adjoint operators. By the discussion
in section 3, we know that *iwg7, are eigenvalues of A(0). Hence, they are also
eigenvalues of A*. We firstly need to compute the eigenvectors of A(0) and A*
corresponding to iwoT, and —iwgTy, respectively.

Suppose q(0) = (1,q1,q2,q3)Te™°™? is the eigenvectors of A(0) corresponding
to iwoTk, then A(0)g(0) = iwomrq(d). Then from the definition of A(0) and (4.2),
(4.4) and (4.5), we have

Bv Bz
_d_ 1+a21)2 0 _(1+O¢'32)2 0
Buz —(a+ 6vy) — prg —LT2 o — §y, —
T Ltavs ( 2) = P22 (1+avz)? b2 TP q(0)
0 k —qus —qy2 —u 0
0 0 0 -b
00O0@O0
00O00O )
+ Tk q(—1) = iwoTrq(0).
00O00O

0 cz2 0 cyo
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For g(—1) = g(0)e~™°T then we obtain

wo + +u s . 1+ av 2
(I1=—( o +qy2 )(-Hwo)( 2)

(k - qu) T2 Bxo ’
2
s . 1+ av
e (2 i) Q5
T2 Je
CzgeWOTk (iwop + qya +u) (s . (1+ omg)2
q3 = —- — — +iwg | ———.
iwo +b—be~ ok (k — qua) Ty Bxo

Similarly, we can obtain the eigenvector ¢*(S) = D(1,q1*, ¢2*, g3*)e™0™ of A*
corresponding to —iwg7x, where

. s\ 1+av
ot = (lwo + ) 2

T2 Bvy
. (—iwg+ a+ dvs + pzo) ( . s) 1+ avy
2" = —two+ — | ——,
(k — qua) Bug

T2
. . (czQe—ionk _ pyz) iwo + i 1+ vy
3 (—iwo + b — be~woTk) 0" 2 Buy

In order to assure (g*(5), ¢(#)) = 1, we need to determine the value of D. By
(4.7), we have

{47(5),4(0))

B sk —k % T
:D{(LQMQ27Q3)(1a917‘h»%) 7X}
0

ko ok ok WO T, T
(1,Q1,QQ,(]3)96 Okgdn(e)(l»QhQ%(IS) }

=D {1+ @1} + & + 3G + Th(cz2q5q1 + cy235q3)e™ "™},

:D{1+q1qi‘+q2q;+qsq§ —/

-1

where
0o 0 . .
X / D(1,q;,5,q3)e” 0™ D dn(0) (1, q1, g2, g3)" € T4dE.
—1J¢=0

Therefore, we can choose D as

1
T+ @@+ G+ Te(cza@iqn + cyadiqs)eivoms

Next we will compute the coordinate to describe the center manifold Cy at p = 0.
Let u; be the solution of (4.6) when = 0. Define

Z(t) = <q*7 ut> ) W(tv ‘9) = ut(a) - QRG{Z(t)q(G)}, (4.8)
on the center manifold Cy. We have
W(t,0) = W(z(t),z(t),0),

where
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z and Z are local coordinates for center manifold Cy in the direction of ¢* and §*.
For solution u; € Cy of (4.6), since = 0, we have

2(t) = iwotkz + 7°(0) f (0, W (2, Z,0) + 2Re{2¢(0)})
2 iworez + @ (0) fo(2, 2).
We rewrite this equation as
£(t) = iwotiz(t) + g(2, 2)(1),
where
52 72 2

9(2,2) = °(0) fo(2,2) = W(2(t), 2(t), 0) = G20 = + 91127 + Gor = + go1 = + ...

2 2 2
(4.10)
It follows from (4.8) and (4.9) that

us(0) = W(t,0) + 2Re{z(t)q(0)}
= W20(9)§ + Whi(0)2z + W02(9)§ + (1,41, 2, g3) T e 02 (4.11)
+(1,G1,Go, g3)Te om0z 4 .
Furthermore,

22 72 .
w1 (0) = 2+ 2+ Wao M (0) 5 + WiV (0)22 + WV (0) 5 + 0(‘(2, 2)3’),

P z2 :
UQt(O) =qz+qz+ WQ()(2) (0)? + W11(2) (0)22 + Wog(z) (0)? + 0(‘(2, 5)3

);
);
),

22 z2
U3t(0) = @2z + @2z + W20(3) (0)? + WH(S) (0)22 + Wog(s) (O)E + 0(‘(2, 2)3

22 z2
u4t(0) = g3z + @32 + W20(4)(0)5 + Wi W (0)22 + W) (0)? + 0(‘(27 z)°

2
. . z
Uzt(_l) =q e "WTFz + qre” WO Z 4 WQO(Q)(—l)E + W11(2)(—1)22

+ Woo (1) + (| (2,2’

)s
. . 2;2
’U,4t(—1) :qge_“*"”kz + 636_1w07k2 + W20(4)(—1)§ + W11(4)(—1)22
(4) z 3
+ Woe (—1)? + 0(‘(275) ‘)
It follows together with (4.3) that
9(2,2) = q°(0) fo(z,2) = ¢°(0) fo (0, ur)

1) 4 j
=, Jul, (0)ug, (0)
=D, G, 3. @) i+%:>2 %szi(jl)uit(O)ugt(O) — Su2¢(0)uzt(0) — puge(0)use (0)
—quzt(0)us(0)

CUQt(—l)U4t(—1>
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= . 1 1 _a 1 a
= —7.D(1 — (11){F1(1)U1t(0)u3t(0) + §F2(0)u%t(0) + §F(§2)U§t(0)

1 _ 22
+ 5 Ft it (0)uz(0) 4 ..} = meD@id (mz + @z + W (0) 5 + Wi (0)22
z? 22
+ W@ (0)5 +o(|(z, 5)3‘)) X (g2z + 27 + Wao® (0)5 + Wi ®(0)27

52

3 Z §
+ WOQ( )(0)5 + 0(

_ z
(Z, 5)3‘)) — TkD(ﬁp X (qlz +q1z + W20(2) (O)?

7))

- TkD(j;q(qlz +q1zZ + W20(2) (O)? + W11(2) (0)22 + Wog(z) (0)? + O(‘(Z7 2)3’))

52
+ W11(2) (O)ZZ + W02(2) (0)% + O(

(:2)°))
52

2
z
X ( 3Z+Q3Z+Wzo(4)( ) +W11 ( )25+W02(4)(0)* JrO(

2

22 z2
X (qQZ + G2z + W20(3) (0)5 + WH(S) (0)22 + WOQ(S) (0)? + O(‘(Z, 5)3‘))

. . 2
+ Tchj;c(qle*MOT’“z + (jle*’“’”’“z + Wzo(z)(—l)% + W11(2)(—1)ZZ
@1)Z 3 —i —i @2
+ Woa (—1)? + 0(‘(2, 2) ‘)) X (Q36 WOTk o 4 Gae ™10k Z 4 Wy (_1)?

T W@ (—1)2z + W02<4>(—1)§ + 0(‘(,2, 5)3’)). (4.12)

Comparing the coefficients with (4.10), we have

a - 1 1 1 j— j—
920 = — TkD((l - ‘J1)(2F1(1)‘12 + Fz(o) + F(z)QZ ) + 20599162 + 241 pq1q3
—Ziwo‘rk)7

+2q76q192 — 23 qrg3ce

; b (1= )IFY (g2 + @) + 2 + 2FD o] + T 6(q1G2 + Grg2)
11 — — Tk )

+@ip(01@s + 01a3) + BB + ©a2) — G5ee” O (1 g5 + Gigs)

2 % 1) e e
go2 = — TkD((l - Q1)(2F1(1)‘I2 + Fz(o) Féz qz) + 24590142 + 24, P31 3

ke — k— — —92;
+ 245 601G — 2q5q1gzce” 7OTr),
go1 =
G F{ (@2Wao ™M (0) + 2¢2W11 (D (0)) + LFLY (Wao ™) (0) + 211V (0))
— 4
+1FSD 2 W11 3)(0) + @2 Wao )(0))) + FSY (@2 + a2)
D +q76 (Q2W20(2)(0) +2¢2W11 @ (0) + @1 Wa0® (0) + 2¢1 W11 (0 )

o

(0)
+qip (§3W20(2)(0) +2¢3 W11 P (0) + G Wao @ (0) + 2¢1 W11 4 0))
+35q <§2W20(2)(0) + 21 W11 3 (0) + G Wao ) (0) + 2g2 W12 0))
— g5 ce w0k (53W20(2)(—1) +2¢3W11 P (—1) + @ Wao W (—1) + 241W11(4)(_1)> J
(4.13)

Since wag(0) and wy1(0) are in go1, we still need to compute them.
From (4.6) and (4.8), we have

A(O)W —2Re {q_* (O)fOQ(G)} ) ZES [717 O)a
A(O)W — 2Re {q* (O)f()q(O)} + fo, 8 =0,

W =ty — g —2q =
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(4.14)

546
2 AW + H(z,%,0),
2 52
SN (4.15)

Here,
}I(ZJ7 5, 9) = Hgo(a)% + H11(9)z2 + HOZ(G)? +.
Substituting the corresponding series into (4.14) and comparing the coefficients,

we have
(4.16)

(A(O) - 27:CUOT]§I)W20(0) = —Hzo(e), A(O)WH(H) = —Hn(&).

From (4.14), we know that for § € [—1,0),
9(z,2)q(0).  (4.17)

H(z,z,0) = —q"(0) foq(0) — ¢*(0) foq(8) = —g(z, 2)q(8) —

Comparing the coefficients with (4.15) gives that
Hao(0) = —g20q(0) — go24(0), (4.18)
and
Hy1(0) = —g119(0) — 11G(0). (4.19)
From the definition of A and (4.16) and (4.18), we obtain
Wao(0) = 2iwors, Wao(0) + g209(8) + Go2d(0).

For ¢(0) = (1, q1, Q2,Q3)T€i“’07"’9, we have
(4.20)

W20(0) _ 1920 q(O) iwg‘rke_'_ tgo2 —(0)€—iwgrk6 _1_121622@'07';@«9‘7
wWoTk 3onk

where Ey = (E§1), E%Q), E%B), EYL))T is a constant vector.

Similarly, from (4.16) and (4.19), we know
_ ig11 iwo Tk O g1 _ —iwo Tk 0
Wia(0) = — L g(o)eomd o+ DL gpend 1 gy aan)

where EQ(E§1)7 Eéz), Eég), E§4))Tis a constant vector.
In what follows, we shall seek the values of Fy and F». From the definition of
A(0) and (4.16), we have
0
/ dn(0)Wao(0) = 2iwqrpWag(0) — H11(0)

-1

(4.22)

and
0
/ dn(0)W1(6) = —Hys (0), (4.23)

-1
where n(0) = n(0,0). By (4.14), when 6 = 0, we know
—20 5 — Fly -
2F() @ + Fig) + Fip' @3 — 2p6ids — 20014
—29q1G2

1) _
Fo(z)qg

Ha0(0) = —920q(0) — g02q(0) +

— 21w Tk

2q1qsce
(4.24)
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and
~F{P (@2 + @) — 2FYy) — 2P 422
o N
H11(0) = —g119(0) — 9114(0) + o ., (4.25)
(132 + Q1q2)
ce 20Tk (q1q3 + q1qs3).
where

N =F (g + @) + 2F + 2FY o — 8(1@ + 12) — p(1@s + G1g3)-

Since iwTy, is the eigenvalue of A(0) and ¢(0) is the corresponding eigenvector, we
obtain

(z’woml — / ' eiWOTk“’dn(a)) q(0) =0

-1

and

(—ionkl — / ' e“"”"%n(@)) 3(0) = 0.

-1

Then, substituting (4.20) and (4.24) into (4.22), we obtain

2P g — By — Fyy @3

0 . 2F(1)* +F(1)_~_F(1)72_2 i _26,,
(inorkl —/ 62“"”’“9dn(9))E1 — 11 92 20 02 92 Pq14G3 q142
- —2qq1 Q2
2(71(}306—21’0107%
Define

T= 2F1(i)€72 + Fz%) + Fézl)(ﬁ — 2pq1q3 — 2641 G2.

We have
(o Bv Bz
Ziwo +d+ 1250 0 Traws)? 0
“rheny  2iwo+(at 0vs) +pz — ety H 0y Py 5
0 —k + qua 2iwo +qy2+u 0
0 0 0 2iwg + b

—2F g — By — F @3
T

—2qq1 G2

2G1Gzce” 20Tt
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It follows that

1)

Bxo

1 1
—2F{V g — FYy — F3 @3 0 W 0
Egl) _ L T 2iwo + (a + dv2) + pz2 —m +doy2  py2 7
M, —29q132 —k + qu2 2iwo + qy2 +u 0
241 gzce 20Tk 0 0 2iwo + b
. v 1 1) - x
2iwg + d + 15(121)2 —2F1<1)q2 FQ(O) — F(52>q§ (1_50‘752)2 0
Bv Bz
Ef) _ 1 “Tran T ~Thanz TOU2 Py2
)
M, 0 —29q1q2 2iwo + qy2 +u 0
0 2q1Gzce2iwoTk 0 2wy + b
2iwo + d + 722 0 —2P @ - Fyy) - Fi,)a3 0
E(3) _ i - 15221]2 2iwo + (a + dv2) + pzo T PY2
1 My 0 —k + quo —29q1q2 0 ’
0 0 2q1 (7306_2iw07—k 2iwg + b
EY
. v x 1) - 1 1) -
2iwo + d + 1-€a2vg 0 (141732)2 _2F1<1>Q2_F2<0) —F52>q§
_ L - 15322“2 2iwg + (a + 6v2) + pz2 77<1f§32)2 + dy2 T
M, 0 —k+ qua 2iwo + qy2 +u 200132
0 0 0 241 Gzce 20Tk
where
. Bvz Bxo
2iwg + d + TToss 0 (1+av2)2 0
_ _Bus ; _
My = THoss 2iwg + (a + dvs) + pzo (1+M Trow? T Oy pY2
0 —k 4+ qua 2iwg + qy2 +u 0
0 0 0 2iwg + b
Similarly, substiting (4.21) and (4.25) into (4.23), we get
[ g _Bu Bz
d 14+av2 0 (1+av2)2 0
Bv Bz
Travs —(a+6vs) = pz (1+a52)2 — 0Y2 —pY2 B,
0 k — quo —qy2 —u 0
0 0 0 —b
_ 1 1)
_2F( ) go — F( ) Fé2)q%
T
—2qq1G2

24, gz ce 20T
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Therefore, we obtain

—2F{Y 6 — Fyy) — Fip'a3 0 ~rasy O
B - ML T —(a+8v2) —pzr ety — Sy2 —py:
2 —29q1G2 k — qua —qy2 —u 0
24, Gzce” 21wk 0 0 —b
—d- s 2P @ - By — R gl 0
E® = ML Tress T sy — 6y —pyo |
2 0 —2q9q1q2 —qy2 —u 0
0 241 gz ce 20Tk 0 —b
—d— 15 0 —2F@ — Fy) = Fi'@3 0
Eé?’) _ ML 1522@2 —(a+6v2) — pzo T —pys |
? 0 k —qua 24013 0
0 0 241 Gzce 2o —b
—d— 22 0 gy 2P @ - Fy) - FY)3
EY = 1 (et ov) —pr gy — b T ’
M 0 k —quz —qy2 —u —29q1G2
0 0 0 241Gz ce 210k
where
—d - 1522;2 0 - (1f32)2 0
M, — rrey  —la+dv) —pz gL — Syp —pye .
0 k — quo —qYy2 — U 0
0 0 0 —b

Thus, we can determine W (6) and W11 () from (4.20) and (4.21). Furthermore,
we can compute ga1 by (4.13). Thus, we can compute the following values:

c1(0) = Yon <911920 —2|gui|* - |9032|2> + g%’
_ Refa(0))
= et (4.26)
B2 = 2Re(c1(0))
T, — _Im{C1(0)} + M2Im{/\/(77€)}’ k=0,1,2...,

WoTk

which determine the qualities of bifurcating periodic solution in the center manifold
at the critical values 7y, i.e., po determines the directions of the Hopf bifurcation:
if pg > O(u2 < 0), then the Hopf bifurcation is supercritical (subcritical) and the
bifurcating periodic solutions exist for 7 > 7% (7 < 7x); B2 determines the stability
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of the bifurcating periodic solutions: the bifurcating periodic solutions are stable
(unstable) if B2 < 0(B2 > 0); and T» determines the period of the bifurcating
periodic solutions: the period increase(decrease) if T > 0(< 0).

Theorem 4.1. The direction of the Hopf bifurcation of system (1.2) at the equi-
librium Ey when T = 1(k = 0,1,2,...) is supercritical(subcritical) and bifurcating
periodic solutions on the center manifold are stable(unstable) if Re(c1(0)) < 0(> 0);
particularly, when T = 0, the stability of bifurcating periodic solutions is the same
as that on the center manifold.

5. Global stability

In this section, we study the global stability of the infection-free equilibrium and
the CTL-inactivated infection equilibrium.

Theorem 5.1. The infection-free equilibrium of system (1.2) is globally asymptot-
ically stable if Ry < 1.

Proof. Define
glxy=2—1—Inz. (5.1)

Clearly, for z € (0, +00), g(z) is non-negative and has the global minimum at z = 1
and g(1) = 0.

Let (xz(t),y(t),v(t),z(t)) be any positive solution of system (1.2) with initial
conditions (1.3).

Define the following Lyapunov functional:

a

kv+§z+p/wy(e)z(a)de. (5.2)

Vo(t):(fﬁflfofl‘olnmi)‘f’y‘i’
0

Calculating the derivative of V(¢) along positive solutions of system (1.2), it follows

that
Vio(t) = (1 - @) s —dx — pav + bzv
T 1+av 1+av (5.3)
a
—ay — vy + .- (ky — quy — wv) — pysz.

k
On substituting s = dxg into (5.3), we derive that

0 = (1 22) (1) (54 ) 2 (£ )

To aul+ av

0 (12 (1) () 2 ()

(5.4)
Noting that Ry < 1, by (5.4) we have that Vj(¢t) < 0. Clearly, it follows from
(5.4) that Vy(¢t) = 0 if and only if z(¢t) = x¢. From Theorem 2.1 Ej is locally
asympticlally stable. Accordingly, the global asymptotic stability of Ey follows
LaSalle’s invariance principle. This completes the proof. O

Theorem 5.2. The CTL-inactivated infection equilibrium FEy(x1,y1,v1,0) of sys-
tem (1.2) is globally asymptotically stable if Ry <1 < Ry.
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Proof. Let (z(t),y(t),v(t), z(t)) be any positive solution of system (1.2) with ini-
tial conditions (1.3). Define the following Lyapunov functional:

t
T
() =@ o1~ ol )+ ==l )4 [ y(@)0)as
t—1

1 < ﬂl’l’Ul

uvy \ 1+ avy

(5.5)

v
+ 5v1y1> (v—vy —vyln—)+ P,
U1 C

The time derivative of V7 (t) along positive solutions of system (1.2) is given by

by (1Y (g BTV
Vl(t)—(l )( dx 1+Cw) PY22 + pyz
Y1 Bxv
+(1—y)<1+av—ay—5vy—pyz> (5.6)
1 Brivy vy
— 5 (1 - 7) ky — quy — uv) .
o <1+av1 + Ulyl) o) (ky = quy — uv)
On substituting

Briv; Brivy 1 uvy b
s =dx1 + , = — — v, k=—+quy, = -,
! 1+ avy 14+ avy ! Y1 @, Y2 c

into (5.6) we derive that

by (41 _ Privi  Pav n B
Vv 1(t) = (1 - ) (dxl dx + 1+ v, 1+ Ow) + (1 y ) ((5’Uly (5’Uy>

Y1 Bxv Bxriv Y
1- 2% _ A _
+( y)<1—|—av 1+o¢v1y1>+pz(y1 v2)

1 T1v v uv
(5 L +5vly1) (11>( 1yuv+qvlyqu>.

uT}l 1+ avy v U1

It is equivalent to the following equation:

x—$1)2 B Bxivy a(v—v1)2
x 1+ av; (1+ avr)(1+ av)vy
Bxiv1 ( B zv(l+av))yr  yv1 1 1+ av )

1+ av; x1v1(1+av)y_y17_?_l+av1

qy(v —v1)? [ Briv vy W
— < + 5U1y1> + 5U1y (2 _— = > .

UV, 1+ avy v v

V’l(t):—d( +pz(y1 — y2)

(5.7)

Noting that z1,y1,v1 > 0, R; <1 < Ry, by Lemma 2.1 we have that V{(¢) <0.
Clearly, it follows from (5.7) that V{(¢t) = 0 if and only if z(¢) = x1, y(t) = y1, v(t) =
v1. Moreover, from Theorem 2.2 E; is locally asympticlally stable. Accordingly,
the global asymptotic stability of F; follows LaSalle’s invariance principle. This
completes the proof. O

6. Example

In this section, we give an example to illustrate the existence of Hopf bifurcation.
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Example 6.1. In system (1.2), we choose a set of parameters as follows: d =
05,s =2,=2,a=02a=02,0=02,p=02k=01,¢g=02u=02c¢c=
0.1,b = 0.2. Then R; = 2.0833 > 1, system (1.2) has an activated infection e-
quilibrium E»(1.7778,2,0.333,1.444). By calculating, we derive that system (1.2)
undergoes a Hopf bifurcation at 7, when 7 = 7, &~ 12. Further, we can calcu-
late the parameters which determine the stability and direction. It follows that
¢1(0) &= —0.4356+0.02741, uo = 258.58 > 0, B2 = —0.5648 < 0 and To = 0.9653 > 0.
Since po > 0 and 2 < 0, the Hopf bifurcation is supercritical and the direction of
the bifurcation is 7 > 73. Figure 1(A)-(D) denote the projection of the solutions in
(z,y,v) — space, (x,y,2z) — space, (x,v,z) — space, (y,v, z) — space, respectively.

2()
- 8 8

2(0)

=

o S

oo & 3
o
®

0
v

Figure 1. when R; > 1, the figures (A)-(D) show the trajectories graphs of system (1.2) with = > 12
in (z,y,v) — space, (z,vy, z) — space, (x,v, z) — space, (y,v,z) — space, respectively.
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