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ON THE REFLECTING FUNCTION AND THE
QUALITATIVE BEHAVIOR OF SOLUTIONS OF
SOME NON-AUTONOMOUS DIFFERENTIAL

EQUATIONS∗
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Abstract In this article, we use the Mironenko’s method to discuss the qual-
itative behavior of some non-autonomous differential equations. We study the
structure of the reflecting functions of the simplest differential equations, and
obtain some sufficient conditions under which these equations have the ratio-
nal reflecting functions. We apply the obtained results to discuss the numbers
of periodic solutions of the non-autonomous differential systems and derive
some sufficient conditions for a critical point of theirs to be a center.
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1. Introduction

By [1] we know, for the polynomial differential system,
ẋ =

n+1∑
i+j=1

aijx
iyj ,

ẏ =

n+1∑
i+j=1

bijx
iyj ,

(1.1)

where aij and bij are real constants, there has been a longstanding problem, called
the Poincaré center-focus problem, for the system (1.1) find explicit conditions of
aij and bij under which (1.1) has a center at the origin (0, 0), i.e., all the orbits
nearby are closed. The problem is equivalent to an analogue for a corresponding
periodic equation

dr

dθ
=

∑n
i=0 qi(θ)r

i∑n
i=0 pi(θ)r

i
r =

Q(θ, r)

P (θ, r)
r = R(θ, r). (1.2)

To see this let us note that the phase curves of (1.1) near the origin (0, 0) in polar
coordinates x = r cos θ , y = r sin θ are determined by (1.2), where pi(θ) and qi(θ)
(i = 0, 1, 2, . . . , n) are polynomials in cos θ and sin θ.
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In some sense, the equation (1.2) can be transformed to a scalar ordinary differ-
ential equation of the form [1,3, 10]

ρ′ = r1(θ)ρ+ r2(θ)ρ2 + . . .+ rN (θ)ρN , (1.3)

where the ri(θ) are polynomials in cos θ and sin θ. When N = 3 it has been exploited
in a number of previous papers [1, 3, 10]. Since the limit cycles of (1.1) correspond
to 2π-periodic solutions of (1.2) (or (1.3)). The planar vector field (1.1) has a center
at (0,0) if and only if equation (1.2) (or (1.3)) has a center at r = 0 (orρ = 0), i.e.,
all the solutions nearby r = 0 (ρ = 0) are closed: r(0) = r(2π)(ρ(0) = ρ(2π)).

In this paper, we apply the theory of reflecting function to study directly the
qualitative behavior of the solutions of equation (1.2), and obtain the sufficient
conditions for r = 0 to be a center.

First of all, we study under which conditions the scalar differential equation (1.2)
is the simplest equation with reflecting function F (θ, r) and discuss the structure
of F (θ, r). Secondly, we find out the sufficient conditions under which these equa-
tions have the rational reflecting functions. Finally, we apply the obtained results
to research the numbers of the periodic solutions of (1.2) and obtain the center
conditions.

In the present section, we introduce the concept of the reflecting function, which
will be used throughout the rest of this article.

Consider differential system

x′ = X(t, x), (t ∈ I ⊂ R, x ∈ D ⊂ Rn, 0 ∈ I), (1.4)

which has a continuously differentiable right-hand side and with a general solution
ϕ(t; t0, x0).

Definition 1.1 ( [6]). We call the function F (t, x) := ϕ(−t, t, x) Reflecting Func-
tion of (1.4).

By this, for any solution x(t) of (1.4), we have F (t, x(t)) = x(−t), F (0, x) = x.
If system (1.4) is 2ω-periodic with respect to t, and F (t, x) is its reflecting function,
then T (x) := F (−ω, x) = ϕ(ω;−ω, x) is the Poincaré mapping of (1.4) over the
period [−ω, ω]. Thus, the solution x = ϕ(t;−ω, x0) of (1.4) defined on [−ω, ω] is
2ω-periodic if and only if x0 is a fixed point of T (x) = F (−ω, x).

Lemma 1.1 ( [6]). A differentiable function F (t, x) is a reflecting function of sys-
tem (1.4) if and only if it is a solution of the Cauchy problem

Ft + FxX(t, x) +X(−t, F ) = 0, F (0, x) = x. (1.5)

Each continuously differentiable function F (t, x) that satisfies F (−t, F (t, x)) =
x, F (0, x) = x, is a reflecting function of the whole class of system of the form

x′ = −(Fx(t, x) + E)−1Ft(t, x) + Fx
−1Φ(t, x)− Φ(−t, F (t, x)), (1.6)

where Φ(t, x) is an arbitrary continuously differentiable vector function. Therefore,
all systems of the form (1.4) are split into equivalence classes of the form (1.6) where
each class is specified by a certain reflecting function. For all 2ω-periodic systems of
one class, the shift operator [2, 6] on interval [−ω, ω] coincides, and the qualitative
behavior of the periodic solutions of these systems are the same.
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Definition 1.2 ( [6]). The system

x′ = −(Fx(t, x) + E)−1Ft(t, x) (1.7)

is called the Simplest System with reflecting function F (t, x).

Thus, to study the behavior of the solutions of (1.6), only need to discuss the
property of the solutions of the simplest system (1.7).

Lemma 1.2 ( [6]). If the system (1.4) is the simplest system with reflecting function
F (t, x), then X(t, x) = X(−t, F (t, x)).

There are many papers which are also devoted to investigations of qualitative
behavior of solutions of differential systems by help of reflecting functions [4–9,11–
13].

In the following, we will denote pi = pi(θ), p̄i = pi(−θ), P = P (θ, r), P̄ =
P (−θ, F ), etc. The notation “δ 6= 0” means that in some deleted neighborhood of
(0, 0) and θ2 + r2 being small enough δ is different from zero. We always assume
that all equations in this paper have a continuously differentiable right-hand side
and have a unique solution for their initial value problem.

2. Main Results

Let us consider differential equation (1.2), in which P and Q are coprime polyno-
mials of degree n ( n is a positive integer number) with respect to r.

Firstly, we will discuss the structure of the reflecting function F when the equa-
tion (1.2) is the simplest equation.

If system (1.2) is the simplest with reflecting function F , by Lemma 1.2 we have
R(θ, r) = R(−θ, F ), i.e.,

A0 +A1F +A2F
2 + . . .+An+1F

n+1 = 0, (2.1)

where

A0 = −rp̄0Q, An+1 = q̄nP,

Ak = P q̄k−1 − rp̄kQ, k = 1, 2, . . . , n.

Lemma 2.1. If F = Rl
Sm

is a solution of (2.1), then l = m or l = m+ 1 (m ≤ n).
Where Rl, Sm are coprime polynomials with respect to r of degree l,m, respectively,
l and m are nonnegative integers.

Proof. As F = Rl
Sm

is the solution of (2.1),

Sm(A0S
n
m +A1S

n−1
m Rl + . . .+AnR

n
l ) = −An+1R

n+1
l . (2.2)

Since Rl, Sm are coprime polynomials, so from (2.2) implies that An+1 is divisible
by Sm and m ≤ n. According to (P,Q) = 1 and equating the same powers of r of
equation (2.2) follows l = m or l = m+ 1.

Theorem 2.1. If equation (1.2) is the simplest equation with reflecting function

F , then F = Rm
Sm

, or F = Rm+1

Sm
(m ≤ n), where Sk, Rk are polynomials of degree k

with respect to r.



526 Z. Zhou

Proof. Without loss of generality, we may assume that qn 6= 0. Otherwise, simi-
larly, we can get the same conclusion.

The relation (2.1) can be rewritten as

λ0 + λ1F + . . .+ λnF
n + Fn+1 = 0, (2.3)

where λk = Ak
An+1

, λn+1 = 1, k = 0, 1, 2, . . . , n.

Differentiating relation (2.3) with respect to θ and taking into account that
F (θ, r(θ)) = r(−θ), we get

B0 +B1F + . . .+BnF
n = 0, (2.4)

where Bk = Dλk − (k + 1)λk+1R, k = 0, 1, 2, . . . , n, Dλk = ∂λk
∂θ + ∂λk

∂r R.
Case 1. If

∑n
k=0B

2
k ≡ 0, i.e.,

Dλk = (k + 1)λk+1R, k = 0, 1, 2, . . . , n. (2.5)

Denoting

f(θ, F ) = λ0 + λ1F + . . .+ Fn+1 = u0 + u1G+ . . .+ un+1G
n+1,

where uk = 1
k!
∂kf(θ,F )
∂Fk

|F=r0(k = 0, 1, 2, . . . , n+ 1), r0 = − λn
n+1 , G = F − r0.

Using relation (2.5), we can check that Duk = ∂uk
∂θ + ∂uk

∂r R = 0, thus, for any
solution r(θ) of (1.2), we have uk(θ, r(θ)) = uk(−θ, r(−θ)) = uk(−θ, F ).

Consequently, the relation (2.3) is equivalent to

u0 + u1G+ . . .+ unG
n +Gn+1 = 0.

Replacing θ by −θ and using uk = ūk, it yields

u0 + u1Ḡ+ . . .+ unḠ
n + Ḡn+1 = 0.

These equations indicate that G = Ḡ, i.e., F−r0 = r−r̄0, and that F = r+r0−r̄0 =
r− λn

n+1 + λ̄n
n+1 = r+ 1

n+1 ( qn−1

qn
− q̄n−1

q̄n
) + 1

n+1 ( p̄nq̄n −
pn
qn

)R = Rn+1

Sn
. Thus, in this case

the conclusion of the present theorem is correct.
Case 2. If

∑n
k=0B

2
k 6= 0. Let’s assume that Bn 6= 0. The equation (2.4) can be

rewritten as
µ0 + µ1F + . . .+ µn−1F

n−1 + Fn = 0, (2.6)

where νk = Bk
Bn
, k = 0, 1, 2, . . . , n− 1.

Substituting (2.6) into (2.3), we get

C0 + C1F + . . .+ Cn−1F
n−1 = 0, (2.7)

where

C0 = λ0 − λnν0 + νn−1ν0,

Ck = λk − λnνk − νk−1 + νn−1νk, k = 1, 2, . . . , n− 1.

10. If
∑n−1
k=0 C

2
k = 0, i.e.,

λ0 = λnν0 + νn−1ν0, λk = λnνk + νk−1 − νkνn−1, k = 1, 2, . . . , n− 1.
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Applying these relations and simply computing we get

λ0+λ1(νn−1−λn)+λ2(νn−1−λn)2+. . .+λn(νn−1−λn)n+(νn−1−λn)n+1 = 0. (2.8)

Using relations (2.3) and (2.8), we have F = νn−1−λn = Bn−1

Bn
− An
An+1

. Substituting

it into (2.1), we confirm that the conclusion of the present theorem is true.

20. If
∑n−1
i=0 C

2
i 6= 0. Let’s assume Cn−1 6= 0, then (2.7) becomes

η0 + η1F + . . .+ ηn−2F
n−2 + Fn−1 = 0, (2.9)

where ηk = Ck
Ck−1

, k = 0, 1, 2, . . . , n− 2.

Substituting (2.9) into (2.6), we obtain

D0 +D1F + . . .+Dn−2F
n−2 = 0, (2.10)

where
Dk = νk − ηkνn−1 − ηn−1 + ηn−2ηk, k = 0, 1, 2, . . . , n− 2.

Similarly, we see that if
∑n−2
k=0 D

2
k = 0, then F = ηn−2 − νn−1, by Lemma 2.1,

the present theorem is true. If
∑n−2
k=0 D

2
k 6= 0, then E0 + E1F = 0 and F = Rl

Sm
,

according to Lemma 2.1, the present theorem is correct.
Therefore, the proof is finished.

Corollary 2.1. If equation (1.2) is the simplest equation with reflecting function F
and pi(θ+2π) = pi(θ), qi(θ+2π) = qi(θ), i = 0, 1, 2, . . . , n, then one of the following
conclusions is correct.

1) The equation (1.2) has at most n+ 1 periodic solutions.

2) All the solutions of (1.2) defined on [−ω, ω] are 2ω periodic, i.e., r = 0 is a
center of (1.2).

3) The equation (1.2) does not have any periodic solution.

Proof. By Theorem 2.1, we know the reflecting function of (1.2) is in the form of

F = Rm
Sm

or F = Rm+1

Sm
(m ≤ n). Then the Poincaré mapping of periodic equation

(1.2) is T (r) = F (−π, r). The number of 2π-periodic solutions of (1.2) is equal to
the number of roots of the fixed point equation F (−π, r) = r. From this follows the
present conclusions.

Remark 2.1. By [13] we know that if F = β0+β1x+β2x
2

α0+α1x+α2x2 is the reflecting function

of one differential equation, then F = β0+β1x
α0+α1x

or F = β0 + β1x. Thus, we can
guess that if F is a polynomial or rational fraction function, then F = f0 + f1x or
F = β0+β1x

α0+α1x
. This conjecture need us to prove.

On the other hand, if F = f0 + f1x or F = β0+β1x
α0+α1x

is the reflecting function of
(1.2), by Lemma 1.1 and the uniqueness of the solutions of the initial value problem
of differential equation (1.5) implies f0 ≡ 0, β0 ≡ 0. So, in the following, we only
discuss when the equation (1.2) has the reflecting function in the form of F = f1r
and F = βr

1+αr .

Theorem 2.2. Suppose that p0 6= 0,

(q0p̄0 + p0q̄0)
∑
i+j=k

pip̄jf
j
1 = p0p̄0

∑
i+j=k

qiq̄jf
j
1 ,
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k = 0, 1, 2, . . . , 2n, when i > n, pi = qi = 0,

where
f1 = e−

∫ θ
0

(
q0
p0

+
q̄0
p̄0

)dθ.

Then F = f1r is the reflecting function of (1.2).
Moreover, if pi(θ + 2π) = pi(θ), qi(θ + 2π) = qi(θ) (i = 0, 1, 2, . . . , n), then one

of the following conclusions is correct.

1) If
∫ π
−π

q0
p0
dθ 6= 0, the equation (1.2) has only one 2π-periodic solution which is

asymptotically stable when
∫ π
−π

q0
p0
dθ < 0, unstable when

∫ π
−π

q0
p0
dθ > 0.

2) If
∫ π
−π

q0
p0
dθ = 0, then all the solutions of (1.2) defined on [−π, π] are 2π-

periodic, i.e., r = 0 is a center of (1.2).

Proof. By the present conditions, it is not difficult to check that F = f1r is a
solution of the Cauchy problem:

f ′1 + f1
Q

P
+
Q(−θ, f1r)

P (−θ, f1r)
f1 = 0, f1(0) = 1.

Thus, F = f1r is the reflecting function of (1.2).
If the equation (1.2) is 2π-periodic, then the Poincaré mapping of (1.2) is T (r) =

F (−π, r) = f1(−π)r = re
∫ π
−π

q0(θ)

p0(θ)
dθ
. By this and [6] yields the present conclusions.

Now we discuss when the equation (1.2) has the reflecting function F = βr
1+αr .

Theorem 2.3. Suppose that p0 6= 0 and∑
i+j=k

((
q0

p0
+
q̄0

p̄0
)pip̌j − (qip̌j + piq̌j))

=
∑

i+j=k−1

(αpiq̌i − (α
q̄0

p̄0
+ βδ̄ + δ)pip̌j), (2.11)

k = 2, 3, . . . , 2n+ 1, when i > n, pi = 0, qi = 0, p̌i = 0, q̌i = 0,

where

p̌k =

k∑
i=0

p̄iC
k−i
n−iα

k−iβi, k = 0, 1, 2, . . . , n,

q̌k =

k∑
i=0

q̄iC
k−i
n−iα

k−iβi, k = 0, 1, 2, . . . , n,

β = eσ−σ̄, σ = −
∫ θ

0

q0

p0
dθ, (2.12)

α = eσ
∫ θ

0

(δe−σ + δ̄e−σ̄)dθ, δ =
p0q1 − p1q0

p2
0

. (2.13)

Then F = βr
1+αr is the reflecting function of (1.2).

Moreover, if pi(θ + 2π) = pi(θ), qi(θ + 2π) = qi(θ) (i = 0, 1, 2, . . . , n), then one
of the following conclusions is correct.
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1) If α(−π) 6= 0 and β(−π) 6= 1, then equation (1.2) has two 2π-periodic solu-
tions.

2) If α(−π) = 0, β(−π) = 1, then all the solutions of (1.2) defined on [−π, π]
are 2π-periodic, i.e., r = 0 is a center of (1.2).

3) If α(−π) = 0, β(−π) 6= 1 or α(−π) 6= 0, β(−π) = 1, then equation (1.2) has
only one 2π-periodic solution, i.e., r = 0.

Proof. By Lemma 1.1, we see F = βr
1+αr is the reflecting function of (1.2) if and

only if

(β′ + r(β′α− α′β))

n∑
i=0

pir
i
n∑
i=0

p̄iβ
iri(1 + αr)n−i + β

n∑
i=0

qir
i
∑
i=0

p̄iβ
iri(1 + αr)n−i

+ β(1 + αr)

n∑
i=0

pir
i
∑
i=0

q̄iβ
iri(1 + αr)n−i = 0,

α(0) = 0, β(0) = 1.

Equating the coefficients of the same power of r implies

β′p0p̌0 + βq0q̌0 + βp0q̌0 = 0, β(0) = 1,

β′(p0p̌1 + p1p̌0) + αβ′p0p̌0 − α′βp0p̌0 + β(q0p̌1 + q1p̌0 + p0q̌1 + p1q̌0)

+ αβp0q̌0 = 0, α(0) = 0,

β′
∑
i+j=k

pip̌j + (αβ′ − α′β)
∑

i+j=k−1

pip̌j + β
∑
i+j=k

qip̌j + β
∑
i+j=k

piq̌j

+ αβ
∑

i+j=k−1

piq̌j = 0,

k = 2, 3, . . . , 2n+ 1, when i > n, pi = 0, qi = 0, p̌i = 0, q̌i = 0.

From the first equation of the above we can get

β′ = −(
q0

p0
+
q̄0

p̄0
)β, β(0) = 1,

which yields the relation (2.12).
Solving the second equation of the above we have

α′ = − q0

p0
α+

q1p0 − q0p1

p2
0

+
q̄1p̄0 − q̄0p̄1

p̄2
0

β = − q0

p0
α+ δ + δ̄β, α(0) = 0,

which implies the relation (2.13).
Substituting these relations into the third relation of the above we can obtain

(2.11). Therefore, under the assumption of the present theorem, F = βr
1+αr is the

reflecting function of (1.2).
If the equation (1.2) is 2π-periodic, then the Poincaré mapping of (1.2) is T (r) =

F (−π, r) = β(−π)r
1+α(−π)r . So, the fixed point equation is (β(−π) − 1 + α(−π)r)r = 0.

Using this equation and by [6] yields the present conclusions.

Remark 2.2. From the above theorems, we know that under certain conditions
the equation (1.2) has a center at r = 0, that is said, under the same conditions,
the planar vector field (1.1) has a center at (0,0).
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Example 2.1. Taking x = r cos θ, y = r sin θ, the cubic system ẋ = −2y + x2 − 2y2 − y3,

ẏ = 2x+ 3xy + xy2,
(2.14)

can be transformed to equation

r′ =
cos θ

1 + (1 + r sin θ)2
r2. (2.15)

As this equation is the simplest equation with reflecting function F = r
1+r sin θ and

F (−π, r) ≡ r, thus the critical point (0, 0) of (2.14) is a center point.
From the previous introduction and (1.6), we know the equation (2.15) is equiv-

alent to equation

r′ =
c

1 + (1 + rs)2
r2 + (1 + rs)2G(θ, r)−G(−θ, r

1 + rs
),

where G(θ, r) is an arbitrary continuously differentiable function, s := sin θ, c :=
cos θ.

In particular, taking G = r
(1+rs)(1+(1+rs)2) and G = r3

(1+rs)(1+(1+sr)2)2 we get

the following equations, respectively

r′ =
c− s(1 + rs)

1 + (1 + rs)2
r2, (2.16)

r′ =
2c+ 2rsc+ (cs2 − s)r2 − s2r3

(2 + 2rs+ r2s2)2
r2. (2.17)

Taking r =
√
x2 + y2, θ = arctan y

x , (2.16) and (2.17), respectively, reduces to
systems  ẋ = −2y + x2 − xy − 2y2 − xy2 − y3,

ẏ = 2x+ 3xy − y2 + xy2 − y3,

and ẋ = −4y + 2x2 − 8y2 − 8y3 + 2x2y + x2y2 − 4y4 − x3y − xy3 − x3y2 − xy4 − y5,

ẏ = 4x+ 10xy + 10xy2 + 5xy3 − x2y2 − x2y3 + xy4 − y4 − y5.

Thus, the origin (0, 0) of the above systems is a center.
As G(θ, r) is an arbitrary continuously differentiable function, similarly, we can

write infinitely many polynomial differential systems, their origin point (0,0) is a
center.

From this example, we see that using the method of Mironenko (reflecting func-
tion) we not only solve a center-focus problem, but also at the same time, we open
a class of differential equations with the same character of point r = 0. So, we
can say, sometimes, the method of Mironeneko is more effective than Lyapunov’s
method. Therefore, if we can find out the reflecting function of a differential system,
then the qualitative behavior of periodic solutions and the center-focus problem are
solved. Unfortunately, looking for reflecting function is also very difficult task, so
we need further study it.
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