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Abstract In this paper, we investigate a class of fourth-order singular non-
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1. Introduction

The family of the so-called Lazer-Solimini equations

x′′ +
1

xγ
= p(t), (1.1)

and

x′′ − 1

xγ
= p(t), (1.2)

where γ > 0 and p(t) is a periodic function with period ω. They are perhaps the
simplest examples combining singular nonlinearity and a periodic dependence of the
coefficients. In a renowned paper from 1987, Lazer and Solimini [14] investigated
the problem of existence of positive ω-periodic solutions for these model equations.

Lazer and Solimini’s work has attracted the attention of many scholars in differ-
ential equations. More recently, the method of lower and upper solutions [1,12,16],
the Poincaré-Birkhoff twist theorem [4, 11, 23], topological degree theory [2, 25] the
Schauder’s fixed point theorem [17, 20, 24], the Leray-Schauder alternative princi-
ple [5, 6], the Krasnoselskii fixed point theorem in a cone [8, 21], the fixed point
index theory [19] have been employed to investigate the existence of positive peri-
odic solutions of singular second order and third-order differential equations.
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At the beginning, most of work concentrated on second-order and third-order
singular differential equations, as in the references we mentioned above. Recently
there have been published some results on fourth-order differential equation (see
[3, 7, 9, 10, 15, 26]). In 2003, Conti, Terracini and Verzini [9] study the fourth-order
equation

u(4)(t)− cu′′(t) = f(t, u(t)), t ∈ [0, T ],

with periodic boundary conditions, where c ≥ −(π/T )2, f : R2 → R is continuous,
T -periodic in t and has a superlinear behavior at 0 and at infinity. Under these
assumptions, they shown that for each positive integer n ≥ 1 the problem admits
a T -periodic solution having precisely 2n simple zeroes in [0, T ]. The proof was in-
spired by Nehari’s argument of combining variational methods and nodal properties
of solutions. However, here a new and subtle min-max procedure is built, allow-
ing one to interpret nodal properties of solutions of the problem as a topological
property and to get these solutions by means of a variational principle with two
constraints. Afterwards, by constructing a special cone and using cone compres-
sion and expansion fixed point theorem, Cui and Zou [10] considered the existence
and uniqueness of solutions are established for the following singular fourth-order
boundary value problems:{

x(4)(t) = f(t, x(t),−x′′(t)), 0 < t < 1,

x(0) = x(1) = x′′(0) = x′′(1) = 0,

where f(t, x, y) may be singular at t = 0, 1; x = 0 and y = 0.
In the above papers, the authors investigated fourth-order equations. However,

the study on the fourth-order singular equation is relatively infrequent. Motivated
by [9, 10, 26], in this paper, we further consider a fourth-order singular differential
equation with a parameter as follows,

x(4)(t) + ax′′′(t) + bx′′(t) + cx′(t) + dx(t) = µg(t)f(x(t)) + µe(t), (1.3)

with µ > 0 is a positive parameter, and e(t) may takes positive value or negative
value. a, b, c, d ∈ R, g(t) and e(t) are ω-periodic continuous scalar functions in
t ∈ R. The nonlinear term f of (1.3) can be with a singularity at origin, i.e.,

lim
x→0+

f(x) = +∞, (or lim
x→0+

f(x) = −∞), uniformly in t.

It is said that (1.3) is of repulsive type (resp. attractive type) if f(x)→ +∞ (resp.
f(x)→ −∞) as x→ 0+.

As far as we know, studies on fourth-order nonlinear differential equations are
rather infrequent, especially those focused on the research of singular fourth-order
nonlinear differential equations with a parameter. The main difficulty lies in the
calculation of the Green’s function of the fourth-order differential equation, being
more complicated than in the second-order and third-order cases. Therefore, in
Section 2, the Green’s function for the fourth-order linear differential equation

x(4)(t) + ax′′′(t) + bx′′(t) + cx′(t) + dx(t) = h(t) (1.4)

will be given. Here h ∈ C(R, (0,+∞)) is an ω-periodic function. Some useful
properties for the Green’s function are obtained. In Section 3, we define a cone and
discuss several properties of the equivalent operator on the cone. In order to simplify
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the proof in section 3, we establish a series of lemmas and corollaries to estimate the
operator. All the corollaries are the corresponding results for e(t) taking negative
values. In Section 4, by employing Green’s function and the Krasnoselskii fixed point
theorem, we state and prove the existence of positive periodic solutions for singular
fourth-order differential equation with superlinearity or sublinearity assumptions at
infinity for an appropriately chosen parameter.

2. Green’s function of fourth-order differential e-
quation

Firstly, we consider{
x(4)(t) + ax′′′(t) + bx′′(t) + cx′(t) + dx(t) = h(t),

x(i)(0) = x(i)(ω), i = 0, 1, 2, 3,
(2.1)

where h ∈ C(R,R+) is an ω-periodic function. Obviously, the calculation of the
Green’s function of (2.1) is very complicated, so, by analysis of the fourth-order
differential equation (2.1), we consider the following six cases.

Case (I): There exist real constants α, β, γ and ρ > 0 such that a = α + ρ,
b = β + αρ, c = γ + βρ, d = γρ. Then, (2.1) is transformed into{

y′(t) + ρy(t) = h(t),

y(0) = y(ω),
(2.2)

and {
x′′′(t) + αx′′(t) + βx′(t) + γx(t) = h(t),

x(i)(0) = x(i)(ω), i = 0, 1, 2.
(2.3)

Solution of (2.2) is written as

y(t) =

∫ ω

0

G1(t, s)h(s)ds, (2.4)

where

G1(t, s) =

{
e−ρ(t−s)

1−e−ωρ , 0 ≤ s ≤ t ≤ ω,
e−ρ(ω+t−s)

1−e−ωρ , 0 ≤ t < s ≤ ω.

Solution of (2.3) is written as

x(t) =

∫ ω

0

G2i(t, s)y(s)ds, i = 1, 2, 3, 4. (2.5)

Next, we will consider G2i(t, s), which can be found in [17]. The associated
homogeneous equation of (2.3) is

x′′′ + αx′′ + βx′ + γx = 0. (2.6)

Its characteristic equation is

λ3 + αλ2 + βλ+ γ = 0. (2.7)

Obviously the roots λ1, λ2, λ3 of (2.7) satisfy one of the four cases:
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1. λ1 6= λ2 6= λ3, λ1, λ2, λ3 ∈ R.
2. λ1 = λ2 6= λ3, λ1, λ2, λ3 ∈ R.
3. λ1 = λ2 = λ3 = λ ∈ R.
4. λ1 = α+ iβ, λ2 = α− iβ, λ3 = λ, α, β, λ ∈ R.

If γ = 0, then at least one of the roots of (2.6) is 0. In this case we call equation
(2.3) degenerate. This case will be discussed elsewhere. In this paper, we always
assume γ 6= 0.

Lemma 2.1. If λ1 6= λ2 6= λ3, λ1, λ2, λ3 ∈ R, then the equation (2.3) has a
unique ω-periodic solution

x(t) =

∫ t+ω

t

G21(t, s)y(s)ds, (2.8)

where

G21(t, s) =
exp(λ1(t+ ω − s))

(λ1 − λ2)(λ1 − λ3)(1− exp(λ1ω))
+

exp(λ2(t+ ω − s))
(λ2 − λ3)(λ2 − λ1)(1− exp(λ2ω))

+
exp(λ3(t+ ω − s))

(λ3 − λ2)(λ3 − λ1)(1− exp(λ3ω))
for s ∈ [t, t+ ω].

(2.9)

Lemma 2.2. If λ1 = λ2 6= λ3, λ1, λ2, λ3 ∈ R, then the equation of (2.3) has a
unique ω-periodic solution

x(t) =

∫ t+ω

t

G22(t, s)y(s)ds, (2.10)

where

G22(t, s) =
exp(λ1(t+ ω − s))[(1− exp(λ1ω))((s− t)(λ3 − λ1)− 1)− (λ3 − λ1)ω]

(λ1 − λ3)2(1− exp(λ1ω))2

+
exp(λ3(t+ ω − s))

(λ1 − λ3)2(1− exp(λ3ω))
for s ∈ [t, t+ ω].

(2.11)

Lemma 2.3. If λ1 = λ2 = λ3 = λ ∈ R, then the equation of (2.3) has a unique
ω-periodic solution

x(t) =

∫ t+ω

t

G23(t, s)y(s) ds, (2.12)

where

G23(t, s) =
[(s− t) exp(λω) + ω − s+ t]2 + ω2 exp(λω)

2(1− exp(λω))3
exp(λ(t+ ω − s)) (2.13)

for s ∈ [t, t+ ω].

Now take the abbreviations

l1(t, s) = cosβ(t+ ω − s)− exp(αω) cosβ(t− s),

l2(t, s) = sinβ(t+ ω − s)− exp(αω) sinβ(t− s),
we have
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Lemma 2.4. If λ1 = α+ iβ, λ2 = α− iβ, λ3 = λ, α, β, λ ∈ R, then the equation
of (2.3) has a unique ω-periodic solution

x(t) =

∫ t+ω

t

G24(t, s)y(s)ds, (2.14)

where

G24(t, s) =
exp(α(t+ ω − s))[(α− λ)l2(t, s)− βl1(t, s)]

β[(α− λ)2 + β2](1 + exp(2αω)− 2 exp(αω) cosβω)

+
exp(λ(t+ ω − s))

(1− exp(λω))[(α− λ)2 + β2]
for s ∈ [t, t+ ω].

(2.15)

We give properties of Green’s function in the following:

Case (I*): λ1 6= λ2 6= λ3, λ1, λ2, λ3 ∈ R.

For sake of convenience, we use the following abbreviations

A1 = exp(λ1ω)
(λ1−λ2)(λ1−λ3)(1−exp(λ1ω))

+ 1
(λ2−λ3)(λ2−λ1)(1−exp(λ2ω))

+
exp(λ3ω)

(λ3 − λ2)(λ3 − λ1)(1− exp(λ3ω))
,

B1 = 1
(λ1−λ2)(λ1−λ3)(1−exp(λ1ω))

+ exp(λ2ω)
(λ2−λ3)(λ2−λ1)(1−exp(λ2ω))

+
1

(λ3 − λ2)(λ3 − λ1)(1− exp(λ3ω))
,

p2 =(λ1 + λ2 − 2λ3) exp(λ1ω) + (2λ1 − λ2 − λ3) exp(λ3ω)

+ (λ1 − λ3) exp((λ1 + λ2 + λ3)ω),

q2 =(λ1 − λ3) + (λ1 − λ2) exp((λ2 + λ3)ω) + (λ2 − λ3) exp((λ1 + λ2)ω)

+ 2(λ1 − λ3) exp((λ1 + λ3)ω).

Lemma 2.5. If p2 > q2 and one of the following conditions

(i) λ3 < λ2 < λ1 < 0; (ii) λ1 > λ2 > 0 and λ3 < 0,
is satisfied, then 0 < A1 ≤ G21(t, s) ≤ B1.

Case (I**): λ1 = λ2 6= λ3, λ1, λ2, λ3 ∈ R.

For convenience, define the abbreviations

A2 =
exp(λ1ω)− 1 + (λ1 − λ3)ω

(λ1 − λ3)2(1− exp(λ1ω))2
+

exp(λ3ω)

(λ1 − λ3)2(1− exp(λ3ω))
,

B2 =
(exp(2λ1ω)− exp(λ1ω)) + (λ1 − λ3)ω exp(2λ1ω)

(λ1 − λ3)2(1− exp(λ1ω))2

+
1

(λ1 − λ3)2(1− exp(λ3ω))
,

p3 = exp(λ1ω) + (λ1 − λ3)ω + (exp(λ1ω)− 3) exp((λ1 + λ3)ω)

+ (2 + (λ3 − λ1)ω) exp(λ3ω).

Lemma 2.6. If λ1 > 0, λ3 < 0, then 0 < A2 ≤ G22(t, s) ≤ B2.

Lemma 2.7. If λ1 < λ3 < 0 and p3 > 1, then 0 < A2 ≤ G22(t, s) ≤ B2.



460 Y. Xin, X. Han & Z. Cheng

Case (I***): λ1 = λ2 = λ3 = λ ∈ R.
For convenience, define

A5 =
ω2 exp(2λω)(1 + exp(λω))

2(1− exp(λω))3
and B5 =

ω2(1 + exp(λω))

2(1− exp(λω))3
.

Lemma 2.8. If λ < 0, then 0 < A5 ≤ G23(t, s) ≤ B5.

Case (I****): λ1 = α+ iβ, λ2 = α− iβ, λ3 = λ, α, β, λ ∈ R.
For the sake of convenience, define

A6 =
− exp(αω)

β
√

[(α− λ)2 + β2](1 + exp(2αω)− 2 cos(βω) exp(αω))

+
exp(λω)

[(α− λ)2 + β2](1− exp(λω))
,

B6 =
exp(αω)

β
√

[(α− λ)2 + β2](1 + exp(2αω)− 2 cos(βω) exp(αω))

+
1

[(α− λ)2 + β2](1− exp(λω))
,

A7 =
−1

β
√

[(α− λ)2 + β2](1 + exp(2αω)− 2 cos(βω) exp(αω))

+
exp(λω)

[(α− λ)2 + β2](1− exp(λω))
,

B7 =
1

β
√

[(α− λ)2 + β2](1 + exp(2αω)− 2 cos(βω) exp(αω))

+
1

[(α− λ)2 + β2](1− exp(λω))
.

Lemma 2.9. If α > 0, β > 0, λ < 0, and

1 + exp(2αω)− 2 exp(αω) cos(βω)

exp(2αω)
>

[(α− λ)2 + β2](1− exp(λω))2

β2 exp(2λω)
, (2.16)

then 0 < A6 ≤ G24(t, s) ≤ B6.

Lemma 2.10. If α < 0, λ < 0, β > 0 and

(1 + exp(2αω)− 2 cos(βω) exp(αω)) >
[(α− λ)2 + β2](1− exp(λω))2

β2 exp(2λω)
, (2.17)

then 0 < A7 ≤ G24(t, s) ≤ B7.

Therefore, we know that the solution of (2.1) is written as

x(t) =

∫ ω

0

G2i(t, τ)

∫ ω

0

G1(τ, s)h(s)dsdτ

=

∫ ω

0

∫ ω

0

G2i(t, τ)G1(τ, s)h(s)dsdτ

=

∫ ω

0

[∫ ω

0

G2i(t, s)G1(s, τ)ds

]
h(τ)dτ

=

∫ ω

0

[∫ ω

0

G2i(t, τ)G1(τ, s)dτ

]
h(s)ds, i = 1, 2, 3, 4.
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Therefore, by writing

G1i(t, s) =

∫ ω

0

G2i(t, τ)G1(τ, s)dτ, i = 1, 2, 3, 4, (2.18)

we can get

x(t) =

∫ ω

0

G1i(t, s)h(s)ds. (2.19)

Theorem 2.1. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), and
p2 > q2 hold. Then G11(t, s) > 0 for all (t, s) ∈ [0, ω]× [0, ω].

Proof. From Lemma 2.5, we know G21(t, s) > 0. Since G1(t, s) > 0, from (2.18)
we see that G11(t, s) > 0 for all (t, s) ∈ [0, ω]× [0, ω].

Theorem 2.2. Assume that λ1 > 0, λ3 < 0 (or λ1 < λ3 < 0, p3 > 1) hold. Then
G12(t, s) > 0 for all (t, s) ∈ [0, ω]× [0, ω].

Theorem 2.3. Assume that λ < 0 holds. Then G13(t, s) > 0 for all (t, s) ∈
[0, ω]× [0, ω].

Theorem 2.4. Assume that α > 0, β > 0, λ < 0, (2.16) (or α < 0, β > 0, λ <
0, (2.17)) hold. Then G14(t, s) > 0 for all (t, s) ∈ [0, ω]× [0, ω].

Case (II): There exist positive real constants m and ρ such that a = ρ, b = 0,
c = −m3, d = −ρm3. Then, (2.1) is transformed into{

y′(t) + ρy(t) = h(t),

y(0) = y(ω),
(2.20)

and {
x′′′(t)−m3x(t) = y(t),

x(i)(0) = x(i)(ω), i = 0, 1, 2.
(2.21)

Then, solution of (2.20) is written as

y(t) =

∫ ω

0

G1(t, s)h(s)ds. (2.22)

Solution of (2.21) is written as

x(t) =

∫ ω

0

G3(t, s)y(s)ds, (2.23)

where

G3(t, s) =



2 exp( 1
2m(s−t))

[
sin
(√

3
2 m(t−s)+π

6

)
−exp(− 1

2mω) sin
(√

3
2 m(t−s−ω)+π

6

)]
3m2

(
1+exp(−mω)−2 exp(−mω2 ) cos

(√
3

2 mω
))

+ exp(m(t−s))
3m2(exp(mω)−1) , 0 ≤ s ≤ t ≤ ω,

2 exp( 1
2m(s−t−ω))

[
sin
(√

3
2 m(t−s+ω)+π

6

)
−exp(− 1

2mω) sin
(√

3
2 m(t−s)+π

6

)]
3m2

(
1+exp(−mω)−2 exp(−mω2 ) cos

(√
3

2 mω
))

+ exp(m(t+ω−s))
3m2(exp(mω)−1) , 0 ≤ t < s ≤ ω.
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By the following lemma, which can be found in [18], we will consider the sign of
G3(t, s). Let

l =
1

3m2(exp(mω)− 1)
, L =

3 + 2 exp
(
−mω2

)
3m2

(
1− exp

(
−mω2

))2 .
Lemma 2.11. Assume that

√
3mω < 4

3π holds. Then 0 < l < G3(t, s) ≤ L for all
t ∈ [0, ω] and s ∈ [0, ω].

Similarly to (2.19), we know that the solution of (2.1) can be written as

x(t) =

∫ ω

0

G2(t, s)h(s)ds, (2.24)

where G2(t, s) =
∫ ω
0
G3(t, τ)G1(τ, s)dτ. And we get the following Theorem.

Theorem 2.5. Assume that
√

3mω < 4
3π holds. Then G2(t, s) ≥ 0 for all (t, s) ∈

[0, ω]× [0, ω].

Case (III): There exist positive real constants m and ρ such that a = ρ, b = 0,
c = m3, d = ρm3. Then, (2.1) is transformed into{

y′(t) + ρy(t) = h(t),

y(0) = y(ω),
(2.25)

and {
x′′′(t) +m3x(t) = y(t),

x(i)(0) = x(i)(ω), i = 0, 1, 2.
(2.26)

Then, solution of (2.25) is written as

y(t) =

∫ ω

0

G1(t, s)h(s)ds. (2.27)

Solution of (2.26) is written as

x(t) =

∫ ω

0

G4(t, s)y(s)ds, (2.28)

where

G4(t, s) =



2 exp( 1
2m(t−s))

[
sin
(√

3
2 m(t−s)−π6

)
−exp( 1

2mω) sin
(√

3
2 m(t−s−ω)−π6

)]
3m2

(
1+exp(mω)−2 exp( 1

2mω) cos
(√

3
2 mω

))
+ exp(m(s−t))

3ρ2(1−exp(−ρω)) , 0 ≤ s ≤ t ≤ ω,

2 exp( 1
2m(t+ω−s))

[
sin
(√

3
2 m(t+ω−s)−π6

)
−exp( 1

2mω) sin
(√

3
2 m(t−s)−π6

)]
3m2

(
1+exp(mω)−2 exp( 1

2mω) cos
(√

3
2 mω

))
+ exp(m(s−t−ω))

3m2(1−exp(−mω)) , 0 ≤ t < s ≤ ω.

By the following lemma, which can be found in [18], we will consider the sign of
G4(t, s).



Fourth-order singular equation with a parameter 463

Lemma 2.12. Assume that
√

3mω < 4
3π holds. Then 0 < l < G4(t, s) ≤ L for all

t ∈ [0, ω] and s ∈ [0, ω].

Similarly to (2.19), we know that the solution of (2.1) can be written as

x(t) =

∫ ω

0

G3(t, s)h(s)ds, (2.29)

where G3(t, s) =
∫ ω
0
G4(t, τ)G1(τ, s)dτ. And we get the following Theorem.

Theorem 2.6. Assume that
√

3mω < 4
3π holds. Then G3(t, s) ≥ 0 for all (t, s) ∈

[0, ω]× [0, ω].

Case (IV): There exists a positive real constant ρ such that a = −2ρ, b = 3ρ3,
c = −2ρ3, d = ρ4. Then, (2.1) is transformed into{

y′′(t)− ρy′(t) + ρ2y(t) = h(t),

y(i)(0) = y(i)(ω), i = 1, 2,
(2.30)

and {
x′′(t)− ρx′(t) + ρ2x(t) = y(t),

x(i)(0) = x(i)(ω), i = 0, 1.
(2.31)

Then, solution of (2.30) is written as

y(t) =

∫ ω

0

G5(t, s)h(s)ds.

Solution of (2.31) is written as

x(t) =

∫ ω

0

G5(t, s)y(s)ds.

Lemma 2.13 (see [19]). The boundary problem (2.30) is equivalent to integral e-
quation

y(t) =

∫ ω

0

G5(t, s)h(s)ds,

where

G5(t, s) =


2e
ρ
2
(t−s)

[
sin
√

3
2 ρ(ω−t+s)+e−

ρω
2 sin

√
3

2 ρ(t−s)
]

√
3ρ
(
e
ρω
2 +e−

ρω
3 −2 cos

√
3

2 ρω
) , 0 ≤ s ≤ t ≤ ω,

2e
ρ
2
(ω+t−s)

[
sin
√

3
2 ρ(s−t)+e−

ρω
2 sin

√
3

2 ρ(ω−s+t)
]

√
3ρ
(
e
ρω
2 +e−

ρω
3 −2 cos

√
3

2 ρω
) , 0 ≤ t < s ≤ ω.

Moreover, for G5(t, s), if ρ < 2π√
3ω
, we have the estimates

0 ≤ l′2 :=
2 sin(

√
3
2 ρω)

√
3ρ(e

ρω
2 + 1)2

≤ G5(t, s) ≤ 2
√

3 sin(
√
3
2 ρω)

:= L′2, ∀ s, t ∈ [0, ω].

Similarly to (2.19), we know that the solution of (2.1) can be written as

x(t) =

∫ ω

0

G4(t, s)h(s)ds, (2.32)

where G4(t, s) =
∫ ω
0
G5(t, τ)G5(τ, s)dτ. And we get the following Theorem.
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Theorem 2.7. Assume that ρ < 2π√
3ω

holds. Then G4(t, s) ≥ 0 for all (t, s) ∈
[0, ω]× [0, ω].

Case (V): There exists a positive real constant ρ such that a = ρ, b = 0, c = ρ3,
d = ρ4. Then, (2.1) is transformed into{

u′(t) + ρu(t) = h(t),

u(0) = u(ω),
(2.33)

and {
y′(t) + ρy(t) = u(t),

y(0) = y(ω),
(2.34)

and {
x′′(t)− ρx′(t) + ρ2x(t) = y(t),

x(i)(0) = x(i)(ω), i = 0, 1.
(2.35)

Similarly to (2.19), we know that the solution of (2.1) can be written as

x(t) =

∫ ω

0

G5(t, s)h(s)ds, (2.36)

where G5(t, s) =
∫ ω
0

∫ ω
0
G5(t, τ2)G1(τ2, τ1)G1(τ1, s)dτ1dτ2. And we get the following

Theorem.

Theorem 2.8. Assume that ρ < 2π√
3ω

holds. Then G5(t, s) ≥ 0 for all (t, s) ∈
[0, ω]× [0, ω].

Case (VI): There exists a positive real constant ρ such that a = 4ρ, b = 6ρ2,
c = 4ρ3, d = ρ4. Then, (2.1) is transformed into{

u′(t) + ρu(t) = h(t),

u(0) = u(ω),
(2.37)

and {
v′(t) + ρv(t) = u(t),

v(0) = v(ω),
(2.38)

and {
y′(t) + ρy(t) = v(t),

y(0) = y(ω),
(2.39)

and {
x′(t) + ρx(t) = y(t),

y(0) = y(ω).
(2.40)

Similarly to (2.19), we know that the solution of (2.1) can be written as

x(t) =

∫ ω

0

G6(t, s)h(s)ds, (2.41)

where G6(t, s) =
∫ ω
0

∫ ω
0

∫ ω
0
G1(t, τ3)G1(τ3, τ2)G1(τ2, τ1)G1(τ1, s)dτ1dτ2dτ3. And we

get the following Theorem.

Theorem 2.9. G6(t, s) ≥ 0 for all (t, s) ∈ [0, ω]× [0, ω].
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3. Preliminary Lemmas

Firstly, we establish the existence of positive periodic solutions for fourth-order
differential equation (1.4) by using fixed point theorem, which can be found in [13].

Lemma 3.1 ( [13]). Let X be a Banach space and K a cone in X. Assume that
Ω1, Ω2 are bounded open subsets of X with 0 ∈ Ω1, Ω̄1 ⊂ Ω2, and let

T : K ∩ (Ω̄2 \ Ω1)→ K

be completely continuous operator such that either

(i) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ||Tu|| ≤ ||u||, u ∈ K ∩ ∂Ω2; or

(ii) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ||Tu|| ≥ ||u||, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω̄2 \ Ω1).

For the sake of convenience, we list the following assumptions which will be used
repeatedly in the sequel:

(H1) f(x) is a scalar continuous function defined for |x| > 0, and f(x) > 0 for
|x| > 0.

(H2) g(t) ≥ 0, t ∈ [0, ω],
∫ ω
0
g(t)dt > 0.

(H3) g(t) > 0 for t ∈ [0, ω].

Case (I): There exist real constants α, β, γ and ρ > 0 such that a = α + ρ,
b = β+αρ, c = γ+βρ, d = γρ. The following are the main existence results in this
section.

Under Theorems 2.1-2.4, we always denote

m1i = min
0≤s,t≤ω

G1i(t, s), M1i = max
0≤s,t≤ω

G1i(t, s). σ1i = m1i/M1i, 1 = 1, 2, 3, 4.

Obviously, M1i > m1i > 0 and 0 < σ1i < 1.
Case (i): λ1 6= λ2 6= λ3, and λ1, λ2, λ3 ∈ R.

Define the cone K in X by

K = {x ∈ X : x(t) ≥ 0 for all t ∈ [0, ω] and min
t∈R

x(t) ≥ σ11||x||}.

We take X = Cω with ||x|| = max
t
|x(t)|. Also, for r > 0, let

Ωr = {x ∈ K : ||x|| < r}.

Define the operator T : K \ {0} → X

(Tµx)(t) = µ

∫ ω

0

G11(t, s)(g(s)f(x(s)) + e(s))ds. (3.1)

When e is nonnegative, g(s)f(x(s))+e(s) is nonnegative. If e takes negative values,
we will choose x(s) so that g(s)f(x(s))+e(s) is nonnegative. This is possible because
lim
x→0

f(x) =∞ or lim
|x|→∞

f(x) =∞.

Now if x is a fixed point of Tµ in K \ {0}, then x is a positive solution of (1.4).
Also note that each component x(t) of any nonnegative periodic solution x is strictly
positive for all t because of the positiveness of the Green functions and assumptions
(H1) and (H2). We now look at several properties of the operator.
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Lemma 3.2. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0),
p2 > q2, (H1), (H2) hold and e(t) ≥ 0, t ∈ [0, ω]. Then Tµ(K \ {0}) ⊂ K and
Tµ : K \ {0} → K is completely continuous.

Proof. If x ∈ K \ {0}, then min
t∈[0,ω]

|x(t)| ≥ σ11||x|| > 0, and then Tµ is defined.

Now we have that,

min
t∈[0,ω]

Tµx(t) ≥ m11µ

∫ ω

0

(g(s)f(x(s)) + e(s))ds

= µσ11M11

∫ ω

0

(g(s)f(x(s)) + e(s))ds

≥ σ11 sup
t∈[0,ω]

Tµx(t)

= σ11||Tµx||.

Thus, Tµ(K \ {0}) ⊂ K. It is easy to verify that Tµ is completely continuous.

If e(t) takes negative values, we need to choose appropriate domains so that
g(s)f(x(s)) + e(s) become nonnegative. The proof of Tµ(K \ {0}) ⊂ K and Tµ(K \
ΩR) ⊂ K in Lemma 3.3 is the same as in Lemma 3.2.

Lemma 3.3. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2,
(H1), (H3) hold.

(a) If lim
x→0

f(x) =∞, there is a δ > 0 such that if 0 < r < δ, then Tµ is defined on

Ω̄r \ {0}, Tµ(Ω̄r \ {0}) ⊂ K, and Tµ : Ω̄r \ {0} → K is completely continuous.

(b) If lim
x→∞

f(x) =∞, there is a 4 > 0 such that if R > 4, then Tµ is defined on

K \ ΩR, Tµ(K \ ΩR) ⊂ K and Tµ : K \ ΩR → K is completely continuous.

Proof. We split g(t)f(x(t))+e(t) into the two terms 1
2g(t)f(x(t) and 1

2g(t)f(x(t))+
e(t). The first term is always nonnegative and used to carry out the estimates of the
operator in the lemma and corollaries in this section. We will make the second term
1
2g(t)f(x(t)) + e(t) nonnegative by choosing appropriate domains of f . The choice
of the even split of g(t)f(x(t)) here is not necessarily optimal in terms of obtaining
maximal µ-intervals for the existence of periodic solutions of the equation.

Noting that g(t) is positive on [0, ω], lim
x→0

f(x) = ∞, implies that there exists a

constant δ > 0 such that

f(x) ≥ 2

max
t∈[0,ω]

{|e(t)|+ 1}

min
t∈[0,ω]

g(t)
,

for 0 < |x| < δ. Now for x ∈ Ω̄r \ {0} and 0 < r < δ, noting that

δ > r ≥ |x(t)| ≥ min
t∈[0,ω]

|x(t)| ≥ σ1||x|| > 0, t ∈ [0, ω],
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and therefore, we have, for t ∈ [0, ω],

g(t)f(x(t)) + e(t) ≥ 1

2
g(t)f(x(t)) + e(t)

≥ g(t)

max
t∈[0,ω]

{|e(t)|+ 1}

min
t∈[0,ω]

g(t)
+ e(t)

> 0.

Thus, it is clear that Tµx(t) in (3.1) is well defined and positive, and now it is
easy to see that Tµ(Ω̄r \ {0} ⊂ K and Tµ : Ω̄r \ {0} → K is completely continuous.

On that other hand, if lim
x→∞

f(x) =∞, there is an R′′ > 0 such that

f(x) ≥ 2

max
t∈[0,ω]

{|e(t)|+ 1}

min
t∈[0,ω]

g(t)
,

for |x| ≥ R′′. Now let 4 = R′′

σ11
. Then for x ∈ K \ ΩR, R > 4, we have that

min
t∈[0,ω]

x(t) ≥ σ11||x|| > R′′, and therefore,

g(t)f(x(t)) + e(t) ≥ 1

2
g(t)f(x(t)) + e(t) > 0, t ∈ [0, ω].

Now Tµx(t) in (3.1) is well defined and positive. It is clear that Tµ(K \ ΩR) ⊂ K
and Tµ : K \ ΩR → K is completely continuous.

Now let

Γ = min{1

2
m11σ11

∫ ω

0

g(s)ds} > 0.

Lemma 3.4. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2,
(H1), (H2) hold and e(t) ≥ 0, t ∈ [0, ω]. Let r > 0 and if there exists η > 0 such
that

f(x(t)) ≥ ηx(t) for t ∈ [0, ω],

for x(t) ∈ ∂Ωr, then the following inequality holds,

||Tµx|| ≥ µΓη||x||.

Proof. From the definition of Tµx it follows that

||Tµx|| ≥ max
t∈[0,ω]

Tµx(t)

≥ 1

2
µm11

∫ ω

0

g(s)f(x(s))ds

≥ 1

2
µm11

∫ ω

0

g(s)ηx(s)ds

≥ 1

2
µm11σ11

∫ ω

0

g(s)dsη||x||

= µΓη||x||.

If e(t) takes negative values, we need to adjust δ and 4 in Lemma 3.3 to guar-
antee that g(t)f(x(t)) + e(t) is nonnegative.
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Corollary 3.1. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2,
(H1), (H3) hold.

(a) If lim
x→0

f(x) = ∞, then Lemma 3.4 is true if, in addition, 0 < r < δ, where δ

is defined in Lemma 3.3.

(b) If lim
x→∞

f(x) =∞, then Lemma 3.4 is true if, in addition, 4 > 0, where 4 is

defined in Lemma 3.3.

Proof. We split g(t)f(x(t))+e(t) into the two terms 1
2g(t)f(x(t)) and 1

2g(t)f(x(t))+
e(t). By choosing δ and 4 in Lemma 3.3, g(t)f(x(t)) + e(t) become nonnegative.
The estimate in Corollary 3.1 can be carried out by the first terms as in Lemma
3.4.

Let f̂(θ) : [1,∞)→ R+ be the function given by

f̂(θ) = max{f(u) : u ∈ R+ and 1 ≤ |u| ≤ θ}.

It is easy to see that f̂(θ) is a nondecreasing function on [1,∞). The following
lemma is essentially the same as Lemma 2.8 in [22].

Lemma 3.5 (see [22]). Assume (H1) holds. If lim
|x|→∞

f(x)
|x| exists (which can be

infinity), then lim
θ→∞

f̂(θ)
θ exists and lim

θ→∞
f̂(θ)
θ = lim

|x|→∞
f(x)
|x| .

Lemma 3.6. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2,
(H1), (H2) hold and e(t) ≥ 0, t ∈ [0, ω]. Let r > max{ 1

σ11
, 2µM11

∫ ω
0
|e(s)|ds} and

if there exists an ε > 0 such that

f̂(r) ≤ εr,

then

||Tµx|| ≤ µĈε||x||+
1

2
||x|| for x ∈ ∂Ωr,

where the constant Ĉ = M11

∫ ω
0
g(s)ds.

Proof. From the definition of Tµ, we have for x ∈ ∂Ωr,

||Tµx|| = max
t∈[0,ω]

Tµx(t)

≤ µM11

∫ ω

0

g(s)f(x(s))ds+ µM11

∫ ω

0

|e(s)|ds

≤ µM11

∫ ω

0

g(s)f̂(r)ds+
r

2

≤ µM11

∫ ω

0

g(s)dsrε+
r

2

= µĈε||x||+ 1

2
||x||.

If e(t) takes negative values, we need to restrict the domain of Tµ to guarantee
that g(t)f(x(t)) + e(t) is nonnegative.



Fourth-order singular equation with a parameter 469

Corollary 3.2. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2,
(H1), (H3) hold. If lim

x→∞
f(x) =∞, Lemma 3.6 is true if, in addition, r > 4, where

4 is defined in Lemma 3.3.

Proof. If we choose4 defined in Lemma 3.3, then Tµ is well defined and g(t)f(x(t))
+e(t) is nonnegative, and Corollary 3.2 can be shown in the same way as Lemma
3.6.

The conclusions of Lemma 3.4 and 3.6 are based on the inequality assumptions
between f(x) and x. If these assumption are not necessarily true, we will have the
following results.

Lemma 3.7. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2,
(H1), (H2) hold and e(t) ≥ 0, t ∈ [0, ω]. Let r > 0. Then

||Tµx|| ≥ µ
m11m̂r11

2

∫ ω

0

g(s)ds,

for all x ∈ ∂Ωr, where m̂r11 = min{f(x) : x ∈ R+ and σ11r ≤ |x| ≤ r} > 0.

Proof. If x(t) ∈ ∂Ωr, then σ11r ≤ |x(t)| ≤ r, for t ∈ [0, ω]. Therefore f(x(t)) ≥
m̂r1 for t ∈ [0, ω]. By the definition of Tµ, we have

||Tµx|| = max
t∈[0,ω]

Tµx(t)

≥ 1

2
µm11

∫ ω

0

g(s)f(x(s))ds

≥ µm11m̂r11

2

∫ ω

0

g(s)ds.

Now we consider the cases that e(t) may take negative values. We need to restrict
the domain of Tµ to guarantee that g(t)f(x(t)) + e(t) is nonnegative. 1

2g(t)f(x(t))
is used to carry out the estimates is Lemma 3.7.

Corollary 3.3. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2,
(H1), (H3) hold.

(a) If lim
x→0

f(x) = ∞, then Lemma 3.7 is true if, in addition, 0 < r < δ, where

δ > 0 is defined in Lemma 3.3.

(b) If lim
x→∞

f(x) =∞, then Lemma 3.7 is true if, in addition, r > 4, where 4 is

defined in Lemma 3.3.

Proof. By selecting δ and4 defined in Lemma 3.3, Tµ is well defined and g(t)f(x(t))
+e(t) is nonnegative, and then Corollary 3.3 can be shown as Lemma 3.7.

Lemma 3.8. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2,
(H1), (H2) hold and e(t) ≥ 0, t ∈ [0, ω]. Let r > 0. Then

||Tµx|| ≤ µ
(
M11

∫ ω

0

g(s)M̂r11ds+M11

∫ ω

0

|e(s)|ds
)
,

for all x ∈ ∂Ωr, where M̂r11 = max{f(x) : x ∈ R+ and σ11r ≤ |x| ≤ r} > 0.
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Proof. If x ∈ ∂Ωr, then σ11r ≤ |x(t)| ≤ r, t ∈ [0, ω]. Therefore f(x(t)) ≤ M̂r11

for t ∈ [0, ω]. Thus we have that

||Tµx|| = max
t∈[0,ω]

Tµx(t)

≤ µM11

∫ ω

0

g(s)f(x(s))ds+ µM11

∫ ω

0

e(s)ds

≤ µM11

∫ ω

0

g(s)f(x(s))ds+ µM11

∫ ω

0

|e(s)|ds

≤ µM11

∫ ω

0

g(s)M̂r11ds+ µM11

∫ ω

0

|e(s)|ds

= µ

(
M11

∫ ω

0

g(s)M̂r11ds+M11

∫ ω

0

|e(s)|ds
)
.

Again, if e(t) takes negative values, we need to restrict r and R to guarantee
g(t)f(x(t)) + e(t) is nonnegative.

Corollary 3.4. Assume that λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2,
(H1), (H3) hold.

(a) If lim
x→0

f(x) = ∞, then Lemma 3.8 is true if, in addition, 0 < r < δ, where

δ > 0 is defined in Lemma 3.3.

(b) If lim
x→∞

f(x) =∞, then Lemma 3.8 is true if, in addition, r > 4, where 4 is

defined in Lemma 3.3.

Proof. By selecting δ and4 defined in Lemma 3.3, Tµ is well defined and g(t)f(x(t))
+e(t) is nonnegative, and then Corollary 3.4 can be shown as Lemma 3.8.

4. Main Results

In this section, we present out main results for the existence and multiplicity of
positive periodic solutions of singular fourth-order equation of repulsive type (1.4).
We state our theorems as follows.

Theorem 4.1. Let λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2, (H1),
(H2) hold and e(t) ≥ 0, t ∈ [0, ω]. Assume that lim

x→0
f(x) =∞.

(a) If lim
|x|→∞

f(x)
|x| = 0, then, for all µ > 0, (1.4) has a positive periodic solution.

(b) If lim
|x|→∞

f(x)
|x| =∞, then, for all sufficiently small µ > 0, (1.4) has two positive

periodic solutions.

(c) There exists a µ1 such that (1.4) has a positive periodic solution for 0 < µ <
µ1.

Proof. (a) Since e(t) ≥ 0, Tµ is defined on K \ {0} and g(t)f(x(t)) + e(t) is

nonnegative. Noting lim
|x|→∞

f(x)
|x| = 0, it follows from Lemma 3.5 that lim

θ→∞
f̂(θ)
θ = 0.



Fourth-order singular equation with a parameter 471

Therefore, we can choose r1 > max{ 1
σ11

, 2µM11

∫ ω
0
|e(s)|ds} so that f̂(r1) ≤ εr1,

where the constant ε > 0 satisfies

µĈε <
1

2
,

and Ĉ is the positive constant defined in Lemma 3.6. We have by Lemma 3.6 that

||Tµx|| ≤
(
µĈε+

1

2

)
||x|| < ||x|| for x ∈ ∂Ωr1 .

On the other hand, by the condition lim
x→0

f(x) = ∞, there is a positive number

r2 < r1 such that
f(x) ≥ η|x|,

for x ∈ R+ \ {0} and |x| ≤ r2, where η > 0 is chosen so that

µΓη > 1.

It is easy to see that, for x ∈ ∂Ωr2 , t ∈ [0, ω],

f(x) ≥ ηx(t).

Lemma 3.4 implies that

||Tµx|| ≥ µΓη||x|| > ||x|| for x ∈ ∂Ωr2 .

By Lemma 3.1, Tµ has a fixed point x ∈ Ω̄r1 \Ωr2 . The fixed point x ∈ Ω̄r1 \Ωr2 is
the desired positive periodic solution of (1.4).

(b) Again since e(t) ≥ 0, Tµ is defined on K \ {0} and g(t)f(x(t)) + e(t) is
nonnegative. Fix two numbers 0 < r3 < r4, there exists a µ0 > 0 such that

µ0 <
r3

M11

∫ ω
0
g(s)M̂r31ds+M11

∫ ω
0
|e(s)|ds

,

and
µ0 <

r4

M11

∫ ω
0
g(s)M̂r41ds+M11

∫ ω
0
|e(s)|ds

,

where M̂r31 and M̂r41 are defined in Lemma 3.8 implies that, for 0 < µ < µ0,

|Tµx|| < ||x|| for x ∈ ∂Ωrj (j = 3, 4).

On the other hand, in view of the assumptions lim
x→∞

f(x)
|x| =∞ and lim

x→0
f(x) =∞,

there are positive numbers 0 < r2 < r3 < r4 < r′1 such that

f(x) ≥ η|x|

for x ∈ R+ and 0 < |x| ≤ r2 or |x| > r′1 where η > 0 is chosen so that

µΓη > 1.

Thus if x ∈ ∂Ωr2 , then

f(x(t)) ≥ ηx(t), t ∈ [0, ω].
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Let r1 = max{2r4, 1
σ11

r′1}. If x ∈ ∂Ωr1 , then

min
t∈[0,ω]

x(t) ≥ σ11||x|| = σ11r1 ≥ r′1,

which implies that
f(x(t)) ≥ ηx(t) for t ∈ [0, ω].

Thus Lemma 3.4 implies that

||Tµx|| ≥ µΓη||x|| > ||x|| for x ∈ ∂Ωr1 ,

and
||Tµx|| ≥ µΓη||x|| > ||x|| for x ∈ ∂Ωr2 .

It follows from Lemma 3.1, that Tµ has two fixed points x1(t) and x2(t) such that
x1(t) ∈ Ω̄r3 \ Ωr2 and x2(t) ∈ Ω̄r1 \ Ωr4 , which are the desired distinct positive
periodic solutions of (1.4) for µ < µ0 satisfying

r2 < ||x1|| < r3 < r4 < ||x2|| < r1.

(c) First we note that Tµ is defined onK\{0} and g(t)f(x(t))+e(t) is nonnegative
since e(t) ≥ 0. Fix a number r3 > 0. Lemma 3.8 implies that there exists a µ1 > 0
such that we have, for 0 < µ < µ1,

||Tµx|| < ||x|| for x ∈ ∂Ωr3 .

On the other hand, in view of the assumption lim
x→0

f(x) =∞, there is a positive

number 0 < r2 < r3 such that
f(x) ≥ η|x|,

for x ∈ R+ and 0 < |x| ≤ r2 where η > 0 is chosen so that

µΓη > 1.

Thus if x ∈ ∂Ωr2 , then

f(x(t)) ≥ ηx(t), t ∈ [0, ω].

Thus Lemma 3.4 implies that

||Tµx|| ≥ µΓη||x|| > ||x|| for x ∈ ∂Ωr2 .

Lemma 3.1 implies that Tµ has a fixed point x ∈ Ω̄r3 \ Ωr2 . The fixed point x ∈
Ω̄r3 \ Ωr2 is the desired positive periodic solution of (1.4).

When e(t) takes negative values, we give the following theorem.

Theorem 4.2. Let λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0), p2 > q2, (H1),
(H3) hold. Assume that lim

x→0
f(x) =∞.

(a) If lim
|x|→∞

f(x) = ∞ and lim
|x|→∞

f(x)
|x| = 0, then there exists µ0 > 0 such that

(1.4) has a positive periodic solution for µ > µ0.

(b) If lim
|x|→∞

f(x)
|x| =∞, then, for all sufficiently small µ > 0, (1.4) has two positive

periodic solutions.
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(c) There exists a µ1 > 0 such that (1.4) has a positive periodic solution for
0 < µ < µ1.

Proof. (a) Since lim
|x|→∞

f(x) = ∞, By Lemma 3.3, there is a 4 > 0 such that if

R > 4, then g(t)f(x(t)) + e(t) is nonnegative and Tµ : K \ ΩR → K is defined.
Now for a fixed number r1 > 4, Corollary 3.3 implies that there exists a µ0 > 0
such that, for µ > µ0.

||Tµx|| > ||x|| for x ∈ ∂Ωr1 .

On the other hand, since lim
|x|→∞

f(x)
|x| = 0, it follows Lemma 3.5 that lim

θ→∞
f̂(θ)
θ = 0.

Therefore, we can choose

r2 > max

{
2r1,

1

σ11
, 2µM11

∫ ω

0

|e(s)|ds
}
> 4,

so that f̂(r2) ≤ εr2, where the constant ε > 0 satisfies

µĈε <
1

2
.

We have, by Corollary 3.2, that

||Tµx|| ≤
(
µĈε+

1

2

)
||x|| < ||x|| for x ∈ ∂Ωr2 .

By Lemma 3.1, Tµ has a fixed point x ∈ Ω̄r2 \Ωr1 . The fixed point x ∈ Ω̄r2 \Ωr1 is
the desired positive periodic solution of (1.4).

(b) First, since lim
x→0

f(x) = ∞, by Lemma 3.3, there is δ > 0 such that if 0 <

r < δ, Tµ is defined on Ω̂ \ {0} and g(t)f(x(t)) + e(t) is nonnegative. Furthermore,

Tµ(Ω̂r \ {0}) ⊂ K. Now for a fixed number r1 < δ, Corollary 3.4 implies that there
exists a µ1 > 0 such that we have, for µ < µ1,

||Tµx|| < ||x|| for x ∈ ∂Ωr1 .

In view of the assumption lim
x→0

f(x) = ∞, there is a positive number 0 < r3 < r1

such that

f(x) ≥ η|x|

for x ∈ R+ and 0 < |x| ≤ r3 where η > 0 is chosen so that

µΓη > 1.

Thus if x ∈ ∂Ωr3 , then

f(x(t)) ≥ ηx(t), t ∈ [0, ω].

Thus Corollary 3.1 implies that

||Tµx|| ≥ µΓη||x|| > ||x|| for x ∈ ∂Ωr3 .
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It follows from Lemma 3.1, Tµ has a fixed point x1(t) ∈ Ω̄r1 \Ωr3 which is a positive
periodic solutions of (1.4) for µ < µ1 satisfying

r3 < ||x1|| < r1.

On the other hand, since lim
|x|→∞

f(x)
|x| = ∞, by Lemma 3.3, there is 4 > 0 such

that if R > 4, Tµ is defined on K \ ΩR and g(t)f(x(t)) + e(t) is nonnegative.
Furthermore, Tµ(K \ΩR) ⊂ K. For a fixed number r2 > max{4, r1}, and Corollary
3.4 implies that there exists a 0 < µ0 < µ1 such that we have, for µ < µ0,

||Tµx|| < ||x|| for x ∈ ∂Ωr2 .

Since lim
|x|→∞

f(x)
|x| =∞, there is a positive number r′ such that

f(x) ≥ η|x|

for x ∈ R+ and |x| ≥ r′ where η > 0 is chosen so that

µΓη > 1.

Let r4 = max{2r2, 1
σ11

r′} > 4. If x ∈ ∂Ωr4 , then

min
t∈[0,ω]

x(t) ≥ σ11||x|| = σ11r4 ≥ r′,

which implies that
f(x(t)) ≥ ηx(t) for t ∈ [0, ω].

Again Corollary 3.1 implies that

||Tµx|| ≥ µΓη||x|| > ||x|| for x ∈ ∂Ωr4 .

It follows from Lemma 3.1, Tµ has a fixed point x2(t) ∈ Ω̄r4 \Ωr2 , which is a positive
periodic solutions of (1.4) for µ < µ0 satisfying

r2 < ||x2|| < r4.

Noting that
r3 < ||x1|| < r1 < r2 < ||x2|| < r4,

we can conclude that x1 and x2 are the desired distinct positive solutions of (1.4)
for µ < µ0.

(c) Since lim
x→0

f(x) =∞, by Lemma 3.3, there is a δ > 0 such that if 0 < r < δ,

then Tµ is defined and g(t)f(x(t)) + e(t) is nonnegative. Now for a fixed number
r1 < δ, Corollary 3.4 implies that there exists a µ1 > 0 such that we have, for
µ < µ1,

||Tµx|| < ||x|| for x ∈ ∂Ωr1 .

On the other hand, in view of the assumption lim
x→0

f(x) =∞, there is a positive

number 0 < r2 < r1 < δ such that

f(x) ≥ η|x|
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for x ∈ R+ and 0 < |x| ≤ r2, where η > 0 is chosen so that

µΓη > 1.

Thus if x ∈ ∂Ωr2 , then

f(x(t)) ≥ ηx(t), t ∈ [0, ω].

Thus Corollary 3.1 implies that

||Tµx|| ≥ µΓη||x|| > ||x|| for x ∈ ∂Ωr2 .

Lemma 3.1 implies that Tµ has a fixed point x1 ∈ Ω̄r1 \ Ωr2 . The fixed point
x1 ∈ Ω̄r1 \ Ωr2 is the desired positive periodic solution of (1.4).

Case (I**): λ1 = λ2 6= λ3, λ1, λ2, λ3 ∈ R.
In this case, replacing above assumptions λ3 < λ2 < λ1 < 0 (or λ1 > λ2 >

0, λ3 < 0), and p2 > q2 by assumption λ1 > 0, λ3 < 0 (or λ1 < λ3 < 0, p3 > 1),
we can get similar existence results which we omit here.

Case (I***): λ1 = λ2 = λ3 = λ ∈ R.
In this case, replacing above assumptions λ3 < λ2 < λ1 < 0 (or λ1 > λ2 >

0, λ3 < 0), and p2 > q2 by assumption λ < 0, we can get similar existence results
which we omit here.

Case (I****): λ1 = α+ iβ, λ2 = α− iβ, λ3 = λ, α, β, λ ∈ R.
In this case, replacing above assumptions λ3 < λ2 < λ1 < 0 (or λ1 > λ2 >

0, λ3 < 0), and p2 > q2 by assumption α > 0, β > 0, λ < 0, (2.16) (or
α < 0, β > 0, λ < 0, (2.17)), we can get similar existence results which we omit
here.

Case (II): There exist positive real constants m and ρ such that a = ρ, b = 0,
c = −m3, d = −ρm3.

In this case, replacing above assumptions λ3 < λ2 < λ1 < 0 (or λ1 > λ2 >
0, λ3 < 0), and p2 > q2 by assumption

√
3mω < 4

3π, we can get similar existence
results which we omit here.

Case (III): There exist positive real constants m and ρ such that a = ρ, b = 0,
c = m3, d = ρm3.

In this case, replacing above assumptions λ3 < λ2 < λ1 < 0 (or λ1 > λ2 >
0, λ3 < 0), and p2 > q2 by assumption

√
3mω < 4

3π, we can get similar existence
results which we omit here.

Case (IV): There exists a positive real constant ρ such that a = −2ρ, b = 3ρ3,
c = −2ρ3, d = ρ4.

In this case, replacing above assumptions λ3 < λ2 < λ1 < 0 (or λ1 > λ2 >
0, λ3 < 0), and p2 > q2 by assumption ρ < 2π√

3ω
, we can get similar existence

results which we omit here.
Case (V): There exists a positive real constant ρ such that a = ρ, b = 0, c = ρ3,

d = ρ4.
In this case, replacing above assumptions λ3 < λ2 < λ1 < 0 (or λ1 > λ2 >

0, λ3 < 0), and p2 > q2 by assumption ρ < 2π√
3ω

, we can get similar existence

results which we omit here.
Case (VI): There exists a positive real constant ρ such that a = 4ρ, b = 6ρ2,

c = 4ρ3, d = ρ4.
In this case, delete to assumptions λ3 < λ2 < λ1 < 0 (or λ1 > λ2 > 0, λ3 < 0),

and p2 > q2, we can get similar existence results which we omit here.
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