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Abstract A new life distribution is proposed, known as “two-parameter gen-
eralized exponential sum distribution”. We study the density function and fail-
ure rate function, the average failure rate function, the image features and the
numerical characteristics of the mean residual life of the distribution. Several
methods of calculating point estimation of parameters are discussed. Through
the Monte-Carlo simulation, we compare the precision of the point estima-
tions. In our opinion, the best linear unbiased estimation is the most optimal
solution of these methods. At the same time, several methods of calculating
parameters of interval estimations are given. We also discuss the precision of
interval estimations by Monte-Carlo simulation and use the best linear unbi-
ased estimation and the best linear invariant estimation to construct interval
estimations which are better than other estimation method. Finally, several
simulation examples and a case of maintaining tanks is used to illustrate the
application of the methods presented in this paper.
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1. Introduction

A function has the following form:

F (x) = 1− [1 + (x/β)m] e−(x/β)
m

, x > 0,

where β > 0 is the scale parameter and m > 0 is the shape parameter.

Definition 1.1. If the distribution function of a non-negative continuous random
variable is F (x) = 1 − [1 + (x/β)m] e−(x/β)

m

,x > 0, then X obeys “two-parameter
generalized exponential sum distribution”, denoted as X ∼ GES(β;m).

Conspicuously, if X ∼ GES(β;m), the density function f(x), the reliability
function F̄ (x), the failure rate function λ(x), the average failure rate function G(x)
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and the mean residual life function m(x) of X are as follows, respectively.

f(x) =
mx2m−1

β2m
e−(x/β)

m

, F̄ (x) = [1 + (x/β)m] e−(x/β)
m

, λ(x) =
m

βm
x2m−1

xm + βm
,

G(x) = − 1

x
ln F̄ (x) = − 1

x
ln [1 + (x/β)m]− (x/β)m,

m(x) =
1

F̄ (x)

∫ +∞

x

F̄ (t)dt, x > 0.

Especially, when m = 1, β = 1, X ∼ GES(1; 1), the distribution function and
the density function of X are F (x) = 1− e−x − xe−x, f(x) = xe−x, x > 0, then X
obeys “Standard generalized exponential sum distribution”.

Obviously, if X ∼ GES(β;m), let Y = (X/β)m, then Y ∼ GES(1; 1).
This paper proposes a new life distribution, known as the “two-parameter gen-

eralized exponential sum distribution”, and its typical characteristics is that the
failure rate function takes the shape of “inverted bathtub” for 1/2 < m < 1. We
study the density function and failure rate function, the average failure rate func-
tion, the image features and the numerical characteristics of the mean residual life
of the distribution. Through the Monte-Carlo simulation, we compare the precision
of the point estimations. In our opinion, the best linear unbiased estimation is the
most optimal solution of these methods. At the same time, several methods of cal-
culating parameters of interval estimations are given. We also discuss the precision
of interval estimations by Monte-Carlo simulation and use the best linear unbiased
estimation and the best linear invariant estimation to construct interval estimations
which are better than other methods. Finally, several simulation examples and a
case of maintaining tanks are used to illustrate the application of the method in
this paper.

2. “Two-parameter generalized exponential sum dis-
tribution”, “Three-parameter generalized expo-
nential sum distribution” and their application
background

First of all, we explain the origin of “two-parameter generalized exponential sum
distribution” and “three-parameter generalized exponential sum distribution”.

Definition 2.1. Suppose random variables X,Y are independent of each other, and
if X ∼ Exp(λ1), Y ∼ Exp(λ2), then the distribution of random variable Z = X+Y
is an “exponential sum distribution”.

Obviously, the distribution function FZ(z) and the density function fZ(z) are

FZ(z) = 1 +
λ2e
−λ1z

λ1 − λ2
− λ1e

−λ2z

λ1 − λ2
, fZ(z) =

λ1λ2
λ1 − λ2

(e−λ2z − e−λ1z ), z ≥ 0.

Particularly, when λ1 = λ2 = λ, FZ(z) = 1− e−λz − λze−λz, fZ(z) = λ2ze−λz.
It is noteworthy that “exponential sum distribution” actually corresponds to

the life distribution of cold-standby system which is made up of two independent
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exponential distribution units. But Ding Yong in the literature [2] names the dis-
tribution of the above referred to as “exponential difference distribution”, the main
reason is that its density function contains the difference between two exponential
functions. The literature [7] calls it “sub-exponential distribution” and points out
that the computer system’s I/O service time of the operation usually follows the
“sub-exponential distribution”. In this paper we think that the definition: expo-
nential sum distribution is more appropriate. The literature [2] also discusses the
“exponential sum distribution” of extremum, inflection point, mathematical expec-
tation and variance, etc. The moment estimation of parameters is given, as well
as the relationship between the “exponential sum distribution” and exponential
distribution.

From the above, we introduce a shape parameter to the “exponential sum dis-
tribution” to get another distribution and name it as “three-parameter generalized
exponential sum distribution”.

Definition 2.2. If the distribution function of a non-negative continuous random
variable X obeys “three-parameter generalized exponential sum distribution”, de-
noted as X ∼ GES(β1, β2;m), its distribution function F (x) and density function
f(x) have the following forms:

F (x) = 1 +
βm1 e

−(x/β1)
m

βm2 − βm1
− βm2 e

−(x/β2)
m

βm2 − βm1
,

f(x) =
m

βm2 − βm1
xm−1

[
e−(x/β2)

m

− e−(x/β1)
m
]
,

where m > 0 is the shape parameter and β1 > 0, β2 > 0 are the scale parameters.

This distribution is called “three-parameter generalized exponential sum distri-
bution”, if λ1 = 1/βm1 , λ2 = 1/βm2 , the forms of distribution function F (x) and
density function f(x) will become:

F (x) = 1 +
λ2

λ1 − λ2
e−λ1x

m

− λ1
λ1 − λ2

e−λ2x
m

,

f(x) =
mλ1λ2
λ1 − λ2

xm−1
(
e−λ2x

m

− e−λ1x
m
)
.

If m = 1, then the distribution is “exponential sum distribution”.
Furthermore, it is worth noting that F (x) = 1 − e−(x/β2)

m

for β1 → 0, which
is two-parameter Weibull distribution with shape-scale parameters. That is to say,
“three-parameter generalized exponential sum distribution” can also be regarded as
the generalization of two-parameter Weibull distribution.

If β1 = β2 = β, X obeys “two-parameter generalized exponential sum distribu-
tion”, X ∼ GES(β;m). In fact, if λ2 = λ1 = λ = 1/βm, then

F (x) = lim
λ2→λ1

(
1 +

λ2e
−λ1x

m

λ1 − λ2
− λ1e

−λ2x
m

λ1 − λ2

)
= 1− e−λx

m

− λxme−λx
m

= 1− [1 + (x/β)m] e−(x/β)
m

,

f(x) = mxm−1λ1 lim
λ2→λ1

λ2
(
e−λ2x

m − e−λ1x
m)

λ1 − λ2

= mλ2x2m−1e−λx
m

=
mx2m−1

β2m
e−(x/β)

m

.
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We can see from the above, if the shape parameter is m = 1, the “three-
parameter generalized exponential sum distribution” is the “exponential sum distri-
bution” at the moment. Next, we will illustrate the application of “three-parameter
generalized exponential sum distribution” in pharmacokinetics by using this special
case of “exponential sum distribution”.

The classic pharmacokinetic is based on the compartment model. According
to the literature [5] and [13], the linear orally or intramuscular injection —the
compartment model, the relationship between drug concentration and time in the
body can be modeled by:

c(t) =
λaFD

V (λa − λ)

(
e−λt − e−λat

)
,

where D stands for dosage of drugs, F is the fraction that is absorbed by the body,
V is the apparent volume of distribution of the body, λa stands for constant rate
of drug absorption, λ is the constant rate of elimination of drugs. Under normal
circumstances, drug absorption is faster than elimination, hence λa > λ.

To avoid the influence due to selections of compartment numbers on the model,
the statistical moment theory is applied to the pharmacokinetic study. The theory
tells us that when drugs enter the organisms, the individual differences, biochemical
drugs, pharmacology and other random factors affect the length of residence time
of each drug molecule in vivo, which can be treated as a random variable and it
reflects the drug in the body of the absorption, distribution and elimination of the
corresponding overall effect. To convert the medicine-time curve to the probability

density curve, f(t) = c(t)
AUC is defined as the probability density of the retention time

of drug in the body, where AUC =
∫ +∞
0

c(t)dt is the area under the medicine-time
curve.

AUC =

∫ +∞

0

c(t)dt =

∫ +∞

0

λaFD

V (λa − λ)

(
e−λt − e−λat

)
dt

=
λaFD

V (λa − λ)

(
1

λ
− 1

λa

)
=
FD

V λ
.

Then,

f(t) =
c(t)

AUC
=
V λ

FD

λaFD

V (λa − λ)

(
e−λt − e−λat

)
=

λaλ

λa − λ
(
e−λt − e−λat

)
,

which is exactly the “exponential sum distribution”. The average retention time of
drug in the body is its mathematical expectation

∫ +∞
0

tf(t)dt = 1/λa+1/λ, which is
the sum of the average absorption time 1/λa and the mean time to eliminate drugs
1/λ. The variance of residence time is 1/λ2a + 1/λ2, and the drug concentration
reaches their peak (maximum point) is (lnλa − lnλ)/(λa − λ), which is exactly the
reciprocal of logarithmic average of two rate constants λa and λ.

Next, we illustrate its application in the maintenance theory by a particular case
of the “two-parameter generalized exponential sum distribution”.

For the “two-parameter generalized exponential sum distribution”, let m = 1,
β = β0/2, that is the Zrlanga distribution, and the distribution function and
density function are:

F (x) = 1− (1 + 2x/β0) e−2x/β0 , f(x) = (4x/β2
0)e−2x/β0 , x > 0, β0 > 0.
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Russia introduced the Zrlanga distribution when they studied the time of re-
pairing weapons and equipment, and this distribution plays an important role in
equipment maintenance theory. The literature [8] analyses the characteristics of Zr-
langa distribution. Besides, the maximum likelihood method is used to estimate
the parameters of the distribution in the full sample situation, and the examples
are used to verify the feasibility and practicability of this distribution. The prin-
ciple of the simulation to the combat damage parts of armored equipment and the
computing method of working time for fixing the combat damage parts of armored
equipment has been given in literature [11], according to the need of the prediction
of maintenance support in wartime, computer simulation is carried out in a certain
type of tanks. Besides, the simulation data of repairing tank’s time is produced, the
time of repairing injured tank is found to obey Zrlanga distribution by statistical
analysis. In the literature [3], they study the interval estimation of small sample and
test problems of Zrlanga distribution and point out that the estimated accuracy of
the time of equipment maintenance with Zrlanga distribution estimation is higher
than exponential distribution. Literature [4] gives the maximum likelihood estima-
tion of the parameters under the type-II censoring and investigates the estimation
precision through a lot of Monte-Carlo simulations. Secondly, the inverse moment
estimations of the parameters are given in the full sample and compared with the
moment estimations and maximum likelihood estimations, the moment estimations
and maximum likelihood estimations are slightly better than the inverse moment
estimations; Finally, the precise interval estimations and the approximate interval
estimations of the parameters are acquired. Comparing the accuracy of these t-
wo kinds of interval estimations, the precise interval estimation is better than the
approximate interval estimation.

3. Some typical characteristics of the “two-parameter
generalized exponential sum distribution”

It is easy to obtain Theorem 3.1 and Theorem 3.2 as following.

Theorem 3.1. Suppose the non-negative continuous random variable X ∼ GES(β;m),

the image of its density function has the following characteristics: (1) when 0 <
m ≤ 1/2, f(x) is monotone decreasing; (2) when m > 1/2, f(x) is increased at first
and then decreased.

Theorem 3.2. Suppose the non-negative continuous random variable X ∼ GES(β;m),

the image of its failure rate function λ(x) has the following characteristics: (1)
when m ≥ 1, λ(x) is monotone increasing and belongs to increasing failure rate; (2)
when 0 < m ≤ 1/2, λ(x) is monotone decreasing and belongs to decreasing failure
rate; (3) when 1/2 < m < 1, λ(x) is “inverted bathtub” shape with its vertex at

x0 =
(

2m−1
1−m

)1/m
β.

The “inverted bathtub” shape of failure rate function is more common in prac-
tical problems, such as the “logarithmic normal distribution”, which has a wide
application in the reliability engineering, and the shape of its failure rate function
shows “inverted bathtub”. Literature [9] and [6] point out that the “inverted bath-
tub” shaped of failure rate model can be used to fit the number of survival analysis
of organisms (including humans) and so on. Taking into account the bottom of the
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“inverted bathtub” shape which is the stable stage of the failure rate function, it
plays a key role in practical application. Next, the width of the upper bottom of
the “inverted bathtub” (referred to as the upper bottom width) is defined as:

Definition 3.1. Suppose λ(x) is the failure rate function of the non-negative con-
tinuous random variable X, which is of “inverted bathtub” shape, we obtain its
maximum value at x = x0. For any given ε > 0, consider the difference l(ε) = x2−x1
between the two roots x1, x2(x1 < x0 < x2) that meets λ(x)− λ(x0) = ε, which re-
flects the width of the upper bottom of “inverted bathtub” under the given precision
ε, namely the upper bottom width.

Theorem 3.3. Suppose the non-negative continuous random variable X ∼ GES(β;m),

when 1/2 < m < 1, the failure rate function λ(x) is shape of “inverted bathtub”,
for any given ε > 0, the width l(ε) of the upper bottom of “inverted bathtub” is
proportional to the value of the parameter β.

Proof. Since λ(x) has the shape of “inverted bathtub” when 1/2 < m < 1, for
any given ε > 0, there are two roots which satisfy λ(x) − λ(x0) = ε, namely
x1, x2(0 < x1 < x2), and

x0 =

(
2m− 1

1−m

)1/m

β, λ(x0) =
1

β

(2m− 1)(2m−1)/m

(1−m)(m−1)/m
,

λ(x)− λ(x0) =
m

βm
x2m−1

xm + βm
− 1

β

(2m− 1)(2m−1)/m

(1−m)(m−1)/m
= ε,

(x/β)m−1

1 + (x/β)−m
=

(2m− 1)(2m−1)/m

m(1−m)(m−1)/m
+
β

m
ε.

Denote t = x
β
, ti =

xi
β
, i = 1, 2, and the equation about t is : tm−1

1+t−m = (2m−1)(2m−1)/m

m(1−m)(m−1)/m+
β
mε. The two roots are t1, t2, it is easy to see that when β increases, the right side
of the equation also increases, then t2 − t1 also increases.

So the width l(ε) = x2 − x1 of the upper bottom of “inverted bathtub” also
increases, then l(ε) is proportional to the value of the parameter β.

Theorem 3.4. Suppose the non-negative continuous random variable X ∼ GES(β;m),

the image of its average failure rate function G(x) has the following characteristics:
(1) when m ≥ 1, λ(x) is monotone increasing, and it belongs to increasing failure
rate average; (2) when 0 < m ≤ 1/2, G(x) is monotone decreasing and it belongs
to decreasing average failure rate; (3) when 1/2 < m < 1, G(x) is increased at first
and then decreased and its shape presents an “inverted bathtub”.

Proof.

G(x) =− (βmx)−1 [βm ln (xm + βm)− βm lnβm − xm] ,

G′(x) =

{[
1 +

(
x

β

)m]
x2
}−1

×

{
(m− 1)

(
x

β

)2m

+

[
1 +

(
x

β

)m]
ln

[
1 +

(
x

β

)m]
−
(
x

β

)m}
.

Denote t = (x/β)m > 0, thenG′(x) =
[
(1 + t)x2

]−1 [
(m− 1)t2 + (1 + t) ln(1 + t)− t

]
.
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Let g1(t) = (m− 1)t2 + (1 + t) ln(1 + t)− t, t > 0, then

g′1(t) = 2(m− 1)t+ ln(1 + t), lim
t→0

g1(t) = 0,

lim
t→+∞

g1(t) = lim
t→+∞

{
t2
[
(m− 1) +

(
1 +

1

t

)
ln(1 + t)

t
− 1

t

]}
=

+∞,m ≥ 1,

−∞,m < 1.

Let g2(t) = 2(m− 1)t+ ln(1 + t), t > 0, then

g′2(t) = 2(m− 1) + 1/(1 + t), lim
t→0

g2(t) = 0,

lim
t→+∞

g2(t) = lim
t→+∞

{
t

[
2(m− 1) +

ln(1 + t)

t

]}
=

+∞,m ≥ 1,

−∞,m < 1.

Let g3(t) = 2(m− 1) + 1/(1 + t), t > 0, then

g′3(t) = −1/(1 + t)2 < 0, lim
t→0

g3(t) = 2m− 1, lim
t→+∞

g3(t) = 2(m− 1).

When m ≥ 1, g3(t) > 0, scilicet g′2(t) < 0, g2(t) < 0, namely g′1(t) < 0, g1(t) < 0,
in other words G′(x) < 0, that is to say G(x) is monotone increasing and belongs
to increasing average failure rate.

When 1/2 < m < 1, there exists a unique t0 = (2m − 1)/(2 − 2m), g3(t0) = 0,
g3(t) > 0, g′2(t) > 0, g2(t) < 0, in the 0 < t < t0, and g3(t) < 0, g′2(t) < 0 when
t > t0, that is to say g2(t) is increased at first and then decreased, then there exists
a unique t1(t1 > t0 > 0) such that g2(t1) = 0, and g2(t) > 0, g′1(t) > 0 when
0 < t < t1, and g2(t) < 0, g′1(t) < 0 when t > t1, it implies g1(t) is increased at first
and then decreased, therefore there also exists a unique t2(t2 > t1 > t0 > 0)such
that g1(t2) = 0, and g1(t) > 0, G′(x) > 0 when 0 < t < t2, and g1(t) < 0, G′(x) < 0,
when t > t2, namely G(x) is increased at first and then decreased.

Theorem 3.5. Suppose the non-negative continuous random variable X ∼ GES(β;m),

the image of its mean residual life function m(x) has the following characteristics:
(1) when m ≥ 1, m(x) is monotone decreasing; (2) when 0 < m ≤ 1/2, m(x) is
monotone increasing; (3) when 1/2 < m < 1, m(x) is decreased at first and then
increased and it takes on a shape of “bathtub”.

Proof.

m′(x) = [1− F (x)]
−2
f(x)

∫ +∞

x

[1− F (t)] dt− 1

=
mx2m−1

βm (xm + βm)
2
e−(x/β)m

×

[∫ +∞

x

(tm + βm) e−(t/β)
m

dt− βm

m

(xm + βm)
2

x2m−1
e−(x/β)

m

]
.

Let g(x) =
∫ +∞
x

(tm + βm) e−(t/β)
m

dt− βm

m
(xm+βm)2

x2m−1 e−(x/β)
m

, x > 0.
When m > 1/2, we have limx→0 g(x) = −∞ and limx→+∞ g(x) = 0.

When m = 1/2, we have limx→0 g(x) =
∫ +∞
0

(tm + βm) e−(t/β)
m

dt− 2β3/2 and
limx→+∞ g(x) = 0.
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When 0 < m < 1/2, we have limx→0 g(x) =
∫ +∞
0

(tm + βm) e−(t/β)
m

dt and
limx→+∞ g(x) = 0.

g′(x) = m−1 [(m− 1) + (2m− 1)(β/x)m] (xm + βm)(β/x)me−(x/β)
m

.

Let h(x) = (m− 1)xm + (2m− 1)βm, x > 0.
When m = 1, we have h(x) = (2m− 1)βm = βm > 0.
When m 6= 1, we have h′(x) = m(m− 1)xm−1, limx→0 h(x) = (2m− 1)βm,

lim
x→+∞

h(x) =

−∞, m < 1,

+∞, m > 1.

Therefore, when m ≥ 1, h(x) > 0, g′(x) > 0, g(x) < 0, m′(x) < 0, namely m(x) is

monotone decreasing; when 1/2 < m < 1, there exists a unique x0 =
(

2m−1
1−m

)1/m
β

such that h(x0) = 0, and in the 0 < x < x0, h(x) > 0, g′(x) > 0, in the x > x0,
h(x) < 0, g′(x) < 0, that is g(x) increases at first and then decreases. Thus, there
exists a unique x1(0 < x1 < x0) such that g(x1) = 0, and in the 0 < x < x1,
g(x) < 0, m′(x) < 0, in the x > x1, g(x) > 0, m′(x) > 0, that is m(x) decreases at
first and then increases.

When 0 < m ≤ 1/2, h(x) < 0, g′(x) < 0, g(x) > 0, m′(x) > 0, that is to say
m(x) is monotone increasing.

Theorem 3.6. Suppose the non-negative continuous random variable X obeys the
“two-parameter generalized exponential sum distribution” GES(β;m), then

E(Xk) = βkΓ(2 + k/m).

Specifically, D(X) = β2
[
Γ(2 + 2/m)− Γ2(2 + 1/m)

]
.

4. Parameter estimation of the “two-parameter gen-
eralized exponential sum distribution”

4.1. Moment estimation of parameters in the full sample—
method one

Let X1, X2, · · · , Xn be a simple random sample of size n from X ∼ GES(β;m),
the sample observations of them are x1, x2, · · · , xn, the sample mean, the sec-
ondary moment and the sample variance are denoted as X̄ = 1

n

∑n
i=1Xi, X2 =

1
n

∑n
i=1X

2
i , S

2
n = 1

n

∑n
i=1 (Xi − X̄)2 respectively the observations of them are de-

noted by x̄, x2, s2n, respectively.
The following equations can be established by the method of moment estimation:

βΓ(2 + 1/m) = X̄, β2Γ(2 + 2/m) = X2.

After simplification, the following transcendental equation with the only parameter
m is obtained as follows: Γ(2 + 2/m)Γ−2(2 + 1/m) = X2/X̄2, and the moment
estimation of the parameter m is obtained from the solution, which is denoted
as m̂1. Then we get the moment estimation of parameter β, denoted as β̂1 =
X̄Γ−1(2 + 1/m̂1).
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Lemma 4.1. There is only one positive real root on the transcendental equation
Γ(2 + 2/m)Γ−2(2 + 1/m) = X2/X̄2 of parameter m.

Proof. Let x = 1/m, then Γ(2 + 2/m)Γ−2(2 + 1/m) = Γ(2 + 2x)Γ−2(2 + x).

Let G(x) = Γ(2 + 2x)Γ−2(2 + x), then limx→0G(x) = 1.

Due to

Γ(x+ 1) = xΓ(x), Γ(x) =
1

x

+∞∏
i=1

[(
1 +

x

i

)−1(
1 +

1

i

)x]
,

then

Γ(2 + 2x) = (1 + 2x)Γ(1 + 2x) =

+∞∏
i=1

[(
1 +

1 + 2x

i

)−1(
1 +

1

i

)1+2x
]
,

Γ(2 + x) = (1 + x)Γ(1 + x) =

+∞∏
i=1

[(
1 +

1 + x

i

)−1(
1 +

1

i

)1+x
]
.

Furthermore,

G(x) =

+∞∏
i=1

[
1 +

x2

(i+ 1)2 + 2(i+ 1)x

]
.

Since x2

(i+1)2+2(i+1)x > 0, it is strictly monotone increasing in x,
∑+∞
i=1

x2

(i+1)2+2(i+1)x

is uniform convergent and strictly monotone increasing in x, then G(x) is strict-

ly monotone increasing in x. And as well, limx→+∞
x2

(i+1)2+2(i+1)x = +∞, then

limx→+∞G(x) = +∞.

Owing to X2/X̄2 > 1, the equation Γ(2+2/m)Γ−2(2+1/m) = X2/X̄2 has only
one positive real root.

4.2. The maximum likelihood estimation (MLE) and interval
estimation of parameters under the type-II censoring
sample—method two

(1) The maximum likelihood estimation of parameters under the type-II
censoring sample

Suppose the life of the product X ∼ GES(β;m), the product life test will be
stopped until the r products out of n products fail, namely the type-II censoring
life test, thereby obtaining the first r order failure data x(1) ≤ x(2) ≤ · · · ≤ x(r), the
likelihood function is

L(m,β) =
n!

(n− r)!
mr

β2rm

(
r∏
i=1

x(i)

)2m−1

× e−
∑r
i=1 (x(i)/β)

m [
1 + (x(r)/β)m

]n−r
e−(n−r)(x(r)/β)

m

.
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Let ∂ lnL(m,β)
∂m = 0, ∂ lnL(m,β)

∂β = 0, simultaneous equations can be obtained



r

m
− 2r lnβ + 2

r∑
i=1

lnx(i) −
(n− r)x2m(r) (lnx(r) − lnβ)

βm
(
βm + xm(r)

)
−

r∑
i=1

(
x(i)

β

)m
(lnx(i) − lnβ) = 0,

− 2rm

β
−

(n− r)mxm(r)
β
(
βm + xm(r)

) +
m

βm+1

[
r∑
i=1

xm(i) + (n− r)xm(r)

]
= 0.

Simplify the second equation, it becomes

2rβ2m +

(
2rxm(r) −

r∑
i=1

xm(i)

)
βm − xm(r)

(
r∑
i=1

xm(i) + (n− r)xm(r)

)
= 0,

∆ = 4r (2n− r)x2m(r) + 4rxm(r)

r∑
i=1

xm(i) +

(
r∑
i=1

xm(i)

)2

> 0,

βm =
1

4r

[
−

(
2rxm(r) −

r∑
i=1

xm(i)

)

+

√√√√4r (2n− r)x2m(r) + 4rxm(r)

r∑
i=1

xm(i) +

(
r∑
i=1

xm(i)

)2
 ,

then substitute it into the first equation and simplify the following transcendental
equation with the only parameter m:g(m) = 0, where

g(m) =r − 2r lnβm + 2

r∑
i=1

lnxm(i) −
(n− r)x2m(r) (lnxm(r) − lnβm)

βm
(
βm + xm(r)

)
− 1

βm

r∑
i=1

xm(i)(lnx
m
(i) − lnβm),

and

βm =
1

4r

[
−

(
2rxm(r) −

r∑
i=1

xm(i)

)

+

√√√√4r (2n− r)x2m(r) + 4rxm(r)

r∑
i=1

xm(i) +

(
r∑
i=1

xm(i)

)2
 .

Through a lot of Monte-Carlo simulations, the conclusion can be found that the
equation g(m) = 0 has a unique real root. Hence, the root of the transcendental
equation g(m) = 0 of parameter m is the maximum likelihood estimation m̂2, then
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the maximum likelihood estimation of parameter β is

β̂2 =

{
1

4r

[
−

(
2rXm̂2

(r) −
r∑
i=1

Xm̂2

(i)

)

+

√√√√4r(2n− r)X2m̂2

(r) + 4rXm̂2

(r)

r∑
i=1

Xm̂2

(i) +

(
r∑
i=1

Xm̂2

(i)

)2



1/m̂2

.

(2) The maximum likelihood estimation and interval estimation of
parameters under the full sample.

In the full sample case, that is to say r = n, the likelihood function is

L(m,β) = mnβ−2nm

(
n∏
i=1

xi

)2m−1

e−
∑n
i=1 (xi/β)

m

.

Let ∂ lnL(m,β)
∂m = 0, ∂ lnL(m,β)

∂β = 0, then

n

m
− 2n lnβ + 2

n∑
i=1

lnxi −
n∑
i=1

(
xi
β

)m
(lnxi − lnβ) = 0,

− 2nm

β
+

m

βm+1

n∑
i=1

xmi = 0.

We can work out βm = 1
2n

∑n
i=1 x

m
i from the above formula, and the transcendental

equation has only the parameter m∑n
i=1 x

m
i lnxi∑n

i=1 x
m
i

− 1

2m
=

1

n

n∑
i=1

lnxi.

The maximum likelihood estimation of the parameter m can be obtained from the
above equation, denote as m̂2. Besides, the maximum likelihood estimation of the
parameterβ can be obtained

β̂2 =

(
1

2n

n∑
i=1

Xm̂2
i

)1/m̂2

.

Lemma 4.2. The equation of the parameter m:∑n
i=1 x

m
i lnxi∑n

i=1 x
m
i

− 1

2m
=

1

n

n∑
i=1

lnxi,

has only one positive real root.

Proof. Sorting the sample observations x1, x2, · · · , xn from smallest to largest,
denote as x(1) ≤ x(2) ≤ · · · ≤ x(n), in this case the equation becomes∑n

i=1 x
m
(i) lnx(i)∑n

i=1 x
m
(i)

− 1

2m
=

1

n

n∑
i=1

lnx(i).
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Let

g(m) =

∑n
i=1 x

m
(i) lnx(i)∑n

i=1 x
m
(i)

− 1

2m
, m > 0,

lim
m→0

g(m) = −∞, lim
m→+∞

g(m) = lnx(n) >
1

n

n∑
i=1

lnx(i),

g′(m) =
1(∑n

i=1 x
m
(i)

)2
( n∑

i=1

xm(i) ln2 x(i)

) n∑
j=1

xm(j)


−

(
n∑
i=1

xm(i) lnx(i)

) n∑
j=1

xm(j) lnx(j)

+
1

2m2
.

Considering(
n∑
i=1

xm(i) ln2 x(i)

) n∑
j=1

xm(j)

−( n∑
i=1

xm(i) lnx(i)

) n∑
j=1

xm(j) lnx(j)

 ,

the terms contains xm(i)x
m
(j) are[(

ln2 x(i) + ln2 x(j)
)
− 2(lnx(i))(lnx(j))

]
xm(i)x

m
(j) = (lnx(i) − lnx(j))

2xm(i)x
m
(j) > 0.

Therefore, g′(m) > 0, furthermore the equation g(m) = 1
n

∑n
i=1 lnx(i) has only one

positive root.

Lemma 4.3. Suppose the non-negative continuous random variable X ∼ GES(β;m),
X1, X2, · · · , Xn is a simple random sample of size n from population X, the sample
observations of them are denoted as x1, x2, · · · , xn, m̂2 is the maximum likelihood
estimation of the parameter m, then m̂2/m, m̂2(ln β̂2 − lnβ) are pivotal quantities.

Proof. m̂2 is the root of the following equation:
∑n
i=1 x

m
(i) ln x(i)∑n

i=1 x
m
(i)

− 1
2m = 1

n

∑n
i=1 lnx(i),

that is ∑n
i=1 x

m̂2

(i) lnx(i)∑n
i=1 x

m̂2

(i)

− 1

2m̂2
=

1

n

n∑
i=1

lnx(i),

Let Y = (X/β)m, Yi = (Xi/β)m, i = 1, 2, · · · , n, Y ∼ GES(1; 1), Y1, Y2, · · · , Yn are
independently and obey GES(1; 1), and∑n

i=1 x
m̂2

(i) lnxm(i)∑n
i=1 x

m̂2

(i)

− 1

2

m

m̂2
=

1

n

n∑
i=1

lnxm(i),∑n
i=1

[
(x(i)/β)m

]m̂2/m
ln
[
(x(i)/β)m

]∑n
i=1

[
(x(i)/β)m

]m̂2/m
− 1

2

m

m̂2
=

1

n

n∑
i=1

ln
[
(x(i)/β)m

]
,

that is ∑n
i=1 y

m̂2/m
(i) ln y(i)∑n

i=1 y
m̂2/m
(i)

− 1

2

1

m̂2/m
=

1

n

n∑
i=1

ln y(i).
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Thus, m̂2/m is a pivotal quantity, as well as

β̂m̂2
2 =

1

2n

n∑
i=1

Xm̂2
i ,

(β̂2/β)m̂2 =
1

2n

n∑
i=1

[(Xi/β)m]
m̂2/m =

1

2n

n∑
i=1

Y
m̂2/m
i ,

then m̂2(ln β̂2 − lnβ) is a pivotal quantity.

Denote aα, a
′
α as the upper α quartiles of the pivotal quantities m̂2/m, m̂2(ln β̂2−

lnβ), respectively. We can get the upper α quartiles with different sample size n
through 10000 times Monte-Carlo simulations.

If the confidence level 1− α is given, the upper 1− α/2, α/2 quartiles of m̂2/m
are denoted by a1−α/2, aα/2, respectively, and the upper 1 − α/2, α/2 quartiles of

m̂2(ln β̂2 − lnβ) are denoted bya′1−α/2, a
′
α/2, respectively, then

P
(
a1−α/2 ≤ m̂2/m ≤ aα/2

)
= 1−α, P

(
a′1−α/2 ≤ m̂2(ln β̂2 − lnβ) ≤ a′α/2

)
= 1−α.

Thus the interval estimation of m,β with the confidence level 1− α are respec-
tively [

m̂2/aα/2, m̂2/a1−α/2
]
,
[
β̂2e
−a′α/2/m̂2 , β̂2e

−a′1−α/2/m̂2

]
.

4.3. The inverse moment estimation and interval estimation
of parameters under the full sample—method three

Since X ∼ GES(β;m), let Y = (X/β)m, then Y ∼ GES(1; 1), the distribution
function and the density function are respectively denoted by

FY (y) = 1− e−y − ye−y, fY (y) = ye−y, y > 0,

E(Y k) = Γ (k + 2) = (k + 1)!, E(Y ) = 2, E(Y 2) = 6, D(Y ) = 2.

Construct inverse moment estimation equations

1

n

n∑
i=1

(Xi/β)m = 2,
1

n

n∑
i=1

(Xi/β)2m = 6.

Simplify and get the transcendental equation of the parameter m(
n∑
i=1

X2m
i

)(
n∑
i=1

Xm
i

)−2
=

3

2n
,

the inverse moment estimation of the parameter m can be obtained, denote by m̂3.
Besides, we can get the inverse moment estimation of the parameter β

β̂3 =

(
1

2n

n∑
i=1

Xm̂3
i

)1/m̂3

.

Lemma 4.4. The equation of parameter m:
(∑n

i=1X
2m
i

)
(
∑n
i=1X

m
i )
−2

= 3
2n has

only one positive real root.
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Proof. Because X1, X2, · · · , Xn are the first r order statistics of a sample size n
from the populationX, the order statistics of them are denoted byX(1), X(2), · · · , X(n),
at this time (

n∑
i=1

X2m
i

)(
n∑
i=1

Xm
i

)−2
=

3

2n

can also be denoted by (
n∑
i=1

X2m
(i)

)(
n∑
i=1

Xm
(i)

)−2
=

3

2n
.

Let

g(m) =

(
n∑
i=1

X2m
i

)(
n∑
i=1

Xm
i

)−2
, m > 0.

It’s easy to see limm→0 g(m) = 1/n, and if X(n−k+1) = X(n−k+2) = · · · = X(n),
then limm→+∞ g(m) = 1/k,

g′(m) = 2

(
n∑
i=1

Xm
i

)−3 n∑
i=1

X2m
i lnXi

n∑
j=1

Xm
j −

n∑
i=1

X2m
i

n∑
j=1

Xm
j lnXj

 .

Notice that in
∑n
i=1X

2m
i lnXi

∑n
j=1X

m
j −

∑n
i=1X

2m
i

∑n
j=1X

m
j lnXj ,

X2m
i Xm

j lnXi +X2m
j Xm

i lnXj −X2m
i Xm

j lnXj −X2m
j Xm

i lnXi

=Xm
i X

m
j (lnXi − lnXj)(X

m
i −Xm

j ) = Xm
i X

m
j (Xm

i −Xm
j )2

lnXi − lnXj

Xm
i −Xm

j

.

According to Cauchy mean value theorem, there exists ξ, min(Xi, Xj) < ξ <

max(Xi, Xj), such that
lnXi−lnXj
Xmi −Xmj

= 1
mξm > 0, then g′(m) > 0 and usually 1/n <

3/(2n) < 1/k, so the equation has only one positive root.

Lemma 4.5. Suppose the non-negative continuous random variable X ∼ GES (β;m),
X1, X2, · · · , Xn is a simple random sample of size n from population X, then(∑n

i=1X
2m
i

)
(
∑n
i=1X

m
i )
−2

is a pivotal quantity, which is strictly monotone increas-
ing in m.

Proof. Let Y = (X/β)m, Yi = (Xi/β)m, i = 1, 2, · · · , n, then Y ∼ GES(1; 1),
Y1, Y2, · · · , Yn are independent and obey GES(1; 1).

Due to(
n∑
i=1

X2m
i

)(
n∑
i=1

Xm
i

)−2
=

{
n∑
i=1

[(Xi/β)m]
2

}[
n∑
i=1

(Xi/β)m

]−2

=

(
n∑
i=1

Y 2m
i

)(
n∑
i=1

Y mi

)−2
,

it is easy to see that it is a pivotal quantity and it is strictly monotone increasing
in m known by Lemma 4.4.
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The upper α quartile of the pivotal quantity
(∑n

i=1X
2m
i

)
(
∑n
i=1X

m
i )
−2

is de-

noted by bα, then P
((∑n

i=1X
2m
i

)
(
∑n
i=1X

m
i )
−2

> bα

)
= α, we can get the upper

α quartile for different sample size n through 10000 times Monte-Carlo simulation.

The upper 1− α/2, α/2 quartiles of
(∑n

i=1X
2m
i

)
(
∑n
i=1X

m
i )
−2

are denoted by
b1−α/2, bα/2, respectively at the confidence level 1− α,

P

b1−α/2 ≤
(

n∑
i=1

X2m
i

)(
n∑
i=1

Xm
i

)−2
≤ bα/2

 = 1− α.

Then the interval estimation of parameter m of the confidence level 1−α is ob-

tained: [m̂31, m̂32], where m̂31, m̂32 are the roots of the
(∑n

i=1X
2m
i

)
(
∑n
i=1X

m
i )
−2

=

b1−α/2,
(∑n

i=1X
2m
i

)
(
∑n
i=1X

m
i )
−2

= bα/2, respectively.

4.4. The inverse moment estimation and interval estimation of
parameters under the type-II censoring sample—method
four

Suppose X(1) ≤ X(2) ≤ · · · ≤ X(r) are the first r order statistic of a sample of
size n from the population X ∼ GES(β,m), using the method of literature [10] to
construct the pivotal quantity of parameter m.

Lemma 4.6. Suppose X(1) ≤ X(2) ≤ · · · ≤ X(r) are the first r order statistics of a

sample size n from the population X ∼ GES(β,m), Si =
∑i
j=1X

m
(j)+(n−i)Xm

(i), i =

1, 2, · · · , r, then the pivotal quantity is denoted by
∑r−1
i=1 ln Sr

Si
, it is strictly monotone

increasing in m, and the transcendental equation
∑r−1
i=1 ln Sr

Si
= c of parameter m

has a unique positive real root for any arbitrary positive constant c > 0.

Proof. Let Y = (X/β)m, Y(i) = (X(i)/β)m, i = 1, 2, · · · , r, Y ∼ GES(1; 1),
Y(1), Y(2), · · · , Y(r) have the same distribution with the first r order statistics from
X ∼ GES(β,m) of sample size n.

r−1∑
i=1

ln
Sr
Si

=

r−1∑
i=1

ln

∑r
j=1X

m
(j) + (n− r)Xm

(r)∑i
j=1X

m
(j) + (n− i)Xm

(i)

=

r−1∑
i=1

ln

∑r
j=1 (X(j)/β)m + (n− r)(X(r)/β)m∑i
j=1 (X(j)/β)m + (n− i)(X(i)/β)m

.

Then, we can easily know
∑r−1
i=1 ln Sr

Si
is a pivotal quantity.

Let X(0) = 0, because
∑r−1
i=1 ln Sr

Si
=
∑r−1
i=1 ln

[
1 +

∑r
j=i+1 (n−j+1)(Xm(j)−X

m
(j−1))∑i

j=1 (n−j+1)
(
Xm

(j)
−Xm

(j−1)

) ].
Let

g(m) =

∑r
j=i+1 (n− j + 1)

(
Xm

(j) −X
m
(j−1)

)
∑i
j=1 (n− j + 1)

(
Xm

(j) −X
m
(j−1)

) , lim
m→0

g(m) = 0, lim
m→+∞

g(m) = +∞,
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then

lim
m→0

r−1∑
i=1

ln
Sr
Si

= 0,

lim
m→+∞

r−1∑
i=1

ln
Sr
Si

= +∞, g′(m) = A

 i∑
j=1

(n− j + 1)
(
Xm

(j) −X
m
(j−1)

)−2 ,
where

A =

 r∑
j=i+1

(n− j + 1)
(
Xm

(j) lnX(j) −Xm
(j−1) lnX(j−1)

)
×

[
i∑

k=1

(n− k + 1)
(
Xm

(k) −X
m
(k−1)

)]
−

 r∑
j=i+1

(n− j + 1)
(
Xm

(j) −X
m
(j−1)

)
×

[
i∑

k=1

(n− k + 1)
(
Xm

(k) lnX(k) −Xm
(k−1) lnX(k−1)

)]
.

Note that

A =

r∑
j=i+1

i∑
k=1

(n− j + 1)(n− k + 1)
(
Xm

(j) −X
m
(j−1)

)(
Xm

(k) −X
m
(k−1)

)

×

[
Xm

(j) lnX(j) −Xm
(j−1) lnX(j−1)

Xm
(j) −X

m
(j−1)

−
Xm

(k) lnX(k) −Xm
(k−1) lnX(k−1)

Xm
(k) −X

m
(k−1)

]

=
1

m

r∑
j=i+1

i∑
k=1

(n− j + 1)(n− k + 1)
(
Xm

(j) −X
m
(j−1)

)(
Xm

(k) −X
m
(k−1)

)

×

[
Xm

(j) lnXm
(j) −X

m
(j−1) lnXm

(j−1)

Xm
(j) −X

m
(j−1)

−
Xm

(k) lnXm
(k) −X

m
(k−1) lnXm

(k−1)

Xm
(k) −X

m
(k−1)

]
.

Let h(x) = x lnx, h′(x) = 1+lnx. According to Cauchy mean value theorem, there
exists aj , bk that satisfy Xm

(j−1) < aj < Xm
(j), X

m
(k−1) < bk < Xm

(k), we have

Xm
(j) lnXm

(j) −X
m
(j−1) lnXm

(j−1)

Xm
(j) −X

m
(j−1)

= 1 + ln aj ,

Xm
(k) lnXm

(k) −X
m
(k−1) lnXm

(k−1)

Xm
(k) −X

m
(k−1)

= 1 + ln bk,

then

A =
1

m

r∑
j=i+1

i∑
k=1

(n− j + 1)(n− k + 1)
(
Xm

(j) −X
m
(j−1)

)
×
(
Xm

(k) −X
m
(k−1)

)
(ln aj − ln bk) > 0.
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g(m) is monotone increasing in m and
∑r−1
i=1 ln Sr

Si
is also monotone increasing in

m.
At the same time it is easy to see, for any c > 0, the equation

∑r−1
i=1 ln Sr

Si
= c

has a unique positive real root.
Denote the mean value of the pivotal quantity

∑r−1
i=1 ln Sr

Si
by c, the inverse

moment estimate of parameter m is m̂4, which is the root of the equation

n−1∑
i=1

ln
Sn
Si

= c.

And

Sr
βm

=
1

βm

 r∑
j=1

Xm
(j) + (n− r)Xm

(r)


=

r∑
j=1

(X(j)/β)m + (n− r)(X(r)/β)m =

r∑
j=1

Y(j) + (n− r)Y(r)

is a pivotal quantity, we can get the mean value c′ of it by numerical simulation. If
now it is in the full sample size case, i.e. r = n, at this time c′ = 2n.

So we can establish the following equation according to the literature [6]:
1
βm

[∑r
j=1X

m
(j) + (n− r)Xm

(r)

]
= c′, ( in the full sample,r = n,c′ = 2n), then the in-

verse moment estimate of the parameter β is β̂4 =
{

1
c′

[∑r
j=1X

m̂4
(j) + (n− r)Xm̂4

(r)

]}1/m̂4

.

Lemma 4.7. Suppose X(1) ≤ X(2) ≤ · · · ≤ X(r) are the first r order statistic of a

sample size n from the population X ∼ GES(β,m), m̂4/m, m̂4(ln β̂4 − lnβ) are the
pivotal quantities.

Proof. Since m̂4 is the root of the equation
∑r−1
i=1 ln

∑r
j=1X

m
(j)+(n−r)Xm(r)∑i

j=1X
m
(j)

+(n−i)Xm
(i)

= c, we

have

r−1∑
i=1

ln

∑r
j=1X

m̂4

(j) + (n− r)Xm̂4

(r)∑i
j=1X

m̂4

(j) + (n− i)Xm̂4

(i)

= c,

r−1∑
i=1

ln

∑r
j=1 (X(j)/β)m̂4 + (n− r)(X(r)/β)m̂4∑i
j=1 (X(j)/β)m̂4 + (n− i)(X(i)/β)m̂4

= c,

r−1∑
i=1

ln

∑r
j=1

[
(X(j)/β)m

]m̂4/m
+ (n− r)

[
(X(r)/β)m

]m̂4/m∑i
j=1

[
(X(j)/β)m

]m̂4/m
+ (n− i)

[
(X(i)/β)m

]m̂4/m
= c.

Thus, m̂4/m is a pivotal quantity. And 1

β̂
m̂4
4

[∑r
j=1X

m̂4

(j) + (n− r)Xm̂4

(r)

]
= c′.

(β/β̂4)m̂4


r∑
j=1

[
(X(j)/β)m

]m̂4/m
+ (n− r)

[
(X(r)/β)m

]m̂4/m

 = c′,

then

1

c′


r∑
j=1

[
(X(j)/β)m

]m̂4/m
+ (n− r)

[
(X(r)/β)m

]m̂4/m

 = (β̂4/β)m̂4 .
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We can see that m̂4(ln β̂4 − lnβ) is a pivotal quantity from the above equation.

Denote cα, c
′
α as the upper α quartiles of the pivotal quantities m̂4/m, m̂4(ln β̂4−

lnβ), respectively, that is P (m̂4/m > cα) = α, we can get the upper α quartiles
for different sample size n and truncating failure number r through 10000 times
Monte-Carlo simulation.

If the confidence level 1− α is given, the upper 1− α/2, α/2 quartiles of m̂4/m
are denoted by c1−α/2, cα/2, respectively, and the upper 1 − α/2, α/2 quartiles of

m̂4(ln β̂4 − lnβ) are denoted by c′1−α/2, c
′
α/2, respectively, then

P
(
c1−α/2 ≤ m̂4/m ≤ cα/2

)
= 1−α, P

(
c′1−α/2 ≤ m̂4(ln β̂4 − lnβ) ≤ c′α/2

)
= 1−α.

The interval estimation of parameters m,β at the confidence level 1 − α are

respectively obtained by:
[
m̂4/cα/2, m̂4/c1−α/2

][
β̂4e
−c′α/2/m̂4 , β̂4e

−c′1−α/2/m̂4

]
.

4.5. The best linear unbiased estimation(BLUE) and inter-
val estimation of parameters under the type-II censoring
sample—method five

Suppose X(1) ≤ X(2) ≤ · · · ≤ X(r) are the first r order statistics of a sample size n
from the population X ∼ GES(β,m), let Z = lnX, µ = lnβ, σ = 1/m, then

FZ(z) = P (lnX ≤ z) = P (X ≤ ez) = 1− [1 + (ez/β)m] e−(e
z/β)m

= 1−
[
1 + e(z−µ)/σ

]
e−e

(z−µ)/σ
.

Therefore, Z is the distribution of location-scale parameter. Thus, according to
Gauss-Markov theorem, the best linear unbiased estimations (BLUE) of parameters
σ, µ are

σ̂ =

r∑
j=1

C(n, r, j)Z(j) =

r∑
j=1

C(n, r, j) lnX(j),

µ̂ =
r∑
j=1

D(n, r, j)Z(j) =
r∑
j=1

D(n, r, j) lnX(j).

The coefficients satisfy

r∑
j=1

C(n, r, j) = 0,

r∑
j=1

C(n, r, j)αj = 1,

r∑
j=1

D(n, r, j) = 1,

r∑
j=1

D(n, r, j)αj = 0,

where C(n, r, j) is the coefficient of the best linear unbiased estimation of σ, and
D(n, r, j) is the coefficient of the best linear unbiased estimation of µ. We can get
the values of the two coefficients in different sample size n and truncating failure
number r through 10000 times Monte-Carlo simulations.

Then the estimations of parameters β,m are

β̂5 = eµ̂ = exp

 r∑
j=1

D(n, r, j) lnX(j)

 , m̂5 = (σ̂)−1 =

 r∑
j=1

C(n, r, j) lnX(j)

−1 .
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Particularly, in the full sample size r = n, C(n, r, j) is denoted by C(n, j) and
D(n, r, j) is denoted by D(n, j), then the best linear unbiased estimator (BLUE) of
the parameters β,m are

β̂5 = eµ̂ = exp

 n∑
j=1

D(n, j) lnX(j)

 , m̂5 = (σ̂)−1 =

 n∑
j=1

C(n, j) lnX(j)

−1 .
Lemma 4.8. Suppose X(1) ≤ X(2) ≤ · · · ≤ X(r) are the first r order statistic of a
sample size n from the population X ∼ GES(β,m), σ̂/σ, (µ̂ − µ)/σ̂ are the pivotal
quantities.

The upper α quartiles of the pivotal quantities σ̂/σ, (µ̂ − µ)/σ̂ are denoted by
dα, d

′
α, then P ((µ̂− µ)/σ̂ > d′α) = α. We can get the upper α quartiles for different

sample size n and truncating failure number r through 10000 times Monte-Carlo
simulation.

If the confidence level 1 − α is given, the upper 1 − α/2, α/2 quartiles of σ̂/σ
are denoted by d1−α/2, dα/2, respectively, and the upper 1 − α/2, α/2 quartiles of
(µ̂− µ)/σ̂ are denoted by d′1−α/2, d

′
α/2, respectively, then

P
(
d1−α/2 ≤ σ̂/σ ≤ dα/2

)
= 1− α, P

(
d′1−α/2 ≤ (µ̂− µ)/σ̂ ≤ d′α/2

)
= 1− α.

The interval estimations of parameters m, β at the confidence level 1 − α are
obtained by[

d1−α/2/σ̂, dα/2/σ̂
]
,
[
exp

(
µ̂− d′α/2σ̂

)
, exp

(
µ̂− d′1−α/2σ̂

)]
.

4.6. The best linear invariant estimation (BLIE) and the inter-
val estimation of parameters under the type-II censoring
sample—method six

It is easy to see that the best linear invariant estimation (BLIE) of parameters σ, µ
are

σ̃ =

r∑
j=1

CI(n, r, j)Z(j) =

r∑
j=1

CI(n, r, j) lnX(j),

µ̃ =

r∑
j=1

DI(n, r, j)Z(j) =

r∑
j=1

DI(n, r, j) lnX(j).

The coefficients of the best linear invariant estimation of the parameters σ, µ are

CI(n, r, j) = C(n, r, j)/(1 + lrn), DI(n, r, j) = D(n, r, j)− C(n, r, j)Brn/(1 + lrn).

Then, the estimations of the parameters β,m are

β̂6 = eµ̃ = exp

 r∑
j=1

DI(n, r, j) lnX(j)

 , m̂6 = (σ̃)−1 =

 r∑
j=1

CI(n, r, j) lnX(j)

−1 .
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In particular, in the full sample size r = n,CI(n, r, j) is denoted by CI(n, j) and
DI(n, r, j) is denoted by DI(n, j), then the invariant estimations of the parameters
β,m are

β̂6 = eµ̃ = exp

 n∑
j=1

DI(n, j) lnX(j)

 , m̂6 = (σ̃)−1 =

 n∑
j=1

CI(n, j) lnX(j)

−1 ,
where CI(n, j) = C(n, j)/(1 + lnn), DI(n, j) = D(n, j)− C(n, j)Bnn/(1 + lnn).

Lemma 4.9. Suppose X(1) ≤ X(2) ≤ · · · ≤ X(r) are the first r order statistics of a
sample size n from the population X ∼ GES(β,m), σ̃/σ, (µ̃ − µ)/σ̃ are the pivotal
quantities.

The upper α quartiles of the pivotal quantity σ̃/σ, (µ̃ − µ)/σ̃ are denoted by
eα, e

′
α, respectively. We can obtain the upper α quartiles for different sample size

n and truncating failure number r though 10000 times Monte-Carlo simulation.
If the confidence level 1 − α is given, the upper 1 − α/2, α/2 quartiles of σ̃/σ

are denoted by e1−α/2, eα/2, respectively, and the upper 1 − α/2, α/2 quartiles of
(µ̃− µ)/σ̃ are denoted by e′1−α/2, e

′
α/2, respectively, then

P
(
e1−α/2 ≤ σ̃/σ ≤ eα/2

)
= 1− α, P

(
e′1−α/2 ≤ (µ̃− µ)/σ̃ ≤ e′α/2

)
= 1− α.

The interval estimations of parameters m,β at the confidence level 1 − α are
obtained by:[

e1−α/2/σ̃, eα/2/σ̃
]
,
[
exp

(
µ̃− e′α/2σ̃

)
, exp

(
µ̃− e′1−α/2σ̃

)]
.

4.7. The approximate maximum likelihood estimation (ALME)
of the parameter under the type-II censoring sample—
method seven

In the literature [1], it points out that, for some distribution, such as exponential
distribution, Rayleigh distribution and Weibull distribution, their maximum likeli-
hood estimation of the parameter does not have an explicit expression. Therefore,
in order to improve the method of maximum likelihood estimation, the approx-
imate maximum likelihood estimation method is proposed. Since the maximum
likelihood estimations of the parameters β,m are the solution of a transcendental
equation without explicit expression, according to literature [1], we can get the
approximate maximum likelihood estimation of the parameters

σ̂ =
−D +

√
D2 + 4AE

2A
, µ̂ = B − Cσ̂,

where

B =
1

M

[
r∑
i=1

ηi lnX(i) + (n− r)η lnX(r)

]
,

C =
1

M

[
r∑
i=1

γi − (n− r)γ

]
,
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M =

r∑
i=1

ηi + (n− r)η,A = r + C

r∑
i=1

(γi − ηiC)− (n− r)C (γ + ηC) ,

D =

r∑
i=1

(2ηiC − γi)
(
B − lnX(i)

)
+ (n− r) (2ηC + γ)

(
B − lnX(r)

)
,

E =

r∑
i=1

ηi
(
B − lnX(i)

)2
+ (n− r)η

(
B − lnX(r)

)2
.

Since FT (t) = 1 − (1 + et) e−e
t

, fT (t) = e2te−e
t−∞ < t < +∞, let pi = i/(n + 1),

qi = 1− pi, i = 1, 2, · · · , r, and ξi satisfies FT (ξi) = pi, that is
(
1 + eξi

)
e−e

ξi
= qi.

γi = 2− eξi + ξie
ξi , ηi = eξi ,

γ =
fT (ξr)

qr
− ξr

f ′T (ξr)qr + [fT (ξr)]
2

q2r
, η =

f ′T (ξr)qr + [fT (ξr)]
2

q2r
.

Moreover, the approximate maximum likelihood estimation of the parameters β,m
are

β̂7 = eµ̂ = exp

[
B −

C
(√
D2 + 4AE −D

)
2A

]
, m̂7 =

1

σ̂
=

2A√
D2 + 4AE −D

.

4.8. Simulation comparison of point estimation of parameter

In the full sample, the accuracy of point estimation of parameter is investigated
by Monte-Carlo simulations. Taking the true value of parameters β = 1, m = 1,
1000 times Monte-Carlo simulations are carried out under different sample sizes.
The estimated mean and mean square error of several point estimation methods are
calculated, and the simulation results are shown in Table 1 and Table 2. We can
see: (1) when the sample size increases, the mean square error of the various point
estimation method gradually decreases; (2) for all point estimations of parameter
m, the mean square error of BLUE is relatively smaller, and mean square error of
each point estimation method is gradually approaching with the increase of sample
size; (3) for all point estimations of parameter β, the mean square error of BLUE
is relatively smaller, and mean square error of each point estimation method is
gradually approaching with the increase of sample size.

4.9. Simulation comparison of interval estimation of parame-
ter

In the full sample, the accuracy of interval estimation of parameter is investigated
by Monte-Carlo simulations. Taking the true value of parameters β = 1, m = 1,
1000 times Monte-Carlo simulations are carried out under different sample sizes. At
the confidence level of 0.95, we calculate the average lower limit, the average upper
limit, the average interval length and the number of the intervals containing the true
value of parameter. The simulation results are shown in Table 3 and Table 4. It can
be found that it is better to use the best linear unbiased estimation and the best
linear invariant estimation to construct interval estimation when the sample size is
smaller from the view of the average interval length. That is to say, the method five
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Table 1. Simulation results for point estimation of parameter m

sample size n 10 15 20 25 30
moment estimation— mean 1.1934 1.1322 1.0788 1.0786 1.0607

method one mean square error 0.1352 0.0750 0.0474 0.0377 0.0261
maximum likelihood estimation mean 1.1544 1.0967 1.0692 1.0516 1.0479

—method two mean square error 0.1294 0.0578 0.0441 0.0272 0.0260
inverse moment estimation— mean 1.2533 1.1637 1.0994 1.0933 1.0716

method three mean square error 0.2108 0.1090 0.0632 0.0503 0.0317
inverse moment estimation— mean 1.0889 1.0428 1.0419 1.0319 1.0189

method four mean square error 0.1119 0.0499 0.0375 0.0302 0.0213

BLUE—method five
mean 1.0767 1.0376 1.0368 1.0172 1.0168

mean square error 0.0951 0.0479 0.0367 0.0276 0.0195

BLIE—method six
mean 1.1449 1.0791 1.0671 1.0406 1.0362

mean square error 0.1218 0.0566 0.0419 0.0302 0.0213
approximate maximum likelihood mean 1.1551 1.0832 1.0722 1.0437 1.0399

estimation—method seven mean square error 0.1279 0.0579 0.0429 0.0310 0.0222

Table 2. Simulation results for point estimation of parameter β

sample size n 10 15 20 25 30
moment estimation— mean 1.1032 1.0799 1.0440 1.0511 1.0358

method one mean square error 0.1095 0.0739 0.0537 0.0431 0.0338
maximum likelihood estimation— mean 1.0917 1.0499 1.0415 1.0281 1.0283

method two mean square error 0.1124 0.0663 0.0519 0.0408 0.0343
inverse moment estimation— mean 1.1395 1.0997 1.0562 1.0604 1.0444

method three mean square error 0.1352 0.0904 0.0631 0.0485 0.0370
inverse moment estimation— mean 1.0282 1.0089 1.0132 1.0107 1.0025

method four mean square error 0.1091 0.0646 0.0485 0.0428 0.0307

BLUE—method five
mean 1.0488 1.0275 1.0263 1.0095 1.0102

mean square error 0.1011 0.0645 0.0482 0.0387 0.0299

BLIE—method six
mean 1.1003 1.0611 1.0517 1.0303 1.0273

mean square error 0.1132 0.0705 0.0512 0.0402 0.0310
approximate maximum likelihood mean 1.0529 1.0246 1.0269 1.0090 1.0100

estimation— method seven mean square error 0.1035 0.0652 0.0484 0.0391 0.0304

and method six of interval estimations of parameters m and β are better. Besides,
the average interval length of each interval estimation method is gradually close as
the sample size increases.

4.10. Fitting test of two-parameter generalized exponential
sum distribution under the full sample situation

Suppose non-negative continuous random variable X ∼ GES(β;m), X1, X2, · · · , Xn

are simple random samples from the population X with sample size n, the order
statistics of them are denoted by X(1), X(2), · · · , X(n), and m̂2 is the maximum

likelihood estimation of the parameter m. Let Ti =
∑i
j=1X

m̂2

(j) + (n − i)Xm̂2

(i) , i =

1, 2, · · · , n, the distribution of
∑n−1
i=1 ln Tn

Ti
has nothing to do with the parameter.

In fact, let Y = (X/β)m, Y(i) = (X(i)/β)m, i = 1, 2, · · · , n, then Y ∼ GES(1; 1),
Y(1), Y(2), · · · , Y(n) are the firstrorder statistics of a sample size n from the popula-



368 R. Wang & B. Gu

Table 3. Simulation results for interval estimation of parameter m

n 10 15 20 25 30
interval average lower limit 0.6018 0.6627 0.7098 0.7344 0.7566

estimation average upper limit 1.6314 1.4829 1.3945 1.3413 1.2922
of method average interval length 1.0296 0.8203 0.6847 0.607 0.5356

two
the number of intervals containing

951 965 959 948 957
the true value

interval average lower limit 0.5826 0.6648 0.7084 0.7233 0.7472
estimation average upper limit 1.8982 1.6617 1.5315 1.4497 1.3992
of method average interval length 1.3156 0.9969 0.8231 0.7264 0.6519

three
the number of intervals containing

956 947 959 965 957
the true value

interval average lower limit 0.5968 0.6694 0.7078 0.7243 0.7533
estimation average upper limit 1.6130 1.4872 1.4050 1.3348 1.2960
of method average interval length 1.0263 0.8177 0.6972 0.6105 0.5427

four
the number of intervals containing

956 950 962 958 956
the true value

interval average lower limit 0.5926 0.6707 0.7066 0.7296 0.7573
estimation average upper limit 1.6185 1.4875 1.3927 1.3393 1.2932
of method average interval length 1.0259 0.8169 0.6862 0.6097 0.5359

five
the number of intervals containing

949 950 958 967 960
the true value

interval average lower limit 0.5926 0.6707 0.7064 0.7296 0.7573
estimation average upper limit 1.6186 1.4875 1.3928 1.3392 1.2933
of method average interval length 1.0260 0.8168 0.6864 0.6096 0.5361

six
the number of intervals containing

951 950 958 967 960
the true value

Table 4. Simulation results for interval estimation of parameter β

n 10 15 20 25 30
interval average lower limit 0.4717 0.5513 0.6275 0.6505 0.6697

estimation average upper limit 1.6947 1.5577 1.4651 1.4341 1.3828
of method average interval length 1.223 1.0065 0.8376 0.7837 0.7131

two
the number of intervals containing

953 946 954 958 963
the true value

interval average lower limit 0.4602 0.5592 0.6243 0.6478 0.6816
estimation average upper limit 1.7049 1.5436 1.4595 1.4471 1.3818
of method average interval length 1.2447 0.9845 0.8352 0.7993 0.7002

four
the number of intervals containing

956 942 952 957 957
the true value

interval average lower limit 0.4890 0.5547 0.6237 0.6480 0.6613
estimation average upper limit 1.6907 1.5369 1.4665 1.4324 1.3718
of method average interval length 1.2018 0.9823 0.8428 0.7843 0.7105

five
the number of intervals containing

947 955 951 952 955
the true value

interval average lower limit 0.4889 0.5548 0.6238 0.6480 0.6613
estimation average upper limit 1.6908 1.5368 1.4662 1.4323 1.3719
of method average interval length 1.2020 0.9820 0.8424 0.7843 0.7106

six
the number of intervals containing

947 955 951 952 955
the true value

tion Y ∼ GES(1; 1) with the same distribution.

n−1∑
i=1

ln
Tn
Ti

=

n−1∑
i=1

ln

∑n
j=1X

m̂2

(j)∑i
j=1X

m̂2

(j) + (n− i)Xm̂2

(i)
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=

n−1∑
i=1

ln

∑r
j=1 (X(j)/β)m̂2∑i

j=1 (X(j)/β)m̂2 + (n− i)(X(i)/β)m̂2

=

n−1∑
i=1

ln

∑r
j=1

(
Y(j)

)m̂2/m∑i
j=1

(
Y(j)

)m̂2/m
+ (n− i)

(
Y(i)
)m̂2/m

.

Because m̂2/m is the pivotal quantity, the distribution of
∑n−1
i=1 ln Tn

Ti
has nothing

to do with the parameter.
Thus, we can get the upper α quartile of the distribution of

∑n−1
i=1 ln Tn

Ti
for

different sample size n through 10000 times Monte-Carlo simulation.
If the confidence level 1−α is given, the upper 1−α/2, α/2 quartiles of

∑n−1
i=1 ln Tn

Ti

are denoted by g1−α/2, gα/2, respectively. Thus, if the observed value of
∑n−1
i=1 ln Tn

Ti
falls between (g1−α/2, gα/2), we can consider that X1, X2, · · · , Xn are simple random
samples from the populationX ∼ GES(β;m) with sample size n.

4.11. Case analysis—the estimation of parameter for the dis-
tribution regularity of maintenance time of a certain
type tank

The literature [8] investigates a type of tank in the process of maintenance, after the
47 observations of the basic level I preventive maintenance of class two maintenance
time, and the field observations are (unit: hours)

0.80 1.00 1.00 1.41 1.50 1.50 1.50 2.00 2.00 2.00

2.00 2.50 2.50 2.75 3.20 3.30 3.70 3.80 3.80 4.00

4.00 4.00 4.00 4.00 4.00 4.10 5.00 5.00 5.50 5.50

5.50 6.00 6.50 7.00 7.16 7.75 8.00 8.00 9.50 9.73

10.00 11.40 12.00 12.00 14.00 15.21 15.50

For “two-parameter generalized exponential sum distribution”, let m = 1, β =
β0/2, that is Zrlanga distribution, and the distribution function and density func-
tion are

F (x) = 1− (1 + 2x/β0) e−2x/β0 , f(x) = (4x/β2
0)e−2x/β0 , x > 0, β0 > 0.

The literature [8] considers that the associated fault repair maintenance time of
a certain type of tank obeys Zrlanga distribution by χ2 test, and the maximum
likelihood estimation of parameter β0 is β̂0 = 12.1. In the literature [4], the inverse
moment estimation of parameter β0 is given by 5.469, and the precise interval esti-
mation is [4.5104, 6.762] and the approximate interval estimation is [4.5416, 6.8432]
at the confidence level 95%.

Then we carry out the fitting test of generalized exponential sum distribution.
If the confidence level 1 − α = 0.95 is given, the upper 1 − α/2, α/2 quartiles of∑n−1
i=1 ln Tn

Ti
are denoted by g1−α/2 = 26.4062, gα/2 = 28.5391, respectively, and the

observed value of
∑n−1
i=1 ln Tn

Ti
is 27.7481, which falls between (g1−α/2, gα/2), there-

fore we think that X1, X2, · · · , Xn are simple random samples from X ∼ GES(β;m)
with sample size n.
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Parameter estimation and interval estimation are as follows.
(1) We can get each point estimation of parameters m,β by using the method

presented in this paper, as shown in Table 5.

Table 5. The point estimations of parameters m,β

method method method method method method method
one two three four five six seven

point estimation of m 0.9999 1.0051 0.9998 0.9916 0.9820 0.9944 1.0049
point estimation of β 2.7295 2.7427 2.7295 2.7087 2.6805 2.7130 2.7298

From the above point estimates of the parameters, we can find that the point
estimation of parameter m is close to 1 and the point estimation of parameter β is
close toβ̂0/2 = 2.7297. From another point of view, it is illustrates that it is reliable
to fit the above data by using the GES(β;m) distribution.

(2) At a confidence level of 95%, we can get each interval estimation of param-
eters m,β by using the method presented in this paper, as shown in Table 6.

Table 6. The interval estimations of parameters m,β

method two method three method four method five method six

m
interval 0.7734 0.7546 0.7729 0.7677 0.7677

estimation 1.2136 1.2594 1.2091 1.2085 1.2085
length 0.4401 0.5048 0.4362 0.4408 0.4408

β
interval 1.9686

—
1.9360 1.9116 1.9113

estimation 3.5257 3.5277 3.4906 3.4899
length 1.5571 — 1.5917 1.5790 1.5786
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