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ON THE GLOBAL WELL-POSEDNESS OF THE
3D VISCOUS PRIMITIVE EQUATIONS*

Mingli Hong

Abstract Here we consider the global well-posedness of the 3D viscous prim-
itive equations of the large-scale ocean. Inspired by the methods in Cao etc [2]
and Guo etc [5], we prove the global well-posedness and the long-time dynam-
ics for the primitive equations.
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1. Introduction

The primitive equations of the large-scale ocean are derived from the incompress-
ible Navier-Stokes equations with Coriolis force by taking into account both the
Boussinesq and hydrostatic approximations, see e.g. [7,9]. Starting with a series of
works by Lions etc [7,8], the primitive equations of the ocean or the atmosphere
have been extensively studied from the mathematical point of view, cf. e.g. [1,2,5].

In the present paper, we are interested in studying the existence and uniqueness
of global weakly strong solutions to the initial boundary value problem of large-scale
oceanic primitive equations considered by Cao etc [2]. Here we give the definition
of the weakly strong solution and our main results.

Definition 1.1. Let Uy = (v, Tp) € X, and let T be a fixed positive time. U =
(v,T) is called a weakly strong solution of the system (2.11)—(2.17) on the time
interval [0, T if it satisfies (2.11)—(2.12) in weak sense such that

ve L*0,T; V1) NL>®(0,T; Hy),

o€ L>(0,T;(LY(9)),

d.v € L0, T5 (L*(Q))*) N L*(0, T; (H'(2))?),
T € L>=(0,7; L*(Q)) N L2(0,T; Va),

0, T € L>=(0,T;L*(Q)) N L*(0,T; H'(Q)),

ov oT

e L2 / 7 L2 . !
% 20, e o),

where V/ is the dual space of V; for i = 1, 2, and the primitive equations and the
working spaces are give in section 2.

Now we formulate our main results in the present paper.
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Theorem 1.1 (Existence of global weakly strong solutions for (IBVP)). Let Q €
HY(Q), Uy = (vo,Ty) € X. Then for any T > 0 given, there exists a weakly strong
solution U to the system (2.11)—-(2.17) on the interval [0, T].

Theorem 1.2 (Uniqueness of global weakly strong solutions for (IBVP)). Let Q €
HYQ), Uy = (vo,Tp) € X. Then for any T > 0 given, the weakly strong solution
U of the system (2.11)-(2.17) on the interval [0, T] is unique. Moreover, the weakly
strong solution U is dependent continuously on the initial data.

Assuming that the initial data Uy = (vo,Tp) satisfy: vy € (L*(Q))?, To €
LY(Q), d,v9 € (L3(Q))?, 0.Ty € L?*(Q2), which is weaker than that in [2], we
prove the global well-posedness for the primitive equations of the large-scale ocean.
As a byproduct, we study the long-time behavior of weakly strong solutions (the
result is posed as Proposition 3.3). The main steps in our paper are to obtain
uniform estimates of ||0(t)|(4(qy)> and [|0.U(t)||(z2(n))3, where @ is the fluctuation
of horizontal velocity v. First, inspired by the methods of [5], we prove that L*-norm
of ¥ is bounded uniformly in ¢ after we obtain uniform estimates about L3-norm of
0. Second, on the basis of uniform estimates of ||0(¢)||(r4(q))2, we can prove that
10U (t)||(2(0))s is bounded uniformly in ¢.

The paper is organized as follows. In section 2, we give the primitive equations
of the large-scale ocean and our working spaces. We prove main results of our paper
in sections 3, 4.

2. The 3-D viscous primitive equations of the large-
scale ocean
In this section, we recall the model considered in Cao etc [2]. The three-dimensional

viscous primitive equations of the large-scale ocean in a Cartesian coordinate sys-
tem(for details, we refer the reader to [9] and references therein) is written as

g:+(v~V)v+wgz+kaU+Vp—};A”—];@g?z{:f(tvx)7 (2.1)
%JFT:(L (2.2)
dive + %: =0, (2:3)
I ovvrsol - Lar 10T _q 2.4)

where the unknown functions are v, w, p, T, v = (v(l)7 0(2)) the horizontal velocity,
w vertical velocity, p the pressure, T temperature, f = fo(8 + y) the Coriolis
parameter, k vertical unit vector, Re;, Res, Rt1, Rts Reynolds numbers, @) a given
function on a cylindrical domain Q defined later, V = (9., 9,), A = 92+0;, divo =
0¥ + Oyv.

The space domain of the equations (2.1)—(2.4) is

Q={(z,y,2): (z,y) € M and z € (—h(z,y),0)},

where M is a smooth bounded domain in R?2. Here we assume h = 1, that is,
Q= M x (—1,0). For general non-constant functions h(z,y), in order to obtain our



104 M. Hong

results, we need some regular conditions on h(z,y), for example h(z,y) € C3(M).
For simplicity and without loss generality, the boundary value conditions are given
by

v oT

@ = O, w = 0, 5 = —OCST on M x {0} = Fu7 (25)

v oT

@ = O, w = 0, E =0 on M x {_1} = Fb, (26)
. o or B

v-n—O,%xn—Q%—O on OM x [-1,0] =T, (2.7)

where ay is a positive constant and 7 is the norm vector to I'.

Remark 2.1. Like [2], the salinity diffusion equation is omitted here. However,
our results are valid when the salinity is taken into account and the boundary value
conditions %|z:0 = —a,T, az|z o = 0 are replaced by 3U|z 0 =T, 8Z|Z:0 =
—ag(T — T*) for smooth enough 7, T*.

Integrating (2.3) and using the boundary conditions (2.5), (2.6), we have

z

oty 2) =W ti,p2) = — [ dive(tiay. ) d' (28)

-1

0
/ divv dz = 0. (2.9)
-1
Suppose that ps is a certain unknown function at the bottom M x {—1}. By
integrating (2.2),

z

i) =ity - [ 7 e (2.10)
-1
In this article, we assume that the constants Re;, Res, Rt;, Rty are all
equal to 1, which can not change our results. Then the equations (2.1)—(2.4) can
be written as

%—i—(v Vv + W(v )%—i—kav—i—Vps /:Vsz’—Av—gzZ:O, (2.11)

a—T+(v V)T + W (v )g— AT—?;—Q—Q, (2.12)

/ divv dz = 0. (2.13)
The boundary value conditions of the equations (2.11)—(2.13) are given by

% =0, % = —a,T on Iy, (2.14)

% ~0, %f —0 on T}, (2.15)

U-ﬁzO,%xﬁzO,g—gzO on I', (2.16)

and the initial value conditions can be given as

Ult=o = (v|t=0, T|t=0) = Uo = (vo, Tp). (2.17)
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We call (2.11)—(2.17) as the initial boundary value problem of the new formulation
of the 3-D viscous primitive equations of large-scale ocean, which is denoted by
(IBVP).

Now we define the fluctuation © of horizontal velocity and find the equations
0

satisfied by © and ¥ as that in [2]. Let v = / vdz, and denote the fluctuation of
—1
the horizontal velocity by v = v — v. We notice that

0
5:/ bdz =0, V-0=0. (2.18)
—1

By integrating the momentum equation (2.11) with respect to z from —1 to 0, using
the boundary value conditions (2.14)—(2.16) and (2.18), we get

%y
ot
—AT=0 in M. (2.19)

0 z
(0 V)0 + odivi + (8- V)b + fk x 0+ Vps — / / VTdz dz
—-1J-1

Subtracting (2.19) from (2.11), we know that the fluctuation ¢ satisfies the following
equation and boundary value conditions

o ov
a—z+(5.V)@+W(@>a—z+(@-V)@+(@~V)f;—(5div5+(ﬁ-V)ﬁ)+fkxﬁ
z , 0 z , 8217
—/ VTdz +/ / VTdz dz — Ab— 5o =0 in Q, (2.20)
-1 —1J-1 022
o ov N
&:001111“,azOoan,wn—O,%xn—OonFl. (2.21)

Now we give our working spaces.

Lr(Q) = {u; v : Q = R, [,|uff < 400} with the norm |ul, = ([, ul?)7,
1<p<oo. [,-dQand [, -dM are denoted by [, - and [,, - respectively. H™(Q)
is the usual Sobolev space(m is a positive integer) with the norm

Hunm:(/Q(Z S Vi Ve + P,

1<k<mi;=1,2,3;5=1,-k

9 o 9
where Vl = 9z VQ = 871,/7 V3 = 3

We define our working spaces for the problem (IBVP). Let

~ ov ov ov

= (0 2,727 =0, —|,=—1 =0, .n =0, — = =0,
Vi = {v € (C™( ))’82"_0 Oaz‘_ 1=0,v-7|r, Oaﬁxn|ps 0

V-5 =0},

~ oT oT oT

={T. T (), — g = —a.T. —|.,__1 = - —
V2 { ) eC ( )v Dz |Z—0 sl EP |z_ 1 07 o |1"s O},
V1 = the closure of V;with respect to the norm || - ||1 (||v|; = ||v(1)||ﬁ + ||v(2)\|7’7"1),
V5 = the closure of {}vgwith respect to the norm || - ||1,

H, = the closure of Vlwith respect to the norm | - |2,

Hy = the closure of Vawith respect to the norm | - |,
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X1 = the closure of V;with respect to the norm || - |x, = | - |4 + |0 - |2,

X5 = the closure of Vowith respect to the norm || - lx, =1 la+10: ]2,
‘/v:‘/i)(‘/g7 H:Hleg, X:X1><X2.

The inner products and norms on Vj, Vo, V are given by

(v,v1)y, = / (0zv - Opv1 + Oyv - Oyv1 + 0,v - O, v1 + v - v1),
Q
HUH = (’U7’U)‘§/17 V’U, v € ‘/1’
oT 0Ty

e~
o~

1
HT|| = (T, T){",27 VT, Ty € Vs,
U, U1) = (0, 0" + @ ) + (T, 1),
(U, Uy = (v,v1)y, + (T, Th)v,,
HU” = (U? U)\%/7 ‘U|2 = (Ua U>%a VU = (UaT)a Ul = (Ulle) S ‘/7

where (-, -) denotes the L? inner products in L?(Q).

3. Global existence of weakly strong solutions and
long-time dynamics

3.1. Global existence

Proof of Theorem 1.1. We prove Theorem 1.1 by the well-known Faedo-Galerkin
method. Since the procedure is similar to the proof of the existence of Leray-Hopf
weak solutions to Navier-Stokes system in Lions [6, Theorem 6.1], we only give
a priort estimates of approximation solutions. By the usual Faedo-Galerkin method,
let U, = (vn,T,) be approximate weakly strong solutions to the system (2.11)-
(2.16) with the initial value conditions Uy, |¢=0 = (Vn|t=0, Tn|t=0) = Uno = (Vno, Tno)
on the interval [0, T], where U,o — Up in X as n — +oo.

L? estimates about T, v, Taking the inner product of equation (2.12) with
T, in L?(2), we obtain

1d|T, 2 0T, Qg
f@+/ VI + [ 152P + o2 Tl
Q Q 0z

2 dt Rto
oT,
:-/mmwn+wwy7mﬁ/Qn. (3.1)
Q 0z Q
09T, |
By integration by parts, T),(z,y, 2) = —/ ?dz +T,|.=0, using Holder inequal-
. Oz

ity, Cauchy-Schwarz inequality and Young inequality, we derive from (3.1)

d|IT. |2 oT,
dTuls [V [ 152+ aulTulnol? < QB (3.2)
dt Q 0 32

In this article, ¢ denote positive constants and can be determined in concrete condi-
tions. € given later is a small enough positive constant. By (3.2) and the Gronwall
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inequality,
|Tl3 < e |Tol3 + QI3 < En, (3.3)

where ¢y = min{%, %} >0, t>0and E is a positive constant independent of n.
From (3.2) and (3.3), we get

t+r
o [ U VT 1520+ )+ [Tololf + T )
t
<2e™ T3 + 3¢|Q)5
§E17 (34)
where ¢; = rmn{l7 e St t>0,12>7r >0 given, E; is a positive constant

t+r t+r
independent of n, and / -ds is denoted by / -
t

t
Choosing v, as a test function in equation (2.11), we obtain

1dv,|3 / 9 / OUp, |5

=— / [(vn - Vv, + W(vn)% + fk X vy + Vpsn] - vn / / VT, dz U,
Q

0z
(3.5)

where |Vv,|? = |0,v,]% + |9yvn >
With integration by parts, (2.13)—(2.16), (fk X v,)-v, = 0 and Young inequality,

from (3.5), we have
dlvnf3 / 2 / vn 5 2
Vo, < c|T,|5. 3.6
ol [ ol [ (G < el (3.6

By ||”n||2L2(M) < CM”VUHHQLQ(M) (cf. Galdi [3, p55]) and Gronwall inequality, we
derive from (3.6)

[0 (£)[3 < €O [vaol3 + L, (3.7)
where ¢ > 0. From (3.6) and (3.7), we get
t+r ov ot
o [ 1190+ G2 B+ lon P+ on(O < 26777 o0l + <
t < En, (3.8)

where ¢ = min{ 25 , 2, 1}, t > 0, E is a positive constant independent of n. By
Minkowski inequality and Holder inequality, for any ¢ > 0 we have

15 ()22 ar) < lon(®)]3-

/ |V17n|2§/ Vo2
M Q

Similarly,
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So, from (3.8),

t+r
cl/ / (V52 + [5]2) + 5 (®)] 2200y < Bz, ¥t > 0. (3.9)
t M

By the interpolation inequalities, we derive from (3.9)

t+r t+r A
_ 4 _
/ B4 = / 1Ballscar
t t

t+r
_ — 2
< / 150122 oy 1201 a1,
t
< cF2. (3.10)

L* estimates about T;, We take the inner product of equation (2.12) with
|T,,|*T,, in L?(Q2) and obtain

]‘duj’ftﬁ1 / 2 2 /aTRZ 2 / 4
- 3 VT, |*|T, 3 —— 7T s T lz=
Tog 8 VT s [ 1TEPT o [Tl

z . 4 aTn
:/ Q\Tn|2Tn—/[(vn-V)Tn—(/ divu,dz )a—]|Tn|2Tn. (3.11)
Q Q -1 z
By Holder inequality and Young inequality,
| [ QITPT | < clal} + eI, 4 (3.12)
Q

With integration by parts and (2.14)—(2.16), we have

7/ [(vy, - V)T, — (/ divvndz')aT"HTn\?Tn =0. (3.13)
Q -1 0z

ors
3 “dz +T3|.—0, by using Holder inequality and Cauchy-
z

0
Since T (z,y, 2) = —/
Schwarz inequality, :

T3
0 0
aT, 1 1
<o [ () mPIGERad ([ Tia - Tl
oT, 1
< Tol?| =22 f/T4 Tol.—oli 3.14
<e [ TPIGER+5 [ T+ Talocold (314)

Choosing ¢ small enough, we derive from (3.11)—(3.14)

d|T,|4 T,
Dol [ wrpmp+s [ 1G2PTE o [ (Tl
t o) Q 0z M

< Q. (3.15)
By Gronwall inequality, from (3.14) and (3.15), we have

T ()3 < ™' Tholi + c|Q3
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where t > 0, c¢3, E3 are positive constants independent of n. From (3.15) and
(3.16), we get

t+r
01/ |T},) 0|3 < 2F3, for any t > 0. (3.17)
¢

L? estimates about #,, We take the inner product of equation (2.20) with |, |,
in L2(Q) x L*(Q2), and obtain

1d|o,[3
3 dt

4 4
+/(|wn|2|@n\+7\V|ﬁn|%|2)+/(|azﬁn|2|on\+f\az|@n|%|2)
Q 9 Q 9
z N

= _/Q[(@n.v)ﬁn_ (/ diviudz ) =] - [on|0n —/[(@n-v)ﬁn] [T |On,

-1

Q
z 0 z
7/ |@n|@n.[(ﬁn-vm]+/(/ VTndz/f/ / VT, dz dz) - |55,
Q Q J-1 -1J-1

+/Q ondivin & (5n - )5u] - [l — /Q(fk: X Bn) - [T (3.18)

By integration by parts and (2.18), we get
_ - . 1 _ -3
[(Dr - V)] - [0 |0 = 3 (Un - V)|
Q Q

1
:—7/ [T > dive,
3 Ja

(3.19)

Since
/ (|G |5 - T )
Q
:/U@nwn-(@n.vmmn . (6n-V)|ﬁn\ﬁn]+/ (G - Brivn,
Q Q
0, (3.20)
— / |1~)n|ﬁn . (f)n . V)T)n = / Uy, - (f)n . V)|1~}n|l~)n Jr/ |1~)n|1~)n - 0, dive,,. (3.21)
Q Q Q

Using integration by parts, we obtain

/Q [ / D ondivi, + (5, V)i)d2] - o]

—1

- /Q(/O DnaOndz) - Oy (|0n|0n) +/(/0 By ndz) - Oy (|n]n).- (3.22)

—1 QJ-1
From (3.18) to (3.22),

Ldlp
3 dt

4 : 4
+ / (IV8n[*[5a] + 51V[a ]2 %) + / (1050 [5a] + 51051501 12)
@ Q

—/Q[(/O @mandz)-am(wnwn)ﬂ/ol y Ondz) - Opy (|00 0n)]

-1
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+ 1ol vativ + [ 5o Do,
—/ / T.dz —/ / T,dz dz) Vdiv( |0y, |0n). (3.23)
o Jo1

By Hélder inequality, we derive from (3.23)

1d|7,]3 4 ) 4 ‘
; |Zt\3 +/Q(|6n”v{}”|2+§W|ﬁ”|%|2)+/Q(|3z5n|2|17n\+§\8Z|17n|%|2)

0 JE— 1
<cfnla( / 15[V F / ( / Bal3d2)2)% + c|Tl sl 13 ( / 5] [V 2)
Q M —1 Q

ol [ alva - (f (f 01 onl2d2) 33, (3.24)

By Minkowski inequality, the interpolation inequalities and Hélder inequality, we
have

[/M(/_Ol [5n*d2)]* < /_ 01 [ /M<|6n|%)4]%dz

0
~ 3 ~ 3 ~ 3 1
< /1 19n ]2 llz2ar) (IV15n ]2 (72 ar) + 11Pn ] 72 ar) )2 d2

U 0 _ 8.9 _ 8.9 1
< clonl3 [ 1(IIV\vn|2IILz<M>+|||vn|2||L2(M>)dZ]2- (3.25)

3 2
By Minkowski inequality, Holder inequality and ||u| s < c||u||23(M)||uH;Il(M)
for any u € HY(M), we get

0 0
/ ( / wczz)fg[/ ( / 5a5)3d)E < ellpnlPloat. (3.26)
M —1 —1 M

By Minkowski inequality,

Il = ( /M< / TaJd2) < [Ty (3.27)

By Young inequality and the interpolation inequalities, we derive from (3.24)—(3.27)
d|v,|3 N ~ 4 _ 3 N - 4 .3
Dol + / (|an|2|vn| + 5 IVItn|> |2) + / (|8zvn|2|vn‘ + £10:|0n ]2 |2)
dt Q 9 Q 9

< C(”ﬁnll%?(M)”@nH%{l(M) + H{)n”%{l(M) + ||7~)n|‘2)|77n‘§ + C‘Tnﬁ + Clﬁn@ (3.28)

3
By the uniform Gronwall Lemma, (3.8), (3.9), (3.16) and |9,|3 < |vn|2 10n 13, we
obtain

|0n(t +7)[3 < B, (3.29)

where Ey = E4(|Uo||x, ||@]l1) > 0 independent of n and ¢t > 0.
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L* estimates about @, We take the inner product of equation (2.20) with
|Tn |20y, in L2(Q) x L%(Q), and obtain
1d|o, 1

~2~21~22/~2~21~22

1 dt —I—/Q(|an| |Un| +2|v|vn| | )+ Q(‘azvnl |Un| +2|82‘Un| | )

:—/[(@n-v)ﬁn—(/ div@ndz’)—avn]-|@n|%n—/[(@n-V)ﬁnywnP@n
Q 0z Q

-1

z 0 z
—/ |5n|25n~(@n-V)vn+/(/ VTndz/—/ / VTodz dz) - |0n) >
Q Q J-1 -1J-1

+/ [0 divy, + (O - V)] - |0 20 — / (fk X On) - |0n|?0n. (3.30)
Q Q

Similarly to (3.23), we derive from (3.30)
1 d|, |4 P I
Ldfonls / (V8 P12l + 2 V15./%) + / (105015l + 210,15 2)
4 dt Q 2
/vn~(’un~ )|vn| Uy, + / |vn\ Uy - O diviy,
Q

—/ / T,dz —/ / T,dz dz)div(|,|*5,)
o J-1

+/52[([1vnxvndz) O (|0 ”n)+([1vnyvndz) 0, (1650 [25.))- (3.31)

By Holder inequality, we obtain from the above

1d|9,[4 . N 1 . - - 1 -
1l [ (19802102 + J910,P) + [ (00l + S0l 2P)
Q Q

4 dt

0
<lloallzaon ([ 15 P195 24 [ ([ falta22)!
Q M —1
0
+ellllasonl| ([ 1oaPazRt([ 15, P195,2)%
/ 52V 5 2) 2 / ( / (5 [2d2)°7%. (3.32)
By Minkowski inequality, the interpolation inequalities and Holder inequality,
0 1 0 1
(a1 (alyta:
M —1 -1 JM
2 0 212 2112 1
< el B[ 910 Py + Nl )il (339)

Similarly to (3.33),

/M(/01|Un| 4=’ S/ /‘vnl de

<1 Ul sy b

< |51 1503 (3.34)
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By Young inequality, we derive from (3.32)—(3.34)

1d|1~)n|3 / ~ 121~ |2 1 ~ 12|12 / ~ 121~ |2 1 ~ 1212

- V n n a v n az n n a az n
4dﬁJrﬂ(lvllv\JrQIIvl\)+ﬂ(\v||v|+2| |On]"[%)
<e(1+ 10nllZ2an 101772 (ary + 1801702 (ary + 1920115013 + €| Tl (3.35)

By the uniform Gronwall Lemma, (3.8), (3.9), (3.16), (3.29) and |9,|} < |9n|2]/9.]2,
we get

|on (¢ + 2r)|1 < B, (3.36)

where Es = E5(||Uo||x, ||Q|l1) > 0 independent of n and ¢ > 0. From (3.35) and
(3.36), we have

e ~ 1205 |12 1 ~ 1212 ~ 1205 |2 1 ~ 12|12
[ U AT0aP 1l + 59102 + [ (10201l + 510 0
t+2r Q Q

<E3 + Es

—Es. (3.37)
By Gronwall inequality, from (3.35),
|on (£)]1 < C1, (3.38)

where C1 = C1(||Up|lx, |1Q]l1) > 0and 0 <t < 2r.

L? estimates about 0,v,, Taking the derivative, with respect to z, of equation
(2.11), we get

ov 0%v ov
nz _ A _ nz . nz
ot ST gz T (o Vvne - Wlon) T
+ (Vnz - Vv, — (divoy )vp, + fk X vp, — VT,
=0, (3.39)

where v,,, = 8,v,,. Taking the inner product of equation (3.39) with v,,, in L?(Q) x
L?(Q), we obtain

1d|Unz‘% / 2 / avnz 2

a V nz

2 dt + Q| v | + Ql 82’ |
OV

=— /Q[(Un - V)vns + W(vn)ﬁ] “Unz — /Q(fk X Unz) * Unz

_ /Q [(Uns - V)0 — (divon)vns] - v — /Q VT, - o (3.40)

With integration by parts,

/ [(Vn - Vs + W(vn)%] s = 0. (3.41)
Q

By integration by parts, Holder inequality, the interpolation inequalities, Minkowski
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inequality and Young inequality, we have

- / [(Unz : V)'Un - (divvn)vnz] *Unz
Q
<e / ol [0z | Vs
Q

< c/um - [50]) 0ns] e
Q

0 0
- 1 _ 1 1
< cftnlalonsla / Vona )t 40 / 12l / fons ) / V.2
Q M —1

-1
0
- 1 7 _ 1 1.1
< clonlalvns i onsl ¥ + e / |vn\4>4[/ ( / [ons |1 [Vals
M —1 M

Oy,

< 5(|anz|§ + | 92

13) + c(lnllzacar) + 10alD)vns 3. (3.42)
By integration by parts, Holder inequality and Young inequality,
—/ VT,  vp, = / T dive,, < c|T,|3 + &|Vun.|3. (3.43)
Q Q
Choosing € small enough, we derive from (3.40)—(3.43),

d|vn2|§ 2 Oz o
v’nz

SC(”TMH%A(M) + |5n|i)|vnzg + ClTn@' (3.44)

By the uniform Gronwall Lemma, (3.3), (3.8), (3.10), (3.36) and (3.44), we get
|vn=(t +37)]3 < Ex, (3.45)

where E7 = E7(||Upl|x, ||Q]l1) > 0 independent of n and ¢ > 0. From (3.44) and
(3.45), we have

t+4r
cl/ lons|I? < E2 + 2E; — Es. (3.46)
t43r

By Gronwall inequality, from (3.44),

t
/ loms 12 + [oms (D)3 < Co, (3.47)
0

where Cy = Co(||Up||x, |1Q]l1) > 0and 0 <t < 3r.

L? estimates about 0.7, Taking the derivative, with respect to z, of the equa-
tion (2.12), we get

o7, 0T, o7, o7,
nz _ AT _ nz . T nz . T _ . n
ot n: T 53 + (v - V)T + W(vy,) P + (vnz - V)T, (dlvvn)—az

= Q= (3.48)
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where T, = 9.1, Q, = 9.Q. We take the inner product of equation (3.48) with
T,. in L?(£2), and obtain

1d|T,.|3
*Q +/ |anz|2 +/ |Tnzz‘2 - / (Tnz|z:0 : Tnzz|z:0)
2 dt Q Q M
T, . T,
+/ Q:The, (3.49)
Q

where T,,,, = 8;;‘2". Similarly to (3.42), by integration by parts, Holder inequality,

the interpolation inequalities, Poincaré inequality and Young inequality, we obtain

o1,
[ (e 9T, = div, G,
< C/QHVUMHTn”TnZ‘ + V[ Tol [V Tnz| + ([0n] + [0 )V Tz | Tz ]

13 ~
< C‘vvnzg + §|VTM|§ + C(|Tn‘z + |vn‘421)|Tn2|421 + C|Un2‘421|Tn|421

0
_ 1
sl [ ([ Tl
-1 JM
2 2 2 1512 3 2 2
< | Vs +€|VTnz|5 + c(|Tuly + [0n|1)|Tnzl3 (IVT0zlz + [Thz212)

1
ol an Tl + elTo Evnsl3 (sl + Vo)
< e(|Tnzzl3 + VT l3) + c(lvnzz (3 + [Vona|3) + el Talilon:]3
+ C(‘Tnﬁ + |1~)n|§1 + Hﬁn”%‘l(M)”Tnzg' (3.50)
Taking the trace on z = 0 of equation (2.12),

Ty | .=
Tnzz‘z:O = % + [(Un . V)Tn“z:O - AT’I’L|Z:0 - Q|z:0- (351)

From (2.14), (3.51), we get

- / (Tnz |z:OTnzz ‘z:())
M

6Tn z=
= s [ Tulecol L 4 (00 V)T amo = ATl = @locol
M

llen|z:0|%

= as(2 dt + |VTn|z:0|§) + CVS/ Tl z=0[((vn - V)T)|s=0 — Ql2=0]-
M

(3.52)

With integration by parts, we have

~a, /M Tol=ol(vn - V) T) om0 — Qoo

=5 ((U’ﬂ : V)T3)|Z:O + as/ Tn|z:0Q‘z:0
M M

s

2

/ T’z‘z:Odivvn|z:0 + Qs / Tn|z:OQ|z:0
M M
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0 0
— %/ / T3|Z:0(/ divv,,dz’ + divu,) +as/ Tl 2=0Q)2=0
2 —1JM z M
< C|Tn|z=0|i + C”Unz”2 + C||Un||2 + C|Tn|z=0|g + C|Q|z=0|§' (3'53)

By Young inequality and choosing e small enough, we derive from (3.49)—(3.53)

d Tn22+as Tn z= 2
(| ‘2 | | 0|2) +/ ‘VT7LZ‘2+/ |Tnzz|2+as|VTn|z:0‘g

<c(1+ |Tn|§1 + |5n‘2 + +||77n||i4(M))|TM|§ + CHUnZ||2 + CHUnH2
+ C|Tn‘i‘an|% + ClTn|z:0|i + ClTn|z:0|§ + C‘Qn‘z:O@ + C|an|§ (3.54)

By the uniform Gronwall Lemma, (3.4), (3.8), (3.10), (3.16), (3.17), (3.36), (3.46),
we get
Tz (t 4 47)|3 < Ey, (3.55)

where Eg = Eg(||Uo||x,||@|l1) > 0 independent of n. From (3.54) and (3.55), we
have

t+57r
cl/ | Tz ll? < E3 4+ 2Eg = Ey. (3.56)
t+4r

By Gronwall inequality, from (3.54) we obtain

t
1Tl 4 70 < o (3.57)
where C3 = C3(||Uo||x, |Q[[1) >0 and 0 <t < 4r.

3.2. long-time dynamics

From the a priori estimates in subsection 3.1, we can easily obtain the following
result.

Proposition 3.1 (Long-time behavior of weakly strong solutions). If U is a global
weakly strong solution to the system (2.11)—(2.17), then U satisfies
0.0 € L(0,00; (LA(Q))2), § € L(0, 003 (LH(Q)2), T € L= (0, 50 X2).

If Uy = (vg,Tp) € V, we can obtain the following results which are similar to
those in [4]. Here we omitted the details of proof.

Proposition 3.2 (Existence of bounded absorbing sets for the dynamical system
(2.11)-(2.16)). If Q € H*(Q), Uy = (vo,To) € V, Then the global strong solution
U of the system (2.11)-(2.17) satisfies U € L*(0,00; V) and

1T < CUIUoll, Q1)

where C' is a positive constant dependent on ||Uy ||, ||Q]|1 and 0 < t < 4+00. Moreover,
the corresponding semigroup {S(t)}+>0 possesses a bounded absorbing set B, in 'V,
i.e., for every bounded set B C V, there exists to(B) > 0 big enough such that

S(t)B C B,, for anyt > to,

where B, = {U; ||U|| < p} and p is a positive constant dependent on ||Q]|1.
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Proposition 3.3 (Existence of the universal attractor for the system (2.11)—(2.16)).
The system (2.11)—(2.16) possesses a (weak) universal attractor A = Ng>oUi>T(t)B,
that captures all the trajectories, where the closures are taken with respect to V -weak
topology. The (weak) universal attractor A has the following properties:

(i) (weak compact) A is bounded and weakly closed in V;

(i1) (invariant) for everyt >0, S(t)A = A;

(i) (attracting) for every bounded set B in 'V, the sets S(t)B converge to A with
respect to V-weak topology as t — +00, i.e.,

lim dy(S(t)B, A) =0,

t——+oo

where the distance dy; is induced by the V-weak topology.

4. The uniqueness of weakly strong solutions

Proof of Theorem 1.2. Let (v1,77) and (va, T2) be two weakly strong solutions of
(2.11)—(2.17) on the time interval [0, 7] with ps, , ps,, and initial data ((vo)1, (T0)1),
((vo)2, (To)2), respectively.

Define v = v1 —wva, T =11 — To, ps = ps; — Ds,- Then v, T, p, satisfy the
following system

ov 0%v ov Ovy

i Av — ) + (v1-V)v+ (v-V)va + W(Ul)& + W(’U)E

+ [k x v+ Vp, — / VTdz =0, (4.1)

-1

orT o0’T or Ty

vlt=0 = (vo)1 — (vo)2, (4.3)

Tlt=0 = (To)1 — (To)2, (4.4)

ov oT

o 0, e —aT on Iy, (4.5)

ov oT

& - O7 a — 0 on Fb7 (46)
L o or

v-n-Q%xn—O,%—OonI‘l. (4.7)

We take the inner product of equation (4.1) with v in L2(Q) x L?(Q2) and obtain

B [ o+ [ e
:—/Q((vl-V)v—i—W(vl)gZ)-v—/ﬂ(v-V)vzm—/QW(v)a;;~v
—/Q(kavas)-w/g(/zVsz’)-u. (4.8)

-1

With integration by parts,

/ [(v1-V)v+ W(vﬂ?] -v = 0. (4.9)
o z
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By integration by parts, Holder inequality, Young inequality and the interpolation
inequalities, we get

|/(v-V)vg-v|:|/[vg-(v~V)v+v2~vdivv]|
Q Q
2 SCIINE STINTE = 2
se | Vol elmafalol ol + ellozlzean ol ]
S25/9(|VU|2+|Uz\2)+0(||52||i4<M)+|@2|3)|v|§- (4.10)

By Hoélder inequality, Young inequality, Minkowski inequality and the interpolation
inequalities, we obtain

|/ﬁv a@ ”
K / Voldz / oz old:)

<25/ |V + c[(Jva. |3 + 1) / Vo |* + |va: 3 + |va:[3]]0]3- (4.11)

We derive from (4.8)—(4.11)

Ldlv[3 2 4 2
g+ [ 19+ [ o

<de / (V02 + [02]2) + VT2

+ e[l + |02l s ary + 10213 + (Jv2: 3 + 1)[Vvzs[3 + Jvzz o] v]3. (4.12)

By taking the inner product of equation (4.2) with T in L?(2), we obtain

1d|T3
fﬁ+/ \VT|2+/ |T.|% + o |T|.—0|3

oT oTs
:_AWWVH+WW%ﬁTiLﬂWWB—LW%éhT (4.13)

Similarly to (4.12),

1d|T|?
1d '2+/ VTR + [ [T+ i Tlmol
Q Q

2 dt
<se [ (9o 410 + 32 [ (VTP +22P) + el Tl ol
Q Q
4 lTls + (T} + DIVEc + [Taclt o+ BT (414)

From (4.12) and (4.14), and choosing € small enough, we obtain

vls + |T
d(jv[3 +|T13) |2 | B, [ ioops / o2 + / VTP + / IT.? + 0| T].o 3
Q

Sdl+ﬂH4+HWHmmn+WWM (Jv22]3 + 1)[Vv2s 3 + [v2: 3] 0]
+ el Tali + (1T2: 13 + 1) VT3 + |Tozl3 + [T2: BT (4.15)

By Gronwall inequality, Theorem 1.1 and (4.15), we prove Theorem 1.2. O
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