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DIVERGENT SOLUTION TO THE
NONLINEAR SCHRÖDINGER EQUATION
WITH THE COMBINED POWER-TYPE

NONLINEARITIES∗
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Abstract In this paper, we consider the Cauchy problem for the nonlinear
Schrödinger equation with combined power-type nonlinearities, which is mass-
critical/supercr-itical, and energy-subcritical. Combing Du, Wu and Zhang’
argument with the variational method, we prove that if the energy of the initial
data is negative (or under some more general condition), then the H1-norm of
the solution to the Cauchy problem will go to infinity in some finite time or
infinite time.
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1. Introduction

In this paper, we study the blow-up phenomenon for the following nonlinear Schrödinger
equation (NSE) with combined power-type nonlinearities,

i∂tu+ ∆u = µ1|u|p1u+ µ2|u|p2u, (1.1)

and the initial data

u(0, x) = u0(x) ∈ H1(RN ). (1.2)

Here (t, x) ∈ RN , µ1 ∈ R,µ2 < 0 and the powers p1, p2 satisfy that

0 < p1 < p2,
4

N
< p2 <

4

N − 2
.

It is well-known that equation (1.1) has the energy conservation

E(u(t)) :=

∫
|∇u(t, x)|2 dx+

2µ1

p1 + 2

∫
|u(t, x)|p1+2dx

+
2µ2

p2 + 2

∫
|u(t, x)|p2+2dx = E(u0),
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and the mass conservation

M(u(t)) :=

∫
|u(t, x)|2 dx = M(u0).

Under some suitable conditions of the initial data, these two conservation laws give
the uniform bound of the H1-solution which is dependent on the parameters µ1, µ2

and p1, p2.
The problem (1.1)–(1.2) was studied by several authors. In particular, by virtue

of fixed point argument together with the Strichartz estimates for the linear prop-
agator, Cazenave [5] obtained the local well-posedness of the solution. In [22], Tao
etc proved the global well-posedness and scattering for general H1 initial data, when
µ2 > 0 (the defocusing case) and 0 < p1 < p2 ≤ 1+ 4

N−2 . In the focusing case, some
additional restrictions on the initial data should be enforced to obtain the global
theory and scattering, see for instances [16].

Throughout this paper, we focus on the blow-up solution of the problem (1.1)–
(1.2). For the nonlinear schrödinger equation with single nonlinearity

i∂tu+ ∆u = −|u|pu, 4

N
< p <

4

N − 2
,

it can be seen that for the finite variance data (xu0 ∈ L2(RN )), if further the
energy of the initial data is negative, then the solution must blow up in finite time.
This was proved by Glassey in [10]. Reducing the finite variance condition, Ogawa
and Tsutsumi [17] gained the similar results for the radial initial data. But for
general H1 initial data, the results still remain open now. However, some weaken
version of the corresponding results were considered by researchers. Glangetas and
Merle [9] proved that for general H1 data with negative energy, the corresponding
solution must blow up in finite or infinite time, in the cases of mass-critical/mass-
supercritical and energy subcritical (that is, 4

N ≤ p < 4
N−2 ). According to the

concentration-compactness method developed by Kenig and Merle [14], Holmer and
Roudenko [13] generalized the results in [9]. They considered the special case of
p = 2, N = 2, and showed that if the initial data satisfied

E(u0)M(u0) < E(R)M(R) and ||∇u0||L2 ||u0||L2 < ||∇R||L2 ||R||L2 ,

where R was the corresponding ground state of the equation, then the solution
must blow up in finite or infinite time. See some others but similar results in [3,12].
Recently, Holmer and Roudenko’s proof was simplied by Du etc [6], which also
contains some results on energy-supercritical case.

In this paper, we use the argument in [6] to study the finite or infinite time
blow-up results for the nonlinear schrödinger equation with combined power-type
nonlinearities (1.1). Equation (1.1) is more complicated than the equation with
single nonlinearity, since the scaling invariance is not valid for equation (1.1). Now,
we first introduce some notations that we need in the following.

Denote

Jω(u) :=

∫
|∇u|2dx+ ω

∫
|u|2dx+

2µ1

p1 + 2

∫
|u|p1+2dx+

2µ2

p2 + 2

∫
|u|p2+2dx,

(1.3)

K(u) := 8

∫
|∇u|2dx+

4µ1p1N

p1 + 2

∫
|u|p1+2dx+

4µ2p2N

p2 + 2

∫
|u|p2+2dx. (1.4)
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Then one may find that

Jω(u) = E(u) + ωM(u).

So for the solution u of (1.1), Jω(u(t)) is conserved along the time.
Moreover, let Qω be the radial ground state of the following elliptic equation

−∆ψ + ωψ + µ1ψ
p1+1 + µ2ψ

p2+1 = 0, ω > 0. (1.5)

Usually, we define the ground state of (1.5) to be the solution of (1.5), Qω, which
satisfies

Jω(Qω) ≤ Jω(ψ), for any solution ψ ∈ H1(RN )\{0} of (1.5).

It can be asserted that the ground state Qω always exists when µ2 < 0, we can
refer to [1, 21]. Thus (1.1) has the solitary solution eiωtQω.

Now, we state our main theorem in this paper.

Theorem 1.1. Let µ2 < 0, 4
N < p2 <

4
N−2 , moreover, µ1 and p1 satisfy one of the

following conditions,

(a) µ1 ≥ 0 and 0 < p1 ≤ 4
N ;

(b) µ1 < 0 and 4
N < p1 < p2.

Suppose that u0 ∈ H1(RN ) and

Jω(u0) < Jω(Qω),K(u0) < 0. (1.6)

In addition, assume that the interval (−T∗, T∗) (T∗ may be infinity) be the maximal
lifespan of the corresponding solution u. Then the solution u of (1.1) must blow up
in finite or infinite time, that is,

sup
t∈(−T∗,T∗)

||u(t)||H1 = +∞.

The conditions (a), (b) in Theorem 1.1 are employed in the variation argument.
They are not shown to be sharp for blow-up solution in this paper. However, it is
more general than the exciting results. Now we will try to show some rationality
on these conditions. For this purpose, let us have a look at the stable and unstable
theories of the standing wave solution eiωtQω, which are much related to the blow-
up theories. In particular, in the case of 0 < p1 ≤ 4

N < p2 <
4

N−2 , it was proved

by Ohta [19] that the standing wave eiωtQω was unstable for any ω > 0 in one
dimensional case when µ1 ≥ 0, µ2 < 0 (that is, condition (a)); however it was
concluded in [7,18–20] that the standing wave eiωtQω was stable when ω was small
enough (unstable when ω was large enough) when µ1 < 0, µ2 < 0. On the other
hand, in the case of 0 < 4

N < p1 < p2 <
4

N−2 , it was shown by Berestycki and

Cazenave [2] that the standing wave eiωtQω was unstable for any ω > 0 when µ1 <
0, µ2 < 0 (that is, condition (b)), see Ohta [19] for the results in one dimensional
case when µ1 > 0, µ2 < 0.

Under some suitable assumptions on p1, p2 and

Jω(u0) < Jω(Qω),K(u0) > 0,



252 J. Li & B. L. Guo

one may assert that the solution is global existence in time, and scattering at least
when the initial data is radial, see [8, 11,15,16,23] for some special cases.

Furthermore, with the help of the virial identities, the authors in [16, 22] es-
tablished some finite time blow-up results for the combined power-type nonlinear
Schödinger equation when the initial data were radial. While, for the general data
without radial assumption, there is another difficulty which can not be solved by a
simple usage of the virial identities. As mentioned above, such finite time blow-up
results also remain open for single nonlinearity. In [6], the authors observed that if
the L2-norm of the initial data u0 was small enough in the exterior ball BR, then
in a long time L, the L2-norm of the corresponding solution u(t) was also sufficient
small in an exterior ball with a slightly expansion of the radii, where L had a similar
size as R. In other word, the small L2-estimate in the exterior ball kept being in
a long time compared with the radii of the ball. Using this observation, Glassey’s
argument can lead to the contradiction when the radii goes to be large. According
to this result in our discussion and some further variation argument, we can prove
our theorem.

The structure of this paper is as follows. First, we show that under the condition
of (1.6), the quantity K(u(t)) is strictly away from zero along the flow. Second, we
give the specific expression of the local virial identities. Using these identities, we
prove the L2-estimate in the exterior ball. Then we apply this smallness estimate to
another virial identities and give the intensive analysis that each remainder term is
small enough when the time lies in a suitable long region. Finally, our main results
follow by the standard Glassey’s argument.

2. A variational lemma

In this section, we recall some variational results. Let

Jω(ϕ) = E(ϕ) + ωM(ϕ).

We have the following rigidity results of Qω.

Proposition 2.1. Under the conditions of Theorem 1.1, the following holds:

Jω(Qω) = min{Jω(φ) : φ ∈ H1(RN ) \ {0},K(φ) = 0}.

Proof. Let the manifold

Mω = {φ ∈ H1(RN )\{0} : Jω(φ) = d,K(φ) = 0},

where
d = min{Jω(φ) : φ ∈ H1(RN )\{0} : K(φ) = 0}.

We will prove this proposition in two steps.
Step 1: Mω is non-empty.

It is sufficient to prove that for the minimizer sequence {φn} which satisfies

Jω(φn)→ d, K(φn) = 0, (2.1)

there exists xn ∈ RN , φ ∈Mω such that

φn → φ in H1(RN ).

To get the assertion, we need the following lemmas.
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Lemma 2.1. Under the condition (a) or (b),

Jω(φ)− 1

8
K(φ) ≥ 0.

Proof. By the definitions of Jω(φ) and K(φ) in (1.3) and (1.4), we have

Jω(φ)− 1

8
K(φ) = ω

∫
|φ|2dx+

2µ1

p1 + 2

(
1− p1N

4

) ∫
|u|p1+2dx

+
2µ2

p2 + 2

(
1− p2N

4

) ∫
|u|p2+2dx. (2.2)

Note that no matter in Condition (a) or Condition (b), we have

2µ1

p1 + 2

(
1− p1N

4

)
≥ 0. (2.3)

Moreover, since p2 >
4
N and µ2 < 0, it follows that

2µ2

p2 + 2

(
1− p2N

4

)
> 0. (2.4)

Hence Jω(φ)− 1
8K(φ) ≥ 0.

Lemma 2.2. Suppose that K(φ) < 0, then

Jω(φ)− 1

8
K(φ) > d.

Proof. From (1.4), we have

K(λφ) = λ2
[
8

∫
|∇u|2dx+ λp1

4µ1p1N

p1 + 2

∫
|u|p1+2dx+ λp2

4µ2p2N

p2 + 2

∫
|u|p2+2dx

]
.

Note that 1 < p1 < p2, it can be concluded that when λ > 0 and λ is sufficient
small, K(λφ) > 0. So if K(φ) < 0, there exists λ < 1, such that

K(λφ) = 0.

Thanks to the definition of d, it yields

Jω(λφ) ≥ d,

and thus

Jω(λφ)− 1

8
K(λφ) ≥ d.

On the other hand, by Lemma 2.1 and λ < 1, we have

Jω(λφ)− 1

8
K(λφ) = λ2

∫
|φ|2dx+ λp1+2 · 2µ1

p1 + 2

(
1− p1N

4

) ∫
|u|p1+2dx

+ λp2+2 · 2µ2

p2 + 2

(
1− p2N

4

) ∫
|u|p2+2dx

< Jω(φ)− 1

8
K(φ),

thus,
Jω(φ)−K(φ) > d,

which completes the proof.
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Lemma 2.3. (i) d 6= 0; (ii) For the minimizer sequence {φn} satisfying (2.1), there
exists q ∈ (2, p2 + 2) such that supn ||φn||Lq > 0.

Proof. (i) If not, there exists {φn} ∈ H1(RN )\{0}, such that

Jω(φn)→ 0,K(φn) = 0.

Then

Jω(φn)− 1

8
K(φn)→ 0 as n→∞,

and thus from Lemma 2.1, we obtain for any q ∈ [2, p2 + 2],

||φn||Lq → 0 as n→∞.

If p1 ≤ 4
N , then µ1 ≥ 0. Note that 2 + 4

N ≤ p2 + 2 < 2∗ = 2N
N−2 , so there exist

q ∈ (2, p2 + 2) and a constant CN,p2 > 0, such that∫
|φn|p2+2dx ≤ CN,p2 ||φn||

p2
Lq ||∇φn||2L2 .

Hence for large n, we have

K(φn) ≥ 8

∫
|∇φn|2dx+

4µ2p2N

p2 + 2

∫
|φn|p2+2dx

≥ 8||∇φn||2L2 − CN,p2 ||φn||
p2
Lq ||∇φn||2L2

≥ 4||∇φn||L2 .

Else if p1 >
4
N , then µ1 < 0. Along the same line of the above process, we can get

K(φn) ≥8

∫
|∇φn|2dx+

4µ1p1N

p1 + 2

∫
|φn|p1+2dx+

4µ2p2N

p2 + 2

∫
|φn|p2+2dx

≥8||∇φn||2L2 − CN,p1 ||φn||
p1
Lq1 ||∇φn||2L2 − CN,p2 ||φn||

p2
Lq2 ||∇φn||2L2

≥4||∇φn||L2 ,

for some q1, q2 ∈ (2, p2 + 2).
Combining with K(φn) = 0, it tells us that

∇φn ≡ 0,

and thus φn ≡ 0, which is a contradiction. Therefore, d 6= 0.
(ii) We prove this by contradiction argument.
If for any q ∈ (2, p2 + 2),

||φn||Lq → 0 as n→∞.

Then the similar argument as in (i) also yields that

K(φn) = 0

and thus φn = 0. This is a contradiction.
Now we return to prove the conclusion in Step 1.
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Since supn ||φn||Lq > 0 and φn is bounded in H1(RN ), there exist {yn} and
φ ∈ H1(Rn)\{0} such that

φn(−yn) ⇀ φ in H1(Rn).

Moreover, by Fotou’s estimate, when n→∞, we have

||φn||rLr − ||φn − φ||rLr → ||φ||rLr , for r = 2, p1 + 2, p2 + 2,

and
||∇φn||2L2 − ||∇φn −∇φ||2L2 → ||∇φ||2L2 .

Therefore,
Jω(φn)− Jω(φn − φ)→ Jω(φ), (2.5)

K(φn)−K(φn − φ)→ K(φ). (2.6)

Combing (2.5) with (2.6), it follows that

Pω(φn)− Pω(φn − φ)→ Pω(φ), (2.7)

where Pω(f) = Jω(f)− 1
8K(f).

Since Pω(φn) → d, and from Lemma 2.1, Pω(φn − φ) ≥ 0, Pω(φ) > 0 (since
φ 6= 0), we have for large n,

Pω(φ) ≤ d and Pω(φn − φ) ≤ d. (2.8)

Thus by Lemma 2.2, we know

K(φn − φ) ≥ 0 and K(φ) ≥ 0.

But K(φn) = 0. Hence, from (2.2), we get

K(φ) = 0 and K(φn − φ)→ 0. (2.9)

By the definition of d, we obtain

Jω(φ) ≥ d.

However, from (2.8), Pω(φ) ≤ d, we have

Jω(φ) = Pω(φ) +
1

8
K(φ) ≤ d.

These yield that Jω(φ) = d. Thus, from (2.5), Jω(φn−φ)→ 0. Therefore, together
with (2.9), we get

Pω(φn − φ)→ 0 as n→∞.

Combining with (2.2), it implies that

||φn − φ||L2 + ||φn − φ||Lp1+2 + ||φn − φ||Lp2+2 → 0 as n→∞.

Again, with the help of Jω(φn − φ)→ 0, we further have

||φn − φ||H1 → 0 as n→∞.
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This proves that Mω is nonempty.
Step 2. d = Jω(Qω).
For any φ ∈M, by the Larange multiplier theory, there exists λ ∈ R, such that

J ′ω(φ) = λK ′ω(φ).

Let ϕ = 4Nφ+ 8x · ∇φ, then we take L2 product with ϕ on the both two sides and
get 〈

J ′ω(φ), ϕ
〉

= λ
〈
K ′(φ), ϕ

〉
. (2.10)

Here 〈f, g〉 =
∫
RN f(x)ḡ(x) dx. On one hand,〈

J ′ω(φ), ϕ
〉

= K(φ) = 0.

On the other hand, direct calculation also gives

〈
K ′(φ), ϕ

〉
=16

∫
|∇φ| dx+

2N2p21
p1 + 2

∫
|φ|p1+2 dx+

2N2p22
p2 + 2

∫
|φ|p2+2 dx.

Note that K(φ) = 0, we further get

〈
K ′(φ), ϕ

〉
=

2µ1

p1 + 2

(
1− 4

Np1

)∫
|φ|p1+2 dx+

2µ2

p2 + 2

(
1− 4

Np2

)∫
|φ|p2+2 dx.

Employing (2.3) and (2.4), we have〈
K ′(φ), ϕ

〉
< 0.

Now together with (2.10), we obtain that λ = 0. Hence, J ′ω(φ) = 0. That is, φ
obeys (1.5). So by the definition of ground state, we have d ≥ Jω(Qω). But on
the other hand, for any function φ solves (1.5), we have K(φ) = 0. Thus by the
definition of d again, d ≤ Jω(Qω). Therefore, d = Jω(Qω). So we complete the
proof of the proposition.

Denote

A = {ϕ ∈ H1(Rd) : Jω(ϕ) < Jω(Qω),K(ϕ) < 0}.

Then by Proposition 2.1, we have the following lemma. Here we use the argument
in [6] to prove the lemma.

Lemma 2.4. If u0 ∈ A, then there exists β0 = β0(u0) > 0, such that

sup
t∈(−T∗,T∗)

K(u(t)) < −β0. (2.11)

Proof. We argue for contradiction, then by continuity, there exists {tn} ⊂ (−T∗, T ∗),
s.t.

K(u(tn)) ↑ 0 as n→∞.

One may find that there exists λn ↓ 1, such that

K(λnu(tn)) = 0.
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With the help of Lemma 2.1, Jω(Qω) = min{Jω(ϕ) : ϕ ∈ H1(Rn\{0}),K(ϕ) = 0}.
Thus we have

Jω(λnu(tn)) ≥ Jω(Qω). (2.12)

Note that by mass and energy conservation laws, it asserts that

Jω(λnu(tn)) = λ2n

[
Jω(u(tn)) + (λp1n − 1)

2µ1

p1 + 2

∫
|u(tn)|p1+2dx

+ (λp2n − 1)
2µ2

p2 + 2

∫
|u(tn)|p2+2dx

]
= λ2nJω(u(tn)) + λ2nAn

= λ2nJω(u0) + λ2nAn,

where

An = (λp1n − 1)
2µ1

p1 + 2

∫
|u(tn)|p1+2dx+ (λp2n − 1)

2µ2

p2 + 2

∫
|u(tn)|p2+2dx.

Since λn ↓ 1, and K(u(tn)) ≤ 0, we know that the second term of An is negative
and strictly larger in absolute value than the first term when n is large enough.
Therefore, for sufficient large n, we have An ≤ 0. This implies that

Jω(λnu(tn)) ≤ λ2nJω(u0)→ Jω(u0) = Jω(Qω) +
(
Jω(u0)− Jω(Qω)

)
,

which contradicts with (2.12) since Jω(u0)− Jω(Qω) < 0.

3. Local virial identity

In this section, we give the local virial identities of the problem (1.1)–(1.2). This is
the key point of the proof for our main theorem. In this paper, as in [6] we need
the specific expression of them.

3.1. Local virial identity

Let φ be a smooth, radial function. Denote

I(t) =

∫
φ(x)|u(t, x)|2dx.

Then we have the following virial identities.

Lemma 3.1. Let u be the solution of (1.1), then

I ′(t) =2Im

∫
∇φū · ∇udx; (3.1)

I ′′(t) =4

∫
φ′

r
|∇u|2dx+ 4

∫
(
φ
′′

r2
− φ′

r3
)|x · ∇u|2dx

− 2µ1p1
p1 + 2

∫
(φ
′′

+ (N − 1)
φ′

r
)|u|p1+2dx

− 2µ2p2
p2 + 2

∫
(φ
′′

+ (N − 1)
φ′

r
)|u|p2+2dx−

∫
∆2φ|u|2dx. (3.2)
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Proof. From (1.1), we have

ut = i(∆u− µ1|u|p1u− µ2|u|p2u).

Thus,

I ′(t) =2Re

∫
φ(x)u(t, x)ut(t, x)dx,

=2Re

∫
φ(x)u(t, x)i(∆u− µ1|u|p1u− µ2|u|p2u)dx

=− 2Im

∫
φ(x)u(t, x)(∆u− µ1|u|p1u− µ2|u|p2u)dx

=2Im

∫
∇φu(t, x) · ∇u(t, x)dx.

Moreover, when φ is a radial function,

I
′′
(t) =2Im

∫
∇φūt · ∇udx+ 2Im

∫
∇φū · ∇utdx

=4Im

∫
∇φūt · ∇udx− 2Im

∫
∆φū · utdx

=− 4Im

∫
∇φ · ∇u i(∆u− µ1|u|p1u− µ2|u|p2u)dx− 2Im

∫
∆φū · utdx

=− 4Re

∫
∇φ · ∇u∆udx− 4µ1

p1 + 2

∫
∆φ|u|p1+2dx− 4µ2

p2 + 2

∫
∆φ|u|p2+2dx

− 2Im

∫
∆φū i(∆u− µ1|u|p1u− µ2|u|p2u)dx

=4Re

∫
∂j∂kφ ∂ju∂kūdx−

2µ1p1
p1 + 2

∫
∆φ|u|p1+2dx− 2µ2p2

p2 + 2

∫
∆φ|u|p2+2dx

−
∫

∆2φ|u|2dx

=4

∫
φ′

r
|∇u|2dx+ 4

∫
(
φ
′′

r2
− φ′

r3
)|x · ∇u|2dx− 2µ1p1

p1 + 2

∫
(φ
′′

+ (N − 1)
φ′

r
)·

|u|p1+2dx− 2µ2p2
p2 + 2

∫
(φ
′′

+ (N − 1)
φ′

r
)|u|p2+2dx−

∫
∆2φ|u|2dx,

which completes the proof.

Remark 3.1. If u is a radial function, we have

x · ∇u
r

= |∇u|2.

This gives very powerful control of the terms which are supported outside of the
ball, see [17] for example. But for general u without radial, we can not use this
benefit.

3.2. Blow-up for Σ−data
The finite time blow-up for Σ−data (Σ = {ψ : xψ ∈ L2(RN )}) can be established
by the standard Glassey’s argument [10] and the virial identities above. In fact,



Divergent solution to the NSE with nonlinearities 259

when xu0 ∈ L2(RN ), then choosing φ = |x|2 in Lemma 3.1 we have

I
′′
(t) = 8

∫
|∇u|2dx+

2µ1p1N

p1 + 2

∫
|u|p1+2dx+

2µ2p2N

p2 + 2

∫
|u|p2+2dx = K(u).

Suppose that there exists a positive constant β0, such that

sup
t∈(−T∗,T∗)

K(u(t)) ≤ −β0, (3.3)

then
I
′′
(t) ≤ −β0. (3.4)

Note that according to Lemma 2.4, the condition is valid if the initial data u0
satisfies Jω(u0) < Jω(Qω) and K(u0) < 0. Now (3.4) implies that for any T ∈
(−T∗, T ∗),

I(T ) ≤ −β0T 2 + I ′(0)|T |.
Since I ′(0) ≤ CR for some constant C > 0, it can be asserted that

I(T ) ≤ −β0T 2 + CR|T |.

Therefore, if T ∗ = ∞, let T → ∞, we get the contradiction since I(T ) ≥ 0.
Moreover, from the above inequality, we know

I(t) = O(T ∗ − t), for any t ↑ T ∗.

Hence, by Hardy’s inequality, we get

M(u) ≤ C||xu0||2 · ||∇u||L2 ≤ (T ∗ − t)||∇u||L2 . (3.5)

This gives us the estimate,

||∇u(t)||2 ≥
||u0||2L2

T ∗ − t
, ∀t ∈ [0, T ∗). (3.6)

Some similar results also hold in negative time.

4. L2-estimate in the exterior ball

Let φ be the smooth and radial function, such that

φ =

{
0, 0 ≤ r ≤ R/2,
1, r ≥ R,

(4.1)

and there exists Ck > 0, such that 0 ≤ φ ≤ 1, φ(k) ≤ CkR−k, for any integer k ≥ 0.
In this section, we prove the following L2−estimate in the exterior ball. Let η0

be a small positive constant which will be decided later.

Lemma 4.1. Suppose that

A0 , sup
t∈R+

||∇u(t)||L2

and let T4 = η0R/(2C1m0A0). Then for any t ≤ T4,∫
|x|>R

|u(t, x)|2dx ≤ η0 +OR(1).
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Proof. By using Lemma 3.1, we have

d

dt

∫
φ(x)|u(t, x)|2dx = 2Im

∫
∇φ · ∇uūdx.

Thus, ∫
φ(x)|u(t, x)|2dx =

∫
φ(x)|u0|2dx+ 2

∫ t

0

Im

∫
∇φ · ∇uūdxds.

Since

|
∫ t

0

Im

∫
∇φ · ∇uūdxds| ≤

∫ t

0

||∇φ||∞||∇u||2||u||2ds

≤ C1
t
√
m0

R
A0

≤ η0,

for any t ≤ T4. Moreover,∫
φ(x)|u0|2dx ≤

∫
|x|≥R/2

|u0|2dx = OR(1),

and ∫
φ(x)|u(t, x)|2dx ≥

∫
|x|≥R

|u(t, x)|2dx.

Therefore, thanks to the two estimates above, we obtain∫
|x|≥R

|u(t, x)|2dx ≤ OR(1) + η0. (4.2)

4.1. Proof of Theorem 1.1

Proof. Now we define a new smooth, radial weight function ψ, such that

ψ =

{
r, 0 ≤ r ≤ R,
0, r ≥ 2R,

(4.3)

and

0 ≤ ψ ≤ r2, ψ
′′
≤ 2, ψ(4) ≤ 4

R2
.

Then by the virial identities in Lemma 3.1 (with φ being replaced by ψ),

I
′′
(t) =8K(u(t))

+ 4

∫
(
ψ′

r
− 2)|∇u|2 dx+ 4

∫ (ψ′′
r2
− ψ′

r3

)
|x · ∇u|2 dx (4.4)

−
∫ [

ψ′′ + (N − 1)
ψ′

r
− 2N

]( 2p1
p1 + 2

|u|p1+2 +
2p2
p2 + 2

|u|p2+2
)
dx (4.5)

−
∫

∆2ψ|u|2 dx. (4.6)
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Now we first consider (4.4). The situation here is almost the same as the one
in [6]. We find that

(4.4) ≤ 0. (4.7)

Indeed, if ψ
′′

r2 −
ψ′

r3 ≤ 0, we have the claim since ψ′

r − 2 ≤ 0.

Else if ψ
′′

r2 −
ψ′

r3 ≥ 0, then

(4.4) ≤ 4

∫ (ψ′
r
− 2 + ψ

′′
− ψ′

r

)
|∇u|2dx

= 4

∫
(ψ
′′
− 2)|∇u|2dx ≤ 0.

We turn to consider (4.5). Since

(4.5) ≤ C
∫
|x|≥R

|u|p1+2dx+ C

∫
|x|≥R

|u|p2+2dx

≤ C||∇u||(p1+2)(1−α1)
2 ||u||(p1+2)α1

L2(|x|>R) + C||∇u||(p2+2)(1−α2)
2 ||u||(p2+2)α2

L2(|x|>R),

where

α1 =
N

p1 + 2
− N

2
+ 1, α2 =

N

p2 + 2
− N

2
+ 1.

Then by the boundedness ||∇u(t)||L2 , we obtain

(4.5) ≤ C̃
(
||u||(p1+2)α1

L2(|x|>R) + ||u||(p2+2)α2

L2(|x|>R)

)
for some C̃ = C̃(A0, N, p1, p2) > 0. Thanks to Lemma 4.1, by choosing η small
enough and R large enough, there exists α > 0, such that

(4.5) ≤ C̃ηα0 +OR(1). (4.8)

At last, we consider (4.6). Since

|∆2ψ| . 1

R2
.

We have

(4.6) ≤ 1

R2
||u0||L2 = OR(1). (4.9)

Combing the estimates (4.7)–(4.9), it follows that

I
′′
(t) ≤ 8K(u(t)) + C̃ηα0 +OR(1).

Therefore, according to Lemma 2.4, we have

I
′′
(t) ≤ −8β0 + C̃ηα0 +OR(1).

Choosing η0, such that
C̃ηα0 = 2β0,

and choosing large R0, such that for R ≥ R0, OR(1) ≤ 2β0, one has

I
′′
(t) ≤ −4β0.

Henceforth, we obtain the same estimate as (3.4). Then by the same process in
Section 3.2, we can complete the proof.
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