
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 7, Number 1, February 2017, 224–235 DOI:10.11948/2017015

AN ARITHMETIC-GEOMETRIC MEAN
INEQUALITY APPROACH FOR
DETERMINING THE OPTIMAL
PRODUCTION LOT SIZE WITH

BACKLOGGING AND IMPERFECT REWORK
PROCESS∗
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Abstract Some classical studies on economic production quantity (EPQ)
models with imperfect production processes have focused on determining the
optimal production lot size. However, these models neglect the fact that the
total production-inventory costs can be reduced by reworking imperfect items
for a relatively small repair and holding cost. To account for the above phe-
nomenon, we take the out of stock and rework into account and establish an
EPQ model with imperfect production processes, failure in repair and com-
plete backlogging. Furthermore, we assume that the holding cost of imperfect
items is distinguished from that of perfect ones, as well as, the costs of repair,
disposal, and shortage are all included in the proposed model. In addition,
without taking complex differential calculus to determine the optimal produc-
tion lot size and backorder level, we employ an arithmetic-geometric mean
inequality method to determine the optimal solutions. Finally, numerical ex-
amples and sensitivity analysis are analyzed to illustrate the validity of the
proposed model. Some managerial insights are obtained from the numerical
examples.

Keywords Production, random defective rate, failure in repair, backlogging,
arithmetic-geometric mean inequality.
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1. Introduction

It is implicitly assumed that the production process functions perfectly at all times
(i.e., all items are assumed to be of perfect quality) in the traditional economic
production quantity (EPQ) model. However, this is not always true. In real pro-
duction environments, it is often observed that defective items are produced due
to imperfect production processes or other factors. These defective items must be
reworked, rejected, or, if they have reached the customers, refunded. In all such
cases, substantial costs are incurred, and quality-related costs cannot be ignored.
To incorporate this more realistic situation and to study the effects of imperfect
quality on lot sizes, scholars have developed various analytical models involving
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quality-related issues. Rosenblatt and Lee [22] have studied the effects of an im-
perfect production process on the optimal production cycle time for the classical
economic manufacturing quantity (EMQ) model. Porteus [21] found a relationship
between process quality control and lot sizing. Lee and Rosenblatt [16] considered
the problem of a joint optimal production quantity and maintenance schedule in
the classical EMQ model. Zhang and Gerchak [33] studied joint lot sizing and in-
spection policy in an economic order quantity (EOQ) model with random yield.
Cheng [8] developed an EOQ model with demand-dependent unit production cost
and imperfect production processes. Paknejad et al. [19] considered the number of
defective items in a lot to be a random variable and examined the effect of defec-
tive items on the operational characteristics of a continuous-review (s, Q) system.
Salameh and Jaber [23] considered the issue that arises when defective items are
sold as a single batch at a discounted price and a 100% screening process of the
lot is conducted. Ben-Daya [1] formulated an integrated model with joint determi-
nation of the EPQ and preventive maintenance levels under an imperfect process.
Lin et al. [17] examined an integrated production-inventory model for imperfect
production processes under inspection schedules. Sarker and Moon [26] considered
an EPQ model with inflation in an imperfect production system. Hsu and Hsu [14]
proposed two economic production quantity models with imperfect production pro-
cesses, inspection errors, planned backorders, and sales returns. Tai [28] developed
two economic production quantity models for deteriorating/imperfect quality items
with a rework process. Hou et al. [13] extended Porteus [21] and took the main-
tenance cost into account to develop an optimal lot size model for defective items
with a constant probability when the system is out-of-control. Sana [24], Sarker et
al. [27], Sarker [25], Yoo et al. [32], Pal et al. [20] and the scholars they cite have
discussed other studies on the issues of imperfect production systems.

All of the above studies about EPQ/EMQ models with imperfect production
processes focus on determining the optimal lot size. However, these models neglect
the total production-inventory costs, which can be reduced by reworking and repair-
ing defective items with a relatively small repair and holding cost. Treviño-Garza
et al. [30] developed two algorithms to determine jointly both the optimal replen-
ishment lot size and the optimal number of shipments for a family of economic
production quantity inventory models for an integrated vendor-buyer system con-
sidering that production system generates defective products, in which the rework
cost is involved. Numerous studies on the problems of imperfect quality EPQ/EMQ
models with reworking have been undertaken by Liu and Yang [18], Hayek and
Salameh [12], Chiu [9], Jamal et al. [15], Chiu [10], Chiu et al. [11], Taleizadeh et
al. [29], Cárdenas-Barrón et al. [6], Cárdenas-Barrón et al. [4, 5], Cárdenas-Barrón
et al. [3], Wee et al. [31], Cárdenas-Barrón et al. [7] and the scholars they cite.

In this paper, we first establish an EPQ model with imperfect production pro-
cess and failure in repair, where the holding cost of perfect items is distinguished
from that of imperfect ones. In addition, to reflect the real market, we assume that
shortages are allowed and completely backlogged. Hence, the cost of repair, dispos-
al, and shortage are all included in the proposed model. Then, instead of complex
differential calculus, we use an arithmetic-geometric mean inequality approach to
determine the optimal production lot size and backorder level. It is already well es-
tablished that the arithmetic mean is always greater than or equal to the geometric



226 C. T. Chang & L. Y. Ouyang

mean; that is, for any two positive real numbers, say u and v, we have

u+ v

2
≥
√
uv.

The equality holds only if u = v. Finally, the numerical examples and sensitivity
analysis are presented to illustrate the proposed model.

2. Model Description and Formulations

2.1. Notation and Assumptions

The following notation and assumptions are used in this article.

Notation:

P Production rate per unit time

x The proportion of imperfect quality items produced, a random

variable with a known probability density function in the interval

[0, a], where 0 < a < 1

λ Demand rate per unit time

C Production cost per item including inspection cost

d The production rate of imperfect items during the regular production

process per unit time, where d = Px

P1 The rate of reworking of imperfect items per unit time

θ1 The proportion of reworked items that are irreparable, a random

variable with a known probability density function in the interval

[0, δ], where 0 < δ ≤ 1

d1 The production rate of scrap items during the rework process, where

d1 = P1θ1

Q Production lot size for each cycle

B Allowable backorder level

K Setup cost for each production run

CR Repair cost for each imperfect item reworked including inspection cost

CS Disposal cost per scrap item produced during the rework process

h Holding cost per perfect item per unit time

h1 Holding cost for each imperfect item being reworked per unit time

b Shortage cost per item per unit time

H1 Maximum level of on-hand inventory when regular production process

stops

H Maximum level of on-hand inventory in units, when the reworking ends

TC(Q,B) Inventory total cost per cycle

TCU(Q,B) Inventory total cost per unit time.
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Assumptions:

(1) Production rate for perfect items is higher than the demand rate, i.e., (1−x)P >
λ.

(2) All imperfect items must be reworked and the reworked items may be irrepara-
ble during the rework process. For simplicity, we assume that the inspection
time is very short, and therefore can be neglected.

(3) The proportion of reworked items that are irreparable, θ1, is independent of the
proportion of imperfect items produced x. That is, θ1 and x are independent
random variables.

(4) To guarantee the optimal production lot size exists and is larger than zero, we
assume the condition UV −W 2 > 0 holds in this study, where the values of
U, V and W are defined hereafter.

2.2. Mathematical formulation

First, a short problem description is provided. A constant product rate P was con-
sidered during the regular production uptime. The process may randomly generate
x percent of imperfect items at a production rate d = Px when all produced items
are inspected. Thus, produced items fall into two groups: perfect and imperfect.
The production rate for perfect items (1 − x)P is higher than the demand rate λ.
All imperfect items were assumed to be reworkable at a rate of P1, and the rework
process starts when the regular production process ends. Since the rework process
is not perfect, a random portion θ1 of the reworked items were irreparable and
became scrap items. The production rate of scrap items was d1 = P1θ1. Due to
the randomness of x and θ1, d and d1 were also random variables. However, when
observations of x and θ1 were obtained, x and θ1 became real constants. In this
situation, the production-inventory system followed the pattern depicted in Figure
1. From Figure 1, the expressions of production uptime t1 and t5, reworking time
t2, production downtime t3 and t4, the maximum levels of on-hand inventory H1

and H, the production rate of scrap items during the rework process d1 and the
cycle length T could be obtained, and are given as follows:

t1 =
H1

P − d− λ
, (2.1)

t5 =
B

P − d− λ
, (2.2)

t2 =
xQ

P1
=

dQ

P1P ,

(2.3)

t3 =
H

λ
, (2.4)

t4 =
B

λ
, (2.5)

H1 = (P − d− λ)
Q

P
−B, (2.6)

H = H1 + (P1 − d1 − λ)t2 = Q

(
1− λ

P
− d1d

P1P
− dλ

P1P

)
−B, (2.7)

d1 =
θ1xQ

t2
, (2.8)
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and

T = t1 + t2 + t3 + t4 + t5 =
Q(1− θ1x)

λ
. (2.9)
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Figure 1. Graphical representation of production-inventory system.

Each produced item was inspected to judge its quality. Because all imperfect
items must be reworked, perfect and imperfect items should be held in distinct areas,
respectively. Thus, we must distinguish between the holding cost of perfect items
and that of imperfect ones. Based on the above mentioned scenario and Figure 1,

the holding cost for perfect items is h

(
H1

2
t1 +

H1 +H

2
t2 +

H

2
t3

)
. The holding

cost for imperfect items being reworked is h1

[
d(t1 + t5)

2
(t1 + t5) +

d(t1 + t5)t2
2

]
.

In addition, shortages were allowed and completely backlogged. Therefore, when
the observations of random variables x and θ1 were obtained, the inventory total
cost per cycle could be expressed as

TC(Q,B) = production cost + repair cost + disposal cost + setup cost +

holding cost for perfect items + holding cost for imperfect items

reworked + shortage cost

= CQ+ CRxQ+ CSxQθ1 +K + h

(
H1

2
t1 +

H1 +H

2
t2 +

H

2
t3

)
+h1

[
d(t1 + t5)

2
(t1 + t5) +

d(t1 + t5)t2
2

]
+
b

2
B(t4 + t5)

= CQ+ CRxQ+ CSxQθ1 +K

+
1

2λ

(
1− x

1− x− λ/P

)
(b+ h)B2 − h

λ
(1− θ1x)QB
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+

{
(h1 − h)

2

(
x

P
+
x2

P1

)
+
h

2

[
1

λ

(
1− λ

P

)
− 2θ1x

λ

(
1− λ

P

)

+
θ21x

2

λ

(
1− λ

P1

)]}
Q2. (2.10)

In order to cope with the randomness of x and θ1, we considered the expect-
ed total cost per cycle E[TC(Q,B)] and the expected cycle length E(T ), where
E(T ) = Q[1−E(θ1x)]/λ. Hence, by using the renewal reward theorem, the expect-
ed inventory total cost per unit time was given by:

E[TCU(Q,B)] = E[TC(Q,B)]/E(T )

=
1

2Q[1− E(θ1x)]

{
2λQ[C + CRE(x) + CSE(θ1x)]

+2Kλ+

[
(b+ h)E

(
1− x

1− x− λ/P

)]
B2 − 2h[1− E(θ1x)]QB

+

[
λ(h1 − h)E

(
x

P
+
x2

P1

)
+ h

(
1− λ

P

)
[1− 2E(θ1x)]

+h(1 +
λ

P1
)E(θ21x

2)

]
Q2

}
. (2.11)

By assumption, θ1 and x are independent random variables, hence E(θ1x) = E(θ1)E(x)
and E = (θ21x

2) = E(θ21)E(x2). Furthermore, for convenience, we let

U = (b+ h)E

(
1− x

1− x− λ/P

)
> 0,

W = h[1− E(θ1x)] = h[1− E(θ1)E(x)] > 0,

and

V =λ(h1 − h)E

(
x

P
+
x2

P1

)
+ h

(
1− λ

P

)
[1− 2E(θ1x)] + h

(
1 +

λ

P1

)
E(θ21x

2)

=λ(h1 − h)E

(
x

P
+
x2

P1

)
+ h

(
1− λ

P

)
[1− 2E(θ1)E(x)]

+ h

(
1 +

λ

P1

)
E(θ21)E(x2).

Therefore, Equation (2.11) can be rewritten as

E[TCU(Q,B)] =
λ {C + [CR + CsE(θ1)]E(x)}

1− E(θ1)E(x)
+

1

2Q[1− E(θ1)E(x)]

{
2Kλ+ UB2 − 2WQB + V Q2

}
.

(2.12)

3. Optimal replenishment policy using arithmetic-
geometric mean inequality

In this section, we first use a simple algebraic operation to find the relation be-
tween production lot size and backorder level. Next, an arithmetic-geometric mean
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inequality approach is employed to find the optimal production lot size. Once the
optimal production lot size, Q∗, is obtained, based on the relation between produc-
tion lot size and backorder level, the optimal backorder level, B∗, follows.

By using algebraic operations in Equation (2.12), we get

E[TCU(Q,B)]

=
λ {C + [CR + CSE(θ1)]E(x)}

1− E(θ1)E(x)

+
1

2Q[1− E(θ1)E(x)]

{
U

(
B − W

U
Q

)2

+ 2Kλ+

(
V − W 2

U

)
Q2

}
. (3.1)

For minimizing E[TCU(Q,B)], we let the square term in Equation (3.1) equal
to zero, then

B =
W

U
Q, (3.2)

and Equation (3.1) can be reduced as follows:

E[TCU(Q)] =
λ {C + [CR + CSE(θ1)]E(x)}

1− E(θ1)E(x)

+
Kλ

Q[1− E(θ1)E(x)]
+

[V − (W 2/U)]Q

2[1− E(θ1)E(x)]
. (3.3)

When UV −W 2 > 0, the three conditions proposed by Cárdenas-Barrón [2] could
be verified. Therefore, the arithmetic-geometric mean inequality can be used as
optimization method to minimize the expected inventory total cost per unit time.
That is, we have

E[TCU(Q)] ≥ λ {C + [CR + CSE(θ1)]E(x)}
1− E(θ1)E(x)

+

√
2Kλ[V − (W 2/U)]

1− E(θ1)E(x)
,

and the equality holds when

Kλ

Q[1− E(θ1)E(x)]
=

[V − (W 2/U)]Q

2[1− E(θ1)E(x)]
> 0.

This implies the optimal production lot size (say Q∗ ) is given by

Q∗ =

√
2Kλ

V − (W 2/U)
. (3.4)

Therefore, the optimal backorder level can be obtained (say B∗) as

B∗ =
W

U
Q∗ =

W

U

√
2Kλ

V − (W 2/U)
. (3.5)

As a result, the minimum expected inventory total cost per unit time is

E[TCU(Q∗, B∗)] =
λ {C + [CR + CSE(θ1)]E(x)}

1− E(θ1)E(x)
+

√
2Kλ[V − (W 2/U)]

1− E(θ1)E(x)
. (3.6)
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4. Numerical Examples

Example 4.1. Given P = 12, 000 units per year, λ = 4, 000 units per year, P = 600
units per year, K = $200 for each production run, C =$2 production cost per item,
CR = $1 repaired cost for each item reworked, CS = $0.3 disposal cost for each
scrap item, b = $0.2 per item backordered per year, h = $0.6 per item per year and
h1 = $0.3 per reworked item per year. In addition, the defective rate x is uniformly
distributed over the interval [0, 0.1], and the percentage of defective items failing the
reworking, θ1, also follows the uniform distribution over the interval [0, 0.1], hence,
E(x) = E(θ1) = 0.05. Since UV −W 2 = 0.118358 > 0, the arithmetic-geometric
mean inequality can be used in this example. Substituting the given values of these
parameters into Equations (3.4) and (3.5), we obtain the optimal production lot size
Q∗ = 4083 units, the optimal backorder level B∗= 1981 units, and the corresponding
minimum annual expected inventory total cost, E[TCU(4083, 1981)] = $8616.

Example 4.2. We now study the effects of changes in the system parameters P ,
λ, P1, K, b, h and h1 on the optimal production lot size Q∗, the optimal backorder
quantity B∗ and the optimal annual expected inventory total cost E[TCU(Q∗, B∗)].
Using the same data as in Example 4.1, the sensitivity analysis is performed by
changing each of the parameters by -50%, -25%, +25% and +50%, taking one
parameter at a time and keeping the remaining parameters unchanged. The results
are shown in Table 1.

Based on the computational results as shown in Table 1, we obtained the fol-
lowing managerial insights:

1. The optimal annual expected inventory total cost E[TCU(Q∗, B∗)], the optimal
production lot size Q∗ and the optimal backorder quantity B∗ increase with an
increase in the value of parameters λ and K. Moreover, Q∗ and B∗ are highly
sensitive to the demand rate λ and the setup cost K. However, E[TCU(Q∗, B∗)]
is highly sensitive to the demand rate λ, but only slightly sensitive to the setup
cost K.

2. Q∗ decreases while E[TCU(Q∗, B∗)] and B∗ increase with an increase in the
values of parameters P and h. Moreover,Q∗ and B∗ are highly sensitive to the
production rate P , and moderately sensitive to the unit holding cost for perfect
items h. However, E[TCU(Q∗, B∗)] is slightly sensitive to the production rate
P and the unit holding cost for perfect items, h.

3. Q∗ and B∗ decrease while E[TCU(Q∗, B∗)] increases with an increase in the
values of parameters P1, b and h1. Moreover, Q∗ and B∗ are highly sensitive
to the unit shortage cost b, and moderately sensitive to the rate of reworking
of imperfect items P1 as well as the unit holding cost for imperfect item h1.
However, E[TCU(Q∗, B∗)]is slightly sensitive to the unit shortage cost b, the
rate of reworking of imperfect items P1 and the unit holding cost for imperfect
items h1.

5. Conclusions

In this article, we establish an EPQ model with a failure in repair and complete
backlogging to extend the model of Chiu et al. [11]. To reflect real production en-
vironments and economic realities, firstly, we considered that the rework process is
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Table 1. Sensitivity analysis in various parameters changed for Example 4.2.

Parameter % Change in % Change in
(initial value) parameter Q∗ B∗ E[TCU(Q∗, B∗)]

-50 38.80 -36.65 -0.57
P -25 9.21 -10.50 -0.38

(12000) +25 -4.53 5.86 0.22
+50 -7.23 9.54 0.36
-50 -37.42 -20.44 -48.63

λ -25 -18.83 -7.82 -24.20
(4000) +25 20.45 4.14 24.04

+50 43.99 5.40 47.93
-50 -29.29 -29.28 -1.34

K -25 -13.40 -13.38 -0.60
(200) +25 11.81 11.81 0.55

+50 22.48 22.51 1.03
-50 5.88 3.69 -0.15

P1 -25 1.18 1.21 -0.05
(600) +25 -0.69 -0.66 0.03

+50 -1.17 -1.11 0.06
-50 32.75 51.74 -1.11

b -25 11.93 19.43 -0.45
(0.2) +25 -7.86 -13.28 0.39

+50 -13.50 -23.07 0.72
-50 7.62 -13.88 -0.31

h -25 2.33 -5.50 -0.10
(0.6) +25 -1.00 4.24 0.05

+50 -1.30 7.67 0.07
-50 3.18 3.23 -0.14

h1 -25 1.57 1.56 -0.07
(0.3) +25 -1.47 -1.46 0.07

+50 -2.89 -2.88 0.14

imperfect, leading to some scrap items. Thus, different holding costs for perfect and
imperfect items were employed in the model. Secondly, shortages were allowed and
were assumed to be completely backlogged in this study. Thirdly, we used an alge-
braic operation and a simple-to-use arithmetic-geometric mean inequality method
to derive the optimal solution for the proposed model. Finally, numerical examples
were given to verify the theoretical results and the sensitivity analysis of key model
parameters was also performed. Some managerial insights were obtained as follows:
(1) a higher value of production rate, P , causes higher values of backorder quantity
and the annual expected inventory total cost, but a lower value of production lot
size; (2) a higher value of setup cost, K, causes higher values of production lot size,
backorder quantity, and annual expected inventory total cost; (3) a higher value of
unit shortage cost, b, causes a higher value of annual expected inventory total cost,
but lower values of production lot size and backorder quantity.

The model proposed in this article can be extended in several ways. For in-
stance, we may extend the model to consider inflation rates and trade credits. In
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addition, we can relax the assumption that all imperfect items can be reworked and
judge whether some imperfect items should be scraped before the rework process,
in order to save the holding cost and repair cost for non-reworkable items. Further-
more, we may study the shipment policy for an EPQ model with multi-delivery and
partial rework. Finally, we can consider that shortages are allowed and partially
backlogged. The backorder rate is a decreasing function of the waiting time for the
next replenishment.
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