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STOCHASTIC CENTER OF SYSTEMS OF
STOCHASTIC DIFFERENTIAL EQUATIONS

ON THE PLANE∗

Guoting Chen1 and Changjian Liu2,†

Abstract We study a stochastic analogy of the famous center problem of
Dulac for quadratic differential equations in the plane. We introduce the
concept of center for systems of stochastic differential equations of Itô’s type
on the plane, called stochastic center. We derive a criterion for the existence
of such a center. We apply it to obtain necessary and sufficient conditions for
quadratic stochastic differential equations in dimension 2.
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1. Introduction

Let us consider a planar vector field given by the following ordinary differential
equations

dx

dt
= −y + P2(x, y),

dy

dt
= x+Q2(x, y),

where P2, Q2 are homogeneous quadratic polynomials in x, y. The famous center
problem of Dulac consists in finding conditions on the coefficients of P2 and Q2 such
that the vector field has a center in a neighborhood of the origin (or it is analytically
integrable at the origin). Since Dulac, many authors have been interested in the
center problem and its generalizations. We refer to [1, 6, 10, 11] for various center
conditions or integrability conditions.

Recall that the above differential system has a center at the origin if there exists
a neighborhood U of the origin and an analytic function H in U such that for any
(x0, y0) ∈ U , if (x(t), y(t)) is the solution of the differential system verifying the
initial condition x(0) = x0, y(0) = y0, then for any t ≥ 0, H(x(t), y(t)) = H(x0, y0).
A common way to obtain necessary conditions is to calculate the successive terms
in the Taylor expression of the assumed first integral H. Then, the focal values Fk
are the coefficients of the so-called obstacles to its existence:

H = x2 + y2 + · · · , Ḣ =

∞∑
k=1

Fk(x2 + y2)k+1,

where Fk are polynomial functions on the coefficients of the initial differential sys-
tem. Hence Fk = 0, k = 1, 2, · · · are necessary conditions for the existence of a
center at the origin.
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In the present paper, we shall give a stochastic version of the center problem for
systems of stochastic differential equations on the plane.

Let (Ω,F , P ) be a complete probability space and w(t) be a standard one-
dimensional Wiener process on Ω. We consider stochastic differential systems of
Itô’s form

dx(t) = f1(x, y)dt+ g1(x, y)dw(t),

dy(t) = f2(x, y)dt+ g2(x, y)dw(t),
(1.1)

where f1, f2, g1, g2 are (non random) real polynomails in the variables x, y without
constant terms. That is the origin is an equilibrium of the system.

According to [14], for any (x0, y0) ∈ R2, there exists a unique maximal local
solution defined on [0, σ(x0,y0)), where σ(x0,y0), if finite, is the explosion time.

Definition 1.1. We say that system (1.1) has a stochastic center at the origin (or
is stochastically integrable) if there is a non constant analytic function H(x, y) in
a neighborhood U of the origin such that for any (x0, y0) ∈ U , if (x(t), y(t)) is the
maximal solution of system (1.1) with the initial conditions x(0) = x0, y(0) = y0,
then for all 0 ≤ t < σ(x0,y0),

H(x(t), y(t))−H(x0, y0) = 0 a.s. (1.2)

Observe that if the curve {(x, y) ∈ R2 : H(x, y) = H(x0, y0)} is closed, then
σ(x0,y0) = +∞.

Example 1.1. We first consider a linear system of the form

dx(t) = (− 1
2x+ λy)dt− ydw(t), dy(t) = (−λx− 1

2y)dt+ xdw(t), (1.3)

or in the matrix form

dX(t) = AX(t)dt+BX(t)dw(t),

where X(t) =

x(t)

y(t)

, A =

 − 1
2 λ

−λ − 1
2

 and B =

0 −1

1 0

, where λ is a real

constant.

Since AB = BA, one can solve the above system explicitly by using Itô’s formula:

X(t) = exp[(A− 1

2
B2)t+Bw(t)]X(0) = exp[B(λt+ w(t))]X(0).

Then one has, for any t ≥ 0,

x(t) = x0 cos(λt+ w(t))− y0 sin(λt+ w(t)),

y(t) = x0 sin(λt+ w(t)) + y0 cos(λt+ w(t)).

It is clear now that for any t ≥ 0, x(t)2 + y(t)2 = x2
0 + y2

0 a.s. Therefore the linear
system (1.3) has a stochastic center at the origin.
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We shall study a quadratic perturbation of the linear system (1.3), that is sys-
tems of the form

dx(t) = (− 1
2x+ λy + F2)dt+ (−y + P2)dw(t),

dy(t) = (−λx− 1
2y +G2)dt+ (x+Q2)dw(t),

(1.4)

where F2, G2, P2, Q2 are all homogeneous quadratic polynomials in x, y. We shall
give necessary and sufficient conditions for the above system to have a stochastic
center at the origin.

The present paper is organized as follows. We first give a simple criterion in
Section 2 to determine if a general system possesses a stochastic center at the origin.
In Section 3 we study quadratic systems (1.4) and give necessary and sufficient
conditions for it to have a stochastic center at the origin.

2. A criterion for a stochastic differential system to
have a stochastic center at the origin

Local invariant curves for stochastic differential system of the form (1.1) have been
studied in [9], where necessay and sufficient conditions are given. For completeness
of the paper we give the conditions and the proof here.

Theorem 2.1. Let notations be as in Definition 1.1. Then (1.2) is verified for H
for any (x0, y0) in a neighborhood U of the origin, if and only if for all (x, y) ∈ U ,

g1(x, y)
∂H

∂x
(x, y) + g2(x, y)

∂H

∂y
(x, y) = 0, (2.1)

L2(H) = 0, (2.2)

where L2 is the operator

L2 = f1(x, y)
∂

∂x
+ f2(x, y)

∂

∂y
+

1

2

(
g2

1

∂2

∂x2
+ 2g1g2

∂2

∂x∂y
+ g2

2

∂2

∂y2

)
.

Proof. For any (x0, y0) ∈ U , according to Itô’s formula, one has for all 0 ≤ t <
σ(x0,y0),

H(x(t), y(t))

=H(x0, y0) +

∫ t

0

L2(H(x(s), y(s)))ds

+

∫ t

0

(
g1(x(s), y(s))

∂H

∂x
(x(s), y(s)) + g2(x(s), y(s))

∂H

∂y
(x(s), y(s))

)
dw(s).

It is clear that if (2.1) and (2.2) hold, (1.2) follows.

We now prove the necessity. Since H(x(t), y(t)) = H(x0, y0) a.s., one has that∫ t

0

L2(H(x(s), y(s)))ds = −
∫ t

0

(
g1(x(s), y(s))

∂H

∂x
+ g2(x(s), y(s))

∂H

∂y

)
dw(s), a.s.
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The right-hand side of the above equation is a local martingale, contiuous a.s., with

the variance

∫ t

0

(
g1(x(s), y(s))

∂H

∂x
+g2(x(s), y(s))

∂H

∂y

)2

ds. And the left-hand side

is absolutely continous a.s. It follows that (see [16]), for all 0 ≤ t < σ(x0,y0),∫ t

0

L2(H(x(s), y(s)))ds = 0,

and ∫ t

0

(
g1(x(s), y(s))

∂H

∂x
+ g2(x(s), y(s))

∂H

∂y

)2

ds = 0.

If there exists (x1, y1) ∈ U such that L2(H)(x1, y1) 6= 0, say L2(H)(x1, y1) > 0,
then there exist an neighborhood U0 of (x1, y1) such that L2(H)(x, y) > 0 for all
(x, y) ∈ U0.

Let (x(t), y(t)) be the solution of (1.1) with the initial condition x(0) = x1, y(0) =
y1. Then there exists t1 > 0 such that L2(H(x(s), y(s))) > 0 for all 0 ≤ s ≤ t1.
Therefore ∫ t1

0

L2(H(x(s), y(s)))ds 6= 0,

which is a contradiction. Hence we obtain condition (2.2).
Again, if there exists (x0, y0) ∈ U such that

g1(x0, y0)
∂H

∂x
(x0, y0) + g2(x0, y0)

∂H

∂y
(x0, y0) 6= 0,

then there exists a neighborhoof U0 of (x0, y0) such that

g1(x, y)
∂H

∂x
(x, y) + g2(x, y)

∂H

∂y
(x, y) 6= 0,

for all (x, y) ∈ U0. Let (x(t), y(t)) be the maximal solution of system (1.1) with
the initial condition x(0) = x0, y(0) = y0. Then according to the continuity, there
exists a t1 > 0 such that for 0 < s ≤ t1, one has

g1(x(s), y(s))
∂H

∂x
(x(s), y(s)) + g2(x(s), y(s))

∂H

∂y
(x(s), y(s)) 6= 0.

Hence ∫ t1

0

(
g1(x(s), y(s))

∂H

∂x
+ g2(x(s), y(s))

∂H

∂y

)2

ds 6= 0,

which is a contradiction. Condition (2.1) follows.
We now give the following criterion for a stochastic differential system to have

a stochastic center at the origin.

Theorem 2.2. Consider stochastic differential system (1.1). Then it has a stochas-
tic center at the origin if and only if the differential system

dx

dt
= g1(x, y),

dy

dt
= g2(x, y), (2.3)

is integrable at the origin and there exists a neighborhood of the origin in which

g1f2 − g2f1 −
g1

2

(∂g1g2

∂x
+
∂g2

2

∂y

)
+
g2

2

(∂g2
1

∂x
+
∂g1g2

∂y

)
= 0. (2.4)
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Proof. System (1.1) has a stochastic center at the origin if and only if conditions
(2.1) and (2.2) are satisfied in a neighborhood of the origin. It is clear that con-
dition (2.1) signifies that differential system (2.3) is integrable at the origin. We
now suppose that (2.1) is satisfied and prove that condition (2.2) is equivalent to
condition (2.4).

Multiplying (2.1) by g1 and differentiating with respect to x lead to

g2
1

∂2H

∂x2
+
∂g2

1

∂x

∂H

∂x
+ g1g2

∂2H

∂x∂y
+
∂(g1g2)

∂x

∂H

∂y
= 0.

Similarly multiplying (2.1) by g2 and differentiating with respect to y lead to

g2
2

∂2H

∂y2
+
∂g2

2

∂y

∂H

∂y
+ g1g2

∂2H

∂x∂y
+
∂(g1g2)

∂y

∂H

∂x
= 0.

Then

g2
1

∂2H

∂x2
+ 2g1g2

∂2H

∂x∂y
+ g2

2

∂2H

∂y2
= −

(∂g2
1

∂x
+
∂(g1g2)

∂y

)∂H
∂x
−
(∂(g1g2)

∂x
+
∂g2

2

∂y

)∂H
∂y

.

Hence

L2(H) = f̃1(x, y)
∂H

∂x
+ f̃2(x, y)

∂H

∂y
,

where

f̃1 = f1 −
1

2

(∂g2
1

∂x
+
∂g1g2

∂y

)
, f̃2 = f2 −

1

2

(∂g1g2

∂x
+
∂g2

2

∂y

)
.

Using (2.1), one has L2(H) = 0 in a neighborhood of the origin if and only if
g1f̃2 − g2f̃1 = 0 in a neighborhood of the origin.

3. Necessary and sufficient conditions for the exis-
tence of a stochastic center for quadratic systems

We now study quadratic systems with stochastic centers. We assume that the linear
part of the (non-random) differential system ẋ = g1(x, y), ẏ = g2(x, y) has a center
at the origin, i.e.

g1 = −y + P2, g2 = x+Q2,

where P2, Q2 are quadratic polynomials. Since Dulac, many authors have studied
the necessary and sufficient conditions for such a system to be integrable at the origin
(see [1, 6, 10]. Complete conditions are given in [1]. In [17] complexes variables are
used to state the center conditions in a very simple form. We state it here for later
use. Let z = x+ iy and consider

ż = iz +Az2 +Bzz̄ + Cz̄2,

where A = a1 + ia2, B = b1 + ib2 and C = c1 + ic2 are complex constants.
If B 6= 0 then one can change it to 1 by a complex scaling. The above equation

in the real form is the following systems according to B = 0 or B = 1:

ẋ = g1(x, y) = −y + (a1 + c1)x2 + (2c2 − 2a2)xy + (−a1 − c1)y2,

ẏ = g2(x, y) = x+ (a2 + c2)x2 + (2a1 − 2c1)xy + (−a2 − c2)y2,
(3.1)
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or

ẋ = g1(x, y) = −y + (1 + a1 + c1)x2 + (2c2 − 2a2)xy + (1− a1 − c1)y2,

ẏ = g2(x, y) = x+ (a2 + c2)x2 + (2a1 − 2c1)xy + (−a2 − c2)y2.
(3.2)

The integrability conditions of [7] in the real form state as follows.

Theorem 3.1. Let notations be as above.

(1) System (3.1) is integrable at the origin.

System (3.2) is integrable at the origin if and only if one of the following conditions
is satisfied,

(2) 2a1 + 1 = a2 = 0,

(3) a2 = c2 = 0,

(4) a1 − 1 = a2 = c21 + c22 − 1 = 0.

In this section we consider stochastic differential systems of the form (1.4) with
g1, g2 as in (3.1) or (3.2). Let F2, G2 be in the following form

F2 = A1x
2 +A2xy +A3y

2,

G2 = A4x
2 +A5xy +A6y

2,
(3.3)

where the Ai are real constants.
We first remark that if system (3.1) or (3.2) is integrable at the origin, then its

first integral is in the form H(x, y) = x2 +y2 +
∑
i+j≥3 hijx

iyj . Hence H(x, y) = C
is a closed curve in a neighborhood of the origin. Therefore if system (1.4) has
a stochastic center at the origin, then there exists a neighborhood of the origin
such that any solution with initial conditions (x0, y0) near the origin is defined in
[0,+∞).

Our aim is to look for conditions on the coefficients of F2, G2, P2, Q2 such that a
stochastic differential system of the form (1.4) has a stochastic center at the origin.
We have the following results.

Theorem 3.2. Consider the following stochastic differential equations

dx(t) = (− 1
2x+ λy + F2)dt+ (−y + P2)dw(t),

dy(t) = (−λx− 1
2y +G2)dt+ (x+Q2)dw(t),

(3.4)

where g1 = −y+P2, g2 = x+Q2 are as in (3.1) or (3.2) and F2, G2 are as in (3.3).
Then it has a stochastic center at the origin if and only if one of the following
conditions is fulfilled,

(1.1) g1, g2 are as in (3.1) with a2
1 + a2

2 − c21 − c22 = 0, (a1, a2) 6= (0, 0), and

A1 = −(a1 + c1)λ− 3
2a2 + 1

2c2, A2 = 2(a2 − c2)λ− a1 − c1,

A3 = (a1 + c1)λ− 1
2a2 − 1

2c2, A4 = −(a2 + c2)λ− 1
2a1 − 1

2c1,

A5 = 2(−a1 + c1)λ− a2 − c2, A6 = (a2 + c2)λ− 3
2a1 + 1

2c1.
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(1.2) g1, g2 are as in (3.1) with a1 = c1 = a2 = c2 = 0, and A1 = A6 = 0, A2 =
−A4, A5 = −A3.

(2.1) g1, g2 are as in (3.2) with a1 = c1 = − 1
2 , a2 = c2 = 0, and A1 = A4 = A5 =

0, A2 = 2, A3 = −2λ,A6 = 1.

(3.1) g1, g2 are as in (3.2) with a2 = c2 = 0, c1 = a1, and

A1 = −(2a1 + 1)λ, A2 = −2a1 + 1, A3 = (2a1 − 1)λ,

A4 = −a1 − 1
2 , A5 = 0, A6 = −a1 + 1

2 .

(3.2) g1, g2 are as in (3.2) with a2 = c2 = 0, c1 = 0, a1 = 1, and A1 = −2λ,A2 =
A6 = −1, A3 = A4 = 0, A5 = −2λ.

Proof. Let

P = g1f2 − g2f1 −
g1

2

(∂g1g2

∂x
+
∂g2

2

∂y

)
+
g2

2

(∂g2
1

∂x
+
∂g1g2

∂y

)
.

Then according to Theorem 2.2, system (3.4) has a stochastic center at the origin if
and only if the differential system ẋ = g1(x, y), ẏ = g2(x, y) is integrable and P = 0.
Then it is necessary that g1, g2 be in one of the 4 cases in Theorem 3.1.

We study the 4 cases with g1, g2 verifying the conditions in Theorem 3.1. Since
g1 = −y + · · · , g2 = x + · · · where the dots represent higher order terms, one has
that P is a polynomial of degree 5 and in all cases the homogeneous quadratic part
in P is zero. Then we can write P in the form

P =

3∑
i=0

αix
3−iyi +

4∑
i=0

βix
4−iyi +

5∑
i=0

µix
5−iyi.

3.1. Case (1).

In the actual case b1 = b2 = 0, one can compute the coefficients of P to obtain

α0 = −A1 − 3
2a2 + 1

2c2 − (a1 + c1)λ,

α1 = − 3
2a1 − 3

2c1 −A4 −A2 + (a2 − 3c2)λ,

α2 = −A3 −A5 − 3
2a2 − 3

2c2 + (3c1 − a1)λ,

α3 = 1
2c1 −

3
2a1 + (a2 + c2)λ−A6.

Hence from αi = 0 for all i, one obtains

A1 = − 3
2a2 + 1

2c2 − (a1 + c1)λ, A2 = −A4 − 3
2a1 − 3

2c1 + (a2 − 3c2)λ,

A5 = −A3 − 3
2a2 − 3

2c2 + (3c1 − a1)λ, A6 = 1
2c1 −

3
2a1 + (a2 + c2)λ.

Substituting them in P , we obtain, by denoting K = a2
1 + a2

2 − c21 − c22,

µ0 = −(a2 + c2)K, µ1 = (−a1 + 3c1)K, µ2 = 2(c2 − a2)K,

µ3 = 2(−a1 + c1)K, µ4 = (−a2 + 3c2)K, µ5 = −(c1 + a1)K,
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and

β0 =(c1 + a1)A4 + (a2 + c2)(c1 + a1)λ+
3

2
c21 −

1

2
a2

1 + c22 + a1c1 − a2
2,

β1 = (3c2 − a2)A4 − (a1 + c1)A3 +
(
3c22 + a2

1 + 2a2c2 − a2
2 + c21 + 2a1c1

)
λ

− (a2 − c2) (c1 + a1) ,

β2 = (a2 − 3 c2)A3 + (a1 − 3c1)A4 + (−4c1a2 + 4a1c2)λ

− 3

2
a2

2 −
3

2
a2

1 +
1

2
c21 − a1c1 − a2c2 +

1

2
c22,

β3 = (3c1 − a1)A3 + (−a2 − c2)A4 +
(
a2

1 − a2
2 − 3c21 − c22 − 2a1c1 − 2a2c2

)
λ

− (a2 + c2) (−c1 + a1) ,

β4 = (a2 + c2)A3 − (a2 + c2) (c1 + a1)λ+ a2c2 −
1

2
a2

2 +
3

2
c22 − a2

1 + c21.

Since it is necessary that µj = 0 for all j, we have necessarily K = 0 and in this
case µj = 0 for all j.

If c1 + a1 6= 0, then one can find A3, A4 from β0 = β1 = 0. By using K = 0, we
have

A4 = (−a2 − c2)λ− 1

2
a1 −

1

2
c1, A3 = (a1 + c1)λ− 1

2
a2 −

1

2
c2.

Finally we have also, by using K = 0,

A1 = −(a1 + c1)λ− 3

2
a2 +

1

2
c2, A2 = 2(a2 − c2)λ− a1 − c1,

A5 = 2(−a1 + c1)λ− a2 − c2, A6 = (a2 + c2)λ− 3
2a1 + 1

2c1.

Using these results, we obtain β2 = β3 = β4 = 0 since K = 0. Hence P = 0 and
we get condition (1.1).

Now we consider the case with c1 = −a1. In this case we have

β0 = (c2 − a2)(c2 + a2) = 0.

• If c2 = a2 6= 0, then

β0 = 0, β1 = 2a2(2a2λ+A4), β2 = −2a2A3 + 4a1A4 + 2a2(4a1λ− a2),

β3 = −4a1A3 − 2a2A4 − 4a2(a2λ+ a1), β4 = 2a2(a2 +A3).

Then A3 = −a2, A4 = −2a2λ and hence βi = 0 for all i. This case is included
in condition (1.1).

• If c2 = −a2, then

β0 = 0, β1 = −4a2A4, β2 = 4(a2A3 + a1A4), β3 = −a1A3, β4 = 0.

Hence we get a1A3 = a2A4 = a2A3 +a1A4 = 0 which is included in case (1.1)
if (a1, a2) 6= (0, 0).
If a1 = a2 = 0, then c1 = c2 = 0, βi = 0 for all i with any A3, A4. We obtain
condition (1.2).
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3.2. Case (2)

Now g1, g2 are as in (3.2). Substituing a1 = − 1
2 , a2 = 0, in g1, g2, we obtain

α0 = (− 1
2 − c1)λ+ 1

2c2 −A1, α1 = 5
4 −

3
2c1 − 3c2λ−A4 −A2,

α2 = (3c1 − 1
2 )λ− 3

2c2 −A5 −A3, α3 = 1
2c1 + 5

4 + c2λ−A6.

Hence from αi = 0 for all i, we obtain

A1 = (− 1
2 − c1)λ+ 1

2c2, A2 = 5
4 −

3
2c1 − 3c2λ−A4,

A5 = (3c1 − 1
2 )λ− 3

2c2 −A3, A6 = 1
2c1 + 5

4 + c2λ.

Again by putting them in P , we have

β0 = ( 1
2 + c1)A4 + 1

2c2(1 + 2c1)λ+ 3
2c1 + 3

2c
2
1 + 3

8 + c22,

β1 =
(
− 1

2 − c1
)
A3 + 3c2A4 +

(
3c22 − 3

4 − c1 + c21
)
λ+ 1

2c2 (2c1 + 5) ,

β2 = −3c2A3 +
(

1
2 − 3c1

)
A4 + 1

2c2
2 + 1

2c1
2 − 1

2c1 −
3
8 − 4c2λ,

β3 =
(
3c1 − 1

2

)
A3 − c2A4 +

(
−3c1

2 − 3
4 − c

2
2 + 5c1

)
λ+ 1

2c2 (2c1 + 3) ,

β4 = c2A3 − 1
2c2(2c1 − 3)λ− 3

4 + 3
2c

2
2 − c1 + c21,

and

µ0 = 1
4c2
(
1 + 4c22 + 4c21 + 4c1

)
, µ1 =

(
1
2 − 3c1

)
c22 − 3

8 (1 + 2c1)
3
,

µ2 = − 1
2c2
(
20c1 + 9 + 4c21 + 4c22

)
, µ3 = 3

4 − 9c22 + 5
2c1 + c21 − 2c31 − 2c1c

2
2,

µ4 = − 1
4c2
(
3 + 12c22 − 20c1 + 12c21

)
, µ5 = 1

8 (2c1 − 3)
(
4c21 − 4c1 + 4c22 − 3

)
.

By considering µ4 and µ5, we have the following:

• If c1 = 3
2 , then we get µ4 = −3c32. Hence c2 = 0. Substituing it in µ1 leads

to µ1 = −24 6= 0. Therefore it is impossible to have P = 0. One then has
c1 6= 3

2 .

• If c2 6= 0, then from µ4 = µ5 = 0 we have

K1 = 3 + 12c22 − 20c1 + 12c21 = 0, K2 = 4c21 − 4c1 + 4c22 − 3 = 0.

Since K1 − 3K2 = 4(3− 2c1) 6= 0, this is a contradiction.

Therefore c2 = 0, and µ5 = 1
8 (2c1 + 1)(2c1− 3)2, which yields to c1 = − 1

2 . Then we
get

β2 = 2A4, β3 = −2A3 − 4λ.

One then has A4 = 0, A3 = −2λ, in which case we have P = 0. We obtain also
A1 = A5 = 0, A2 = 2, A6 = 1, which are condition (2.1).
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3.3. Case (3)

We obtain by using a2 = c2 = 0,

α0 = (−a1 − 1− c1)λ−A1, α1 = − 3
2a1 − 3

2c1 + 1
2 −A4 −A2,

α2 = (−a1 + 3c1 − 1)λ−A3 −A5, α3 = − 3
2a1 + 1

2c1 + 1
2 −A6.

Hence from αi = 0 for all i, one obtains

A1 = (−a1 − 1− c1)λ, A2 = − 3
2a1 − 3

2c1 + 1
2 −A4,

A5 = (−a1 + 3c1 − 1)λ−A3, A6 = − 3
2a1 + 1

2c1 + 1
2 .

Substituing them in P , we get

β0 = (a1 + c1 + 1)A4 − 1
2 (a1 + c1 + 1)(a1 − 3c1 − 1),

β1 = −(a1 + c1 + 1)A3 + λ(a1 + c1 + 1)(a1 + c1 − 1),

β2 = (−3c1 + a1 + 1)A4 − 1
2 (a1 + c1 − 1) (3a1 + 1− c1) ,

β3 = (−a1 + 3c1 − 1)A3 + λ (a1 + c1 − 1) (−3c1 + a1 + 1) ,

β4 = − (a1 + c1 − 1) (a1 − c1) ,

and

µ0 = µ2 = µ4 = 0,

µ1 = − (a1 − 3c1 − 1) (a1 + c1 + 1) (a1 − c1) ,

µ3 = −2 (a1 + c1 − 1) (a1 − c1)
2
,

µ5 = − (a1 − c1) (a1 + c1 − 1)
2
.

From µ5 = 0, one has either c1 = a1 or c1 = 1− a1.

• If c1 = a1, then

β0 = (2a1 + 1)(A4 + a1 + 1
2 ), β1 = (2a1 + 1)[−A3 + (2a1 − 1)λ],

β2 = (1− 2a1)(A4 + a1 + 1
2 ), β3 = (2a1 − 1)[A3 − (2a1 − 1)λ].

One gets A4 = −a1 − 1
2 , A3 = (2a1 − 1)λ. Therefore

A1 = −(2a1 + 1)λ,A2 = −2a1 + 1, A5 = 0, A6 = −a1 +
1

2
,

which is condition (3.1).

• If c1 = 1 − a1, then µ1 = −8(a1 − 1)(2a1 − 1). One obtains a new case for
a1 = 1, c1 = 0. Hence A3 = A4 = 0 and A1 = −2λ,A2 = A6 = −1, A5 = −2λ.
This is condition (3.2).
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3.4. Case (4)

We now consider case (4) in Theorem 3.1. In this case a1 = 2, a2 = 0, c21+c22−1 = 0.
One obtains for example

µ1 = −(5c1 − 1)(c1 − 3), µ5 = −(c1 + 1)2.

Therefore it is impossible to have µ1 = µ5 = 0. Hence no system in this case can
have a stochastic center.

This completes the proof of Theorem 3.2.

4. Numerical simulations

Numerical simulations are done in Matlab by using the Euler-Maruyama method
(see for example [8]). We present here simulation results of some of the cases of
Theorem 3.2. Figure 1 corresponds to the Case 1.1, and Figure 2 to the case 2.1.

Figure 1. Some results in case 1.1. with λ = 1,
a1 = c1 = 1, a2 = c2 = 0 and different initial
conditions.

Figure 2. Some results in case 2.1. with λ = 2
and different initial conditions.
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