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1. Introduction

The mathematical modeling of many nonlinear problems from computer science,
economics, mechanical engineering, control systems, biological neural networks and
others, leads to the consideration of nonlinear difference equations (see Kelley and
Peterson [16], Lakshmikantham and Trigiante [17]). In the last decades, many
authors have investigated such problems by using various methods, such as fixed
point theorems, the critical point theory, upper and lower solutions, the fixed point
index theory and the topological degree theory (see for example [1,3–9,15,18–22]).

In this paper, we consider the system of nonlinear second-order difference equa-
tions

(S)

∆2un−1 + f(n, vn) = 0, n = 1, N − 1,

∆2vn−1 + g(n, un) = 0, n = 1, N − 1,

with the coupled multi-point boundary conditions

(BC) u0 = 0, uN =

p∑
i=1

aivξi , v0 = 0, vN =

q∑
i=1

biuηi ,

where N ∈ N, N ≥ 2, p, q ∈ N, ∆ is the forward difference operator with stepsize
1, ∆un = un+1 − un, ∆2un−1 = un+1 − 2un + un−1, n = k,m means that n =
k, k + 1, . . . ,m for k, m ∈ N, ai ∈ R, ξi ∈ N for all i = 1, p, bi ∈ R, ηi ∈ N for all
i = 1, q, 1 ≤ ξ1 < · · · < ξp ≤ N − 1 and 1 ≤ η1 < · · · < ηq ≤ N − 1.
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Under sufficient conditions on the functions f and g, we study the existence and
multiplicity of positive solutions of problem (S) − (BC) by using some theorems
from the fixed point index theory. By a positive solution of problem (S)− (BC) we
mean a pair of sequences (u, v) = ((un)n=0,N , (vn)n=0,N ) satisfying (S) and (BC),

with un ≥ 0, vn ≥ 0 for all n = 0, N and (u, v) 6= (0, 0).
The existence of positive solutions for the system of nonlinear second-order dif-

ference equations with two parameters λ and µ, namely the system

(S1)

∆2un−1 + λf(n, un, vn) = 0, n = 1, N − 1,

∆2vn−1 + µg(n, un, vn) = 0, n = 1, N − 1,

with the coupled boundary conditions (BC) was investigated in Henderson and
Luca [13]. The system (S1) with the uncoupled boundary conditions

(BC1) u0 =

p∑
i=1

aiuξi , uN =

q∑
i=1

biuηi , v0 =

r∑
i=1

civζi , vN =

l∑
i=1

divρi ,

has been investigated in Henderson and Luca [11], and in Henderson and Luca
[12] by using the Guo-Krasnosel’skii fixed point theorem. We also mention the
paper Henderson etc [14], where the authors studied the existence and multiplicity
of positive solutions for the system (S) with the multi-point boundary conditions
(BC1).

In Section 2, we present some auxiliary results from Henderson and Luca [13]
which investigate a system of second-order difference equations subject to the cou-
pled boundary conditions (BC). In Section 3, we prove the main theorems for the
existence and multiplicity of the positive solutions with respect to a cone for our
problem (S)− (BC) which are based on three theorems from the fixed point index
theory. An example is presented in Section 4 to illustrate our main results.

2. Auxiliary results

In this section, we present some auxiliary results from Henderson and Luca [13]
related to the following system of second-order difference equations∆2un−1 + xn = 0, n = 1, N − 1,

∆2vn−1 + yn = 0, n = 1, N − 1,
(2.1)

with the coupled multi-point boundary conditions

u0 = 0, uN =

p∑
i=1

aivξi , v0 = 0, vN =

q∑
i=1

biuηi , (2.2)

where N ∈ N, N ≥ 2, p, q ∈ N, ai ∈ R, ξi ∈ N for all i = 1, p, bi ∈ R, ηi ∈ N for all
i = 1, q, 1 ≤ ξ1 < · · · < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1, xi, yi ∈ R for all
i = 1, N − 1.

Lemma 2.1 (Henderson and Luca [13]). If ai ∈ R, ξi ∈ N for all i = 1, p, bi ∈ R,
ηi ∈ N for all i = 1, q, 1 ≤ ξ1 < . . . < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1,
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∆0 = N2 − (
∑p
i=1 aiξi) (

∑q
i=1 biηi) 6= 0, and xi, yi ∈ R for all i = 1, N − 1, then

the unique solution of (2.1)–(2.2) is given by

un =

N−1∑
j=1

G1(n, j)xj +

N−1∑
j=1

G2(n, j)yj , n = 0, N,

vn =

N−1∑
j=1

G3(n, j)yj +

N−1∑
j=1

G4(n, j)xj , n = 0, N,

(2.3)

where

G1(n, j) = g0(n, j) +
n

∆0

(
p∑
i=1

aiξi

)(
q∑
i=1

big0(ηi, j)

)
,

G2(n, j) =
nN

∆0

p∑
i=1

aig0(ξi, j),

G3(n, j) = g0(n, j) +
n

∆0

(
q∑
i=1

biηi

)(
p∑
i=1

aig0(ξi, j)

)
,

G4(n, j) =
nN

∆0

q∑
i=1

big0(ηi, j),

(2.4)

and

g0(n, j) =
1

N

 j(N − n), 1 ≤ j ≤ n ≤ N,

n(N − j), 0 ≤ n ≤ j ≤ N − 1,

for all n = 0, N and j = 1, N − 1.

Lemma 2.2 (Henderson and Luca [13]). If ai ≥ 0, ξi ∈ N for all i = 1, p, bi ≥ 0,
ηi ∈ N for all i = 1, q, 1 ≤ ξ1 < · · · < ξp ≤ N − 1, 1 ≤ η1 < · · · < ηq ≤ N − 1,
and ∆0 = N2 − (

∑p
i=1 aiξi)(

∑q
i=1 biηi) > 0, then the functions Gi, i = 1, 4, given

by (2.4), satisfy Gi(n, j) ≥ 0 for all n = 0, N , j = 1, N − 1, i = 1, 4. Moreover,
if xn ≥ 0, yn ≥ 0 for all n = 1, N − 1, then the solution ((un)n=0,N , (vn)n=0,N ) of

problem (2.1)–(2.2) (given by (2.3)) satisfies un ≥ 0, vn ≥ 0 for all n = 0, N .

Lemma 2.3 (Henderson and Luca [13]). Assume that ai ≥ 0, ξi ∈ N for all i = 1, p,
bi ≥ 0, ηi ∈ N for all i = 1, q, 1 ≤ ξ1 < · · · < ξp ≤ N−1, 1 ≤ η1 < · · · < ηq ≤ N−1,
and ∆0 > 0. Then the functions Gi, i = 1, 4 satisfy the inequalities

a1) G1(n, j) ≤ I1(j), ∀n = 0, N, j = 1, N − 1, where

I1(j) = g0(j, j) +
N

∆0

(
p∑
i=1

aiξi

)(
q∑
i=1

big0(ηi, j)

)
.

a2) For every c ∈ {1, . . . , [[N/2]]}, we have min
n=c,N−c

G1(n, j) ≥ c

N
I1(j), ∀ j =

1, N − 1.

b1) G2(n, j) ≤ I2(j), ∀n = 0, N, j = 1, N − 1, where I2(j) =
N2

∆0

p∑
i=1

aig0(ξi, j).

b2) For every c ∈ {1, . . . , [[N/2]]}, we have min
n=c,N−c

G2(n, j) ≥ c

N
I2(j), ∀ j =

1, N − 1.
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c1) G3(n, j) ≤ I3(j), ∀n = 0, N, j = 1, N − 1, where

I3(j) = g0(j, j) +
N

∆0

(
q∑
i=1

biηi

)(
p∑
i=1

aig0(ξi, j)

)
.

c2) For every c ∈ {1, . . . , [[N/2]]}, we have min
n=c,N−c

G3(n, j) ≥ c

N
I3(j), ∀ j =

1, N − 1.

d1) G4(n, j) ≤ I4(j), ∀n = 0, N, j = 1, N − 1, where I4(j) =
N2

∆0

q∑
i=1

big0(ηi, j).

d2) For every c ∈ {1, . . . , [[N/2]]}, we have min
n=c,N−c

G4(n, j) ≥ c

N
I4(j), ∀ j =

1, N − 1, where [[N/2]] is the largest integer not greater than N/2.

Lemma 2.4 (Henderson and Luca [13]). Assume that ai ≥ 0, ξi ∈ N for all i = 1, p,
bi ≥ 0, ηi ∈ N for all i = 1, q, 1 ≤ ξ1 < · · · < ξp ≤ N−1, 1 ≤ η1 < · · · < ηq ≤ N−1,
∆0 > 0, c ∈ {1, . . . , [[N/2]]}, and xn, yn ≥ 0 for all n = 1, N − 1. Then the solution
of problem (2.1)–(2.2) satisfies the inequalities

min
n=c,N−c

un ≥
c

N
max
m=0,N

um, min
n=c,N−c

vn ≥
c

N
max
m=0,N

vm.

3. Main results

In this section, we investigate the existence and multiplicity of positive solutions for
our problem (S)− (BC) under various assumptions on the functions f and g.

We present the basic assumptions that we shall use in the sequel.

(A1) ai ≥ 0, ξi ∈ N for all i = 1, p, bi ≥ 0, ηi ∈ N for all i = 1, q, 1 ≤ ξ1 < · · · < ξp ≤
N−1, 1 ≤ η1 < · · · < ηq ≤ N−1 and ∆0 = N2−(

∑p
i=1 aiξi) (

∑q
i=1 biηi) > 0.

(A2) The functions f, g : {1, . . . , N − 1} × [0,∞)→ [0,∞) are continuous.

By using the functions Gi, i = 1, 4 from Section 2 (Lemma 2.1), our problem
(S)− (BC) can be written equivalently as the following system

un =

N−1∑
i=1

G1(n, i)f(i, vi) +

N−1∑
i=1

G2(n, i)g(i, ui), n = 0, N,

vn =

N−1∑
i=1

G3(n, i)g(i, ui) +

N−1∑
i=1

G4(n, i)f(i, vi), n = 0, N.

We consider the Banach space X = RN+1 = {u = (u0, u1, . . . , uN ), ui ∈ R, i =
0, N} with the maximum norm ‖ · ‖, ‖u‖ = max

n=0,N
|un|, and the Banach space

Y = X ×X with the norm ‖(u, v)‖Y = ‖u‖+ ‖v‖. We define the cone P ⊂ Y by

P =
{

(u, v) ∈ Y ; u = (un)n=0,N , v = (vn)n=0,N , un ≥ 0, vn ≥ 0, ∀n = 0, N
}
.
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We introduce the operators Q1, Q2 : Y → X and Q : Y → Y defined by
Q1(u, v) = (Q1(u, v))n=0,N , Q2(u, v) = (Q2(u, v))n=0,N ,

(Q1(u, v))n =

N−1∑
i=1

G1(n, i)f(i, vi) +

N−1∑
i=1

G2(n, i)g(i, ui), n = 0, N,

(Q2(u, v))n =

N−1∑
i=1

G3(n, i)g(i, ui) +

N−1∑
i=1

G4(n, i)f(i, vi), n = 0, N,

and Q(u, v) = (Q1(u, v), Q2(u, v)), (u, v) = ((un)n=0,N , (vn)n=0,N ) ∈ Y .
Under the assumptions (A1) and (A2), it is easy to see that the operatorQ : P →

P is completely continuous (see also Lemma 3.1 from Henderson and Luca [13]).
Thus the existence and multiplicity of positive solutions of problem (S)− (BC) are
equivalent to the existence and multiplicity of fixed points of operator Q.

Theorem 3.1. Assume that (A1) and (A2) hold. If the functions f and g also
satisfy the conditions
(A3) There exists c ∈ {1, . . . , [[N/2]]} such that

i) f i∞ = lim
u→∞

min
n=c,N−c

f(n, u)

u
=∞. ii) gi∞ = lim

u→∞
min

n=c,N−c

g(n, u)

u
=∞.

(A4) There exist p1 ≥ 1 and q1 ≥ 1 such that

i) fs0 = lim
u→0+

max
n=1,N−1

f(n, u)

up1
= 0. ii) gs0 = lim

u→0+
max

n=1,N−1

g(n, u)

uq1
= 0,

then problem (S)− (BC) has at least one positive solution
(

(un)n=0,N , (vn)n=0,N

)
.

Proof. For c given in (A3), we define the cone

P0 =

{
(u, v) ∈ P, u = (un)n=0,N , v = (vn)n=0,N ,

min
n=c,N−c

un ≥
c

N
‖u‖, min

n=c,N−c
vn ≥

c

N
‖v‖
}
.

From our assumptions and Lemma 2.4, for any (u, v) ∈ P , we deduce that
Q(u, v) = (Q1(u, v), Q2(u, v)) ∈ P0, that is Q(P ) ⊂ P0.

We consider the sequences u0 = (u0n)n=0,N , v0 = (v0n)n=0,N , defined by
u0n =

N−1∑
i=1

G1(n, i) +

N−1∑
i=1

G2(n, i), n = 0, N,

v0n =

N−1∑
i=1

G3(n, i) +

N−1∑
i=1

G4(n, i), n = 0, N,

that is (u0, v0) is the solution of problem (2.1)–(2.2) with x0 = (x0n)n=1,N−1, y0 =

(y0n)n=1,N−1, x0n = 1, y0n = 1 for all n = 1, N − 1. Hence (u0, v0) = Q(x0, y0) ∈ P0.
We define the set

M = {(u, v) ∈ P, there exists λ ≥ 0 such that (u, v) = Q(u, v) + λ(u0, v0)}.
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We will show that M ⊂ P0 and M is a bounded set of Y . If (u, v) ∈ M , then
there exists λ ≥ 0 such that (u, v) = Q(u, v) + λ(u0, v0) or equivalently

un =

N−1∑
i=1

G1(n, i)(f(i, vi) + λ) +

N−1∑
i=1

G2(n, i)(g(i, ui) + λ), n = 0, N,

vn =

N−1∑
i=1

G3(n, i)(g(i, ui) + λ) +

N−1∑
i=1

G4(n, i)(f(i, vi) + λ), n = 0, N.

By Lemma 2.4, we obtain (u, v) = ((un)n=0,N , (vn)n=0,N ) ∈ P0, hence M ⊂ P0,
and

‖u‖ ≤ N

c
min

n=c,N−c
un, ‖v‖ ≤

N

c
min

n=c,N−c
vn, ∀ (u, v) ∈M. (3.1)

From (A3), we conclude that for ε1 = 2N
cm4

> 0 and ε2 = 2N
cm2

> 0, there exist
C1, C2 > 0 such that

f(n, u) ≥ ε1u− C1, g(n, u) ≥ ε2u− C2, ∀n = c,N − c, u ∈ [0,∞), (3.2)

where mi =
∑N−c
j=c Ii(j), i = 2, 4, and Ii, i = 2, 4 are defined in Lemma 2.3.

For (u, v) = ((un)n=0,N , (vn)n=0,N ) ∈M and n = c,N − c, by using Lemma 2.3
and relations (3.2), it follows that

un = (Q1(u, v))n + λu0n ≥ (Q1(u, v))n =

N−1∑
i=1

G1(n, i)f(i, vi) +

N−1∑
i=1

G2(n, i)g(i, ui)

≥
N−c∑
i=c

G2(n, i)g(i, ui) ≥
c

N

N−c∑
i=c

I2(i)(ε2ui − C2)

≥ cε2m2

N
min

i=c,N−c
ui −

cm2C2

N
= 2 min

i=c,N−c
ui − C3, C3 =

cm2C2

N
,

vn = (Q2(u, v))n + λv0n ≥ (Q2(u, v))n =

N−1∑
i=1

G3(n, i)g(i, ui) +

N−1∑
i=1

G4(n, i)f(i, vi)

≥
N−c∑
i=c

G4(n, i)f(i, vi) ≥
c

N

N−c∑
i=c

I4(i)(ε1vi − C1)

≥ cε1m4

N
min

i=c,N−c
vi −

cm4C1

N
= 2 min

i=c,N−c
vi − C4, C4 =

cm4C1

N
.

Therefore, we deduce

min
i=c,N−c

ui ≤ C3, min
i=c,N−c

vi ≤ C4, ∀ (u, v) = ((un)n=0,N , (vn)n=0,N ) ∈M. (3.3)

From relations (3.1) and (3.3), we obtain ‖u‖ ≤ NC3

c , ‖v‖ ≤ NC4

c , and then

‖(u, v)‖Y = ‖u‖ + ‖v‖ ≤ NC3

c + NC4

c =: C5, for all (u, v) ∈ M , that is M is a
bounded set of Y .

Besides, there exists a sufficiently large R1 > 1 such that

(u, v) 6= Q(u, v) + λ(u0, v0), ∀ (u, v) ∈ ∂BR1 ∩ P, ∀λ ≥ 0.

From Amann [2], we deduce that the fixed point index of operatorQ over BR1
∩P

with respect to P is
i(Q, BR1

∩ P, P ) = 0. (3.4)
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Next, from assumption (A4), we conclude that for ε3 = min{ 1
4M1

, 1
4M4
} and

ε4 = min{ 1
4M2

, 1
4M3
}, there exists r1 ∈ (0, 1] such that

f(n, u) ≤ ε3up1 , g(n, u) ≤ ε4uq1 , ∀n = 1, N − 1, u ∈ [0, r1], (3.5)

where Mi =
∑N−1
j=1 I1(j), i = 1, 4.

By using (3.5), we deduce that for all (u, v) ∈ B̄r1 ∩ P and n = 0, N

(Q1(u, v))n ≤
N−1∑
i=1

I1(i)ε3v
p1
i +

N−1∑
i=1

I2(i)ε4u
q1
i

≤ ε3M1‖v‖p1 + ε4M2‖u‖q1 ≤ 1
4‖v‖+ 1

4‖u‖ = 1
4‖(u, v)‖Y ,

(Q2(u, v))n ≤
N−1∑
i=1

I3(i)ε4u
q1
i +

N−1∑
i=1

I4(i)ε3v
p1
i

≤ ε4M3‖u‖q1 + ε3M4‖v‖p1 ≤ 1
4‖u‖+ 1

4‖v‖ = 1
4‖(u, v)‖Y .

These imply that ‖Q1(u, v)‖ ≤ 1
4‖(u, v)‖Y , ‖Q2(u, v)‖ ≤ 1

4‖(u, v)‖Y , and so

‖Q(u, v)‖Y = ‖Q1(u, v)‖+ ‖Q2(u, v)‖ ≤ 1

2
‖(u, v)‖Y , ∀ (u, v) ∈ ∂Br1 ∩ P.

From Amann [2], we conclude that the fixed point index of operator Q over
Br1 ∩ P with respect to P is

i(Q, Br1 ∩ P, P ) = 1. (3.6)

Combining (3.5) and (3.6), we obtain

i(Q, (BR1 \ B̄r1) ∩ P, P ) = i(Q, BR1 ∩ P, P )− i(Q, Br1 ∩ P, P ) = −1.

We deduce that Q has at least one fixed point (u, v) ∈ (BR1
\ B̄r1) ∩ P , that is

r1 < ‖(u, v)‖Y < R1. The proof of Theorem 3.1 is completed.

Theorem 3.2. Assume that (A1) and (A2) hold. If the functions f and g also
satisfy the conditions

(A5) i) fs∞ = lim
u→∞

max
n=1,N−1

f(n, u)

u
= 0. ii) gs∞ = lim

u→∞
max

n=1,N−1

g(n, u)

u
= 0.

(A6) There exist c ∈ {1, . . . , [[N/2]]}, p2 ∈ (0, 1] and q2 ∈ (0, 1] such that

i) f i0 = lim
u→0+

min
n=c,N−c

f(n, u)

up2
=∞. ii) gi0 = lim

u→0+
min

n=c,N−c

g(n, u)

uq2
=∞,

then problem (S)− (BC) has at least one positive solution
(

(un)n=0,N , (vn)n=0,N

)
.

Proof. From the assumption (A5), we deduce that for ε5 = min{ 1
4M1

, 1
4M4
} and

ε6 = min{ 1
4M2

, 1
4M3
} there exist C6, C7 > 0 such that

f(n, u) ≤ ε5u+ C6, g(n, u) ≤ ε6u+ C7, ∀n = 1, N − 1, u ∈ [0,∞). (3.7)
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Hence for (u, v) ∈ P , by using (3.7), we obtain

(Q1(u, v))n ≤
N−1∑
i=1

I1(i)(ε5vi + C6) +

N−1∑
i=1

I2(i)(ε6ui + C7)

≤ ε5‖v‖
N−1∑
i=1

I1(i) + C6

N−1∑
i=1

I1(i) + ε6‖u‖
N−1∑
i=1

I2(i) + C7

N−1∑
i=1

I2(i)

= ε5‖v‖M1 + C6M1 + ε6‖u‖M2 + C7M2

≤ 1
4‖v‖+ 1

4‖u‖+ C8

= 1
4‖(u, v)‖Y + C8, ∀n = 0, N, C8 := C6M1 + C7M2,

(Q2(u, v))n ≤
N−1∑
i=1

I3(i)(ε6ui + C7) +

N−1∑
i=1

I4(i)(ε5vi + C6)

≤ ε6‖u‖
N−1∑
i=1

I3(i) + C7

N−1∑
i=1

I3(i) + ε5‖v‖
N−1∑
i=1

I4(i) + C6

N−1∑
i=1

I4(i)

= ε6‖u‖M3 + C7M3 + ε5‖v‖M4 + C6M4

≤ 1
4‖u‖+ 1

4‖v‖+ C9

= 1
4‖(u, v)‖Y + C9, ∀n = 0, N, C9 := C7M3 + C6M4,

and so

‖Q(u, v)‖Y = ‖Q1(u, v)‖+ ‖Q2(u, v)‖ ≤ 1

2
‖(u, v)‖Y + C10, C10 := C8 + C9.

Then there exists a sufficiently large R2 ≥ max{4C10, 1} such that

‖Q(u, v)‖Y ≤
3

4
‖(u, v)‖Y , ∀ (u, v) ∈ P, ‖(u, v)‖Y ≥ R2.

Hence ‖Q(u, v)‖Y < ‖(u, v)‖Y for all (u, v) ∈ ∂BR2
∩ P and from Amann [2],

we have
i(Q, BR2 ∩ P, P ) = 1. (3.8)

On the other hand, from (A6) we conclude that for ε7 = N
c(m3+m4)

and ε8 =
N

c(m1+m2)
there exists r2 ∈ (0, 1) such that

f(n, u) ≥ ε7up2 , g(n, u) ≥ ε8uq2 , ∀n = c,N − c, u ∈ [0, r2], (3.9)

where mi =
∑N−c
j=c Ii(j), i = 1, 4.

From (3.9) and Lemma 2.3, we deduce for any (u, v) ∈ B̄r2 ∩ P

(Q1(u, v))n ≥
N−c∑
i=c

G1(n, i)f(i, vi) +

N−c∑
i=c

G2(n, i)g(i, ui)

≥ ε7
N−c∑
i=c

G1(n, i)vp2i + ε8

N−c∑
i=c

G2(n, i)uq2i

≥ ε7
N−c∑
i=c

G1(n, i)vi + ε8

N−c∑
i=c

G2(n, i)ui =: (L1(u, v))n, ∀n = 0, N,
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(Q2(u, v))n ≥
N−c∑
i=c

G3(n, i)g(i, ui) +

N−c∑
i=c

G4(n, i)f(i, vi)

≥ ε8
N−c∑
i=c

G3(n, i)uq2i + ε7

N−c∑
i=c

G4(n, i)vp2i

≥ ε8
N−c∑
i=c

G3(n, i)ui + ε7

N−c∑
i=c

G4(n, i)vi =: (L2(u, v))n, ∀n = 0, N.

Hence
Q(u, v) ≥ L(u, v), ∀ (u, v) ∈ ∂Br2 ∩ P, (3.10)

where the linear operator L : P → P is defined by L(u, v) = (L1(u, v), L2(u, v)).
We consider now (ũ0, ṽ0) ∈ P \{(0, 0)} with ũ0 = (ũ0n)n=0,N and ṽ0 = (ṽ0n)n=0,N

defined by

ũ0n =

N−c∑
i=c

G1(n, i) +

N−c∑
i=c

G2(n, i), n = 0, N,

ṽ0n =

N−c∑
i=c

G3(n, i) +

N−c∑
i=c

G4(n, i), n = 0, N.

Then L(ũ0, ṽ0) = (L1(ũ0, ṽ0), L2(ũ0, ṽ0)), and

(L1(ũ0, ṽ0))n =ε7

N−c∑
i=c

G1(n, i)

N−c∑
j=c

G3(i, j) +

N−c∑
j=c

G4(i, j)


+ ε8

N−c∑
i=c

G2(n, i)

N−c∑
j=c

G1(i, j) +

N−c∑
j=c

G2(i, j)


≥ε7

N−c∑
i=c

G1(n, i)

N−c∑
j=c

c

N
I3(j) +

N−c∑
j=c

c

N
I4(j)


+ ε8

N−c∑
i=c

G2(n, i)

N−c∑
j=c

c

N
I1(j) +

N−c∑
j=c

c

N
I2(j)


=
ε7c

N
(m3 +m4)

N−c∑
i=c

G1(n, i) +
ε8c

N
(m1 +m2)

N−c∑
i=c

G2(n, i)

=

N−c∑
i=c

G1(n, i) +

N−c∑
i=c

G2(n, i) = ũ0n, ∀n = 0, N,

(L2(ũ0, ṽ0))n =ε8

N−c∑
i=c

G3(n, i)

N−c∑
j=c

G1(i, j) +

N−c∑
j=c

G2(i, j)


+ ε7

N−c∑
i=c

G4(n, i)

N−c∑
j=c

G3(i, j) +

N−c∑
j=c

G4(i, j)


≥ε8

N−c∑
i=c

G3(n, i)

N−c∑
j=c

c

N
I1(j) +

N−c∑
j=c

c

N
I2(j)


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+ ε7

N−c∑
i=c

G4(n, i)

N−c∑
j=c

c

N
I3(j) +

N−c∑
j=c

c

N
I4(j)


=
ε8c

N
(m1 +m2)

N−c∑
i=c

G3(n, i) +
ε7c

N
(m3 +m4)

N−c∑
i=c

G4(n, i)

=

N−c∑
i=c

G3(n, i) +

N−c∑
i=c

G4(n, i) = ṽ0n, ∀n = 0, N.

So

L(ũ0, ṽ0) ≥ (ũ0, ṽ0). (3.11)

We may suppose that Q has no fixed point on ∂Br2 ∩ P (otherwise the proof
is finished). From (3.10) and (3.11), and Lemma 2.3 from Zhou and Xu [23], we
conclude that

i(Q, Br2 ∩ P, P ) = 0. (3.12)

Therefore, from (3.8) and (3.12), we have

i(Q, (BR2
\ B̄r2) ∩ P, P ) = i(Q, BR2

∩ P, P )− i(Q, Br2 ∩ P, P ) = 1.

Then Q has at least one fixed point in (BR2
\ B̄r2)∩P , that is r2 < ‖(u, v)‖Y <

R2. Thus problem (S) − (BC) has at least one positive solution (u, v) ∈ P . This
completes the proof of Theorem 3.2.

Theorem 3.3. Assume that (A1)− (A3) and (A6) hold. If the functions f and g
also satisfy the condition

(A7) For each n = 1, N − 1, f(n, u) and g(n, u) are nondecreasing with respect to
u, and there exists a constant R0 > 0 such that

f(n,N) <
R0

4m0
, g(n,N) <

R0

4m0
, ∀n = 1, N − 1,

where m0 = max{Mi, i = 1, 4}, (Mi =
∑N−1
j=1 Ii(j), i = 1, 4), then problem (S) −

(BC) has at least two positive solutions
(

(u1n)n=0,N , (v
1
n)n=0,N

)
and

(
(u2n)n=0,N ,

(v2n)n=0,N

)
.

Proof. By using (A7), for any (u, v) ∈ ∂BR0
∩ P , we obtain

(Q1(u, v))n ≤
N−1∑
i=1

G1(n, i)f(i,N) +

N−1∑
i=1

G2(n, i)g(i,N)

≤
N−1∑
i=1

I1(i)f(i,N) +

N−1∑
i=1

I2(i)g(i,N)

<
R0

4m0

N−1∑
i=1

I1(i) +
R0

4m0

N−1∑
i=1

I2(i)

=
R0M1

4m0
+
R0M2

4m0
≤ R0

2
, ∀n = 0, N,
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(Q2(u, v))n ≤
N−1∑
i=1

G3(n, i)g(i,N) +

N−1∑
i=1

G4(n, i)f(i,N)

≤
N−1∑
i=1

I3(i)g(i,N) +

N−1∑
i=1

I4(i)f(i,N)

<
R0

4m0

N−1∑
i=1

I3(i) +
R0

4m0

N−1∑
i=1

I4(i)

=
R0M3

4m0
+
R0M4

4m0
≤ R0

2
, ∀n = 0, N.

Then we deduce

‖Q(u, v)‖Y = ‖Q1(u, v)‖+ ‖Q2(u, v)‖ < R0 = ‖(u, v)‖Y , ∀ (u, v) ∈ ∂BR0 ∩ P.

By Amann [2], we conclude that

i(Q, BR0 ∩ P, P ) = 1. (3.13)

On the other hand, from (A3), (A6) and the proofs of Theorems 3.1 and 3.2
we know that there exists a sufficiently large R1 > R0 and a sufficiently small
r2 ∈ (0, R0) such that

i(Q, BR1 ∩ P, P ) = 0, i(Q, Br2 ∩ P, P ) = 0. (3.14)

From the relations (3.13) and (3.14), we obtain

i(Q, (BR1
\ B̄R0

) ∩ P, P ) = i(Q, BR1
∩ P, P )− i(Q, BR0

∩ P, P ) = −1,

i(Q, (BR0 \ B̄r2) ∩ P, P ) = i(Q, BR0 ∩ P, P )− i(Q, Br2 ∩ P, P ) = 1.

Then Q has at least one fixed point (u1, v1) ∈ (BR1
\ B̄R0

)∩ P and has at least
one fixed point (u2, v2) ∈ (BR0 \ B̄r2) ∩ P . Therefore, problem (S) − (BC) has
two distinct positive solutions (u1, v1) and (u2, v2). The proof of Theorem 3.3 is
completed.

4. An example

Let N = 30, p = 3, q = 2, a1 = 3, a2 = 1, a3 = 1/2, ξ1 = 5, ξ2 = 15, ξ3 = 25,
b1 = 1, b2 = 1/2, η1 = 10, η2 = 20.

We consider the system of second-order difference equations

(S0)

∆2un−1 + f(n, vn) = 0, n = 1, 29,

∆2vn−1 + g(n, un) = 0, n = 1, 29,

with the multi-point boundary conditions

(BC0) u0 = 0, u30 = 3v5 + v15 + v25/2, v0 = 0, v30 = u10 + u20/2,

where the functions f and g are given by f(n, u) = a0(uα0 +uβ0), g(n, u) = b0(uγ0 +
uδ0) for n = 1, 29 and u ∈ [0,∞), with α0 > 1, 0 < β0 < 1, γ0 > 1, 0 < δ0 < 1,
a0, b0 > 0. We have ∆0 = N2 − (

∑p
i=1 aiξi) (

∑q
i=1 biηi) = 50 > 0.
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The functions Ii, i = 1, 4 from Lemma 2.3 are given by

I1(j)=


1
60 (1335j − 2j2), 1 ≤ j ≤ 10,

1
60 (15300− 195j − 2j2), 11 ≤ j ≤ 20,

1
30 (15300− 480j − j2), 21 ≤ j ≤ 29,

I2(j)=



111
2 j, 1 ≤ j ≤ 5,

3
2 (180 + j), 6 ≤ j ≤ 15,

3
2 (360− 11j), 16 ≤ j ≤ 25,

3
2 (510− 17j), 26 ≤ j ≤ 29,

I3(j)=



1
30 (1140j − j2), 1 ≤ j ≤ 5,

1
30 (5400 + 60j − j2), 6 ≤ j ≤ 15,

1
30 (10800− 300j − j2), 16 ≤ j ≤ 25,

1
30 (15300− 480j − j2), 26 ≤ j ≤ 29,

I4(j)=


15j, 1 ≤ j ≤ 10,

180− 3j, 11 ≤ j ≤ 20,

360− 12j, 21 ≤ j ≤ 29.

We also deduce M1 =
∑29
j=1 I1(j) ≈ 3974.83333333, M2 =

∑29
j=1 I2(j) = 5962.5,

M3 =
∑29
j=1 I3(j) ≈ 4124.83333333 and M4 =

∑29
j=1 I4(j) = 2700. Then m0 =

maxi=1,4Mi = M2. The functions f(n, u) and g(n, u) are nondecreasing with re-

spect to u, for any n = 1, 29, and for p2 = q2 = 1 and c ∈ {1, . . . , 15}, the
assumptions (A3) and (A6) are satisfied; indeed we obtain f i∞ = ∞, gi∞ = ∞,
f i0 = ∞ and gi0 = ∞. We take R0 = 1 and then f(n,R0) = 2a0, g(n,R0) = 2b0
for all n = 1, 29. If a0 <

1
8m0

and b0 <
1

8m0
, then the assumption (A7) is satisfied.

For example, if a0 ≤ 2.096 · 10−5 and b0 ≤ 2.096 · 10−5, then by Theorem 3.3, we
deduce that problem (S0)− (BC0) has at least two positive solutions.
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