PLANAR BIFURCATION METHOD OF DYNAMICAL SYSTEM FOR INVESTIGATING DIFFERENT KINDS OF BOUNDED TRAVELLING WAVE SOLUTIONS OF A GENERALIZED CAMASSA-HOLM EQUATION∗

Shaolong Xie1, Xiaochun Hong2† and Tao Jiang3

Abstract In this study, by using planar bifurcation method of dynamical system, we study a generalized Camassa-Holm (gCH) equation. As results, under different parameter conditions, many bounded travelling wave solutions such as periodic waves, periodic cusp waves, solitary waves, peakons, loops and kink waves are given. The dynamic properties of these exact solutions are investigated.

Keywords GCH equation, periodic wave, periodic cusp wave, peakon, loop, kink wave.

MSC(2010) 35B10, 35C07, 35C08.

1. Introduction

In recent years, there has been a growing interest in integrable non-evolutionary partial differential equations of the form [7, 9, 10]

\[(1 - D_x^2) u_t = F (u, u_x, u_{xx}, u_{xxx}, \ldots), \tag{1.1}\]

where \(u = u(x, t), D_x = \frac{\partial}{\partial x}, F\) is expressed by some functions of \(u\) and its derivatives with respect to \(x\). The most celebrated example of this type of (1.1) is the following Camassa-Holm equation [4]

\[(1 - D_x^2) u_t = -2k u_x - 3uu_x + 2u_xu_{xx} + uu_{xxx}. \tag{1.2}\]

This equation (1.2) has attracted much researchers in recent years both from analytical and numerical point of view, see the references [1, 2, 5, 6, 8, 13, 14, 16, 17, 20–23] and the references cited therein. For \(k = 0\), Camassa and Holm showed that Eq. (1.2) has peakons of the form \(u(x, t) = c e^{-|x - ct|}\). In the fields of mathematics and physics, a soliton is a solitary wave with packet or pulse that maintains its shape while traveling at constant speed. This type of wave has been the focus interest since solitons are thus stable, and do not disperse over time. Peakon is a type of non-smooth soliton, discovered by Camassa and Holm; the wave has a sharp peak

1the corresponding author. Email address: xchong@ynufe.edu.cn(X. Hong)
2School of Statistics and Mathematics, Yunnan University of Finance and Economics, 650221 Kunming, China
3School of Information, Beijing Wuzi University, 101149 Beijing, China
4The authors were supported by National Natural Science Foundation of China (No. 11161038).
where it has not derivative at the peak point. The wave profile is similar to the graph of the function $e^{|x|}$.

More recently, Novikov [15] and Mikhailov and Novikov [16] showed that there are other examples of NLPDEs in the class of Eq. (1.1) which are integrable. Novikov presented a detailed summary of integrable and homogeneous polynomial generalizations of the Camass-Holm type equation with quadratic and cubic nonlinearities.

In this study, by using the planar bifurcation method of dynamical system [11, 12], we will study different kinds of bounded travelling wave solutions and dynamical behaviors of the following a generalized Camassa-Holm (gCH) equation [16]

$$ (1 - D_x^2) u_t = D_x (4 - D_x^2) u^2. \quad (1.3) $$

The exact representation of bounded travelling wave solutions of the gCH are obtained. The planar graphs of the travelling wave solutions is shown under some parameters. These results are not in [19].

The rest of this study is organized as follows. In Section 2, we will derive travelling wave solutions. In Section 3, we will give classifications of travelling wave solutions of (1.3), and make numerical simulations of some bounded travelling wave by using mathematical software. Finally, a short conclusion is given in Section 4.

2. Travelling wave solutions

Making the transformation $u(x,t) = \varphi(\xi)$ with $\xi = x - ct$, the equation (1.3) can be reduced to the following ordinary differential equation:

$$ 2\varphi\varphi'' + c\varphi''' + 6\varphi'\varphi'' - 8\varphi\varphi' - c\varphi' = 0, \quad (2.1) $$

where c is the wave speed, and the sign “\prime” is the derivative with respect to ξ.

Integrating (2.1) with respect to ξ, we have the following travelling wave equation,

$$ (c + 2\varphi) \varphi'' + 2\varphi'^2 - 4\varphi^2 - c\varphi = g, \quad (2.2) $$

where g is integration constant.

In (2.2), multiplying by $2(c + 2\varphi)\varphi'$ on both sides of equation and then integrating it, we have

$$ (c + 2\varphi)^2 \left(\frac{d\varphi}{d\xi} \right)^2 = 4\varphi^4 + 4c\varphi^3 + (2g + c^2) \varphi^2 + 2cg\varphi + h, \quad (2.3) $$

where h is integration constant. Let

$$ d\xi = (c + 2\varphi)d\tau, \quad (2.4) $$

then (2.3) becomes

$$ \left(\frac{d\varphi}{d\tau} \right)^2 = 4\varphi^4 + 4c\varphi^3 + (2g + c^2) \varphi^2 + 2cg\varphi + h. \quad (2.5) $$

Let

$$ f_0(\varphi) = 4\varphi^4 + 4c\varphi^3 + (2g + c^2) \varphi^2 + 2cg\varphi, \quad (2.6) $$
then

\[f'_0(\varphi) = 16\varphi^3 + 12c\varphi^2 + 2(2g + c^2)\varphi + 2cg. \] (2.7)

Write

\[g_1(c) = \frac{c^2}{16}, \] (2.8)

and

\[g_2(c) = -\frac{c^2}{2}. \] (2.9)

Clearly, \(f_0(\varphi) \) has three extreme points \(\varphi_c = -\frac{c}{2} \) and \(\varphi_\pm = \frac{-c \pm \sqrt{c^2 - 16g}}{8} \) when \(g < g_1(c) \) and \(g \neq g_2(c) \), a extreme point \(\varphi_c \) when \(g \geq g_1(c) \), a extreme point \(\varphi_+ \) when \(c > 0, g < g_1(c) \) and \(g = g_2(c) \), a extreme point \(\varphi_- \) when \(c < 0, g < g_1(c) \) and \(g = g_2(c) \). Thus, we have some results as follows:

1. If \(g_1 \leq g \), then \(\varphi_c \) is a minimum point.
2. If \(c > 0, g_2 < g < g_1 \), then \(\varphi_+ \) and \(\varphi_c \) are two minimum points and \(\varphi_- \) is a maximum point, and \(\varphi_c < \varphi_- < \varphi_+ \), and

\[f_0(\varphi_c) < f_0(\varphi_+) < f_0(\varphi_-) \] when \(0 < g < g_1 \),

\[f_0(\varphi_+ - g) = f_0(\varphi_+) < f_0(\varphi_-) \] when \(g = 0 \),

\[f_0(\varphi_+) < f_0(\varphi_-) < f_0(\varphi_c) < f_0(\varphi_-) \] when \(g_2 < g < 0 \).
3. If \(c < 0, g_2 < g < g_1 \), then \(\varphi_- \) and \(\varphi_c \) are two minimum points and \(\varphi_+ \) is a maximum point, and \(\varphi_- < \varphi_+ < \varphi_c \), and

\[f_0(\varphi_-) < f_0(\varphi_+) < f_0(\varphi_c) \] when \(0 < g < g_1 \),

\[f_0(\varphi_-) = f_0(\varphi_c) < f_0(\varphi_+) \] when \(g = 0 \),

\[f_0(\varphi_-) < f_0(\varphi_+) < f_0(\varphi_c) < f_0(\varphi_+) \] when \(g < g_2 < 0 \).
4. If \(g = g_2 \), then \(\varphi_+ \) is a minimum point when \(c > 0, \varphi_- \) is a minimum point when \(c < 0 \).
5. If \(g < g_2 \), then \(\varphi_- \) and \(\varphi_+ \) are two minimum points and \(\varphi_c \) is a maximum point, and \(\varphi_- < \varphi_c < \varphi_+ \), and

\[f_0(\varphi_-) < f_0(\varphi_+) < f_0(\varphi_c) \] when \(0 < c \),

\[f_0(\varphi_-) = f_0(\varphi_+) < f_0(\varphi_-) \] when \(c = 0 \),

\[f_0(\varphi_-) < f_0(\varphi_+ < f_0(\varphi_-) < f_0(\varphi_c) < f_0(\varphi_+) \) when \(c < 0 \).

Let

\[f(\varphi) = f_0(\varphi) + h, \] (2.10)

then (2.3) and (2.5) can be rewritten as

\[\left(\frac{d\varphi}{d\xi} \right)^2 = \frac{f(\varphi)}{(c + 2\varphi)^2}, \] (2.11)

and

\[\left(\frac{d\varphi}{d\tau} \right)^2 = f(\varphi). \] (2.12)

2.1. Case of four real roots of \(f(\varphi) = 0 \)

When the equation \(f(\varphi) = 0 \) have four real roots \(\varphi_i (i = 1, 2, 3, 4) \), and \(\varphi_1 < \varphi_2 < \varphi_3 < \varphi_4 \), then

\[f(\varphi) = 4(\varphi - \varphi_1)(\varphi - \varphi_2)(\varphi - \varphi_3)(\varphi - \varphi_4). \] (2.13)

Under the intervals \([\varphi_2, \varphi_3]\), substituting (2.13) into (2.12) to integrate via the formula 254.00 in [3], we get

\[\varphi = \varphi_1 + \frac{\varphi_2 - \varphi_1}{1 - a^2\text{sn}^2(w, j)}, \] (2.14)
where \(w = \sqrt{(\varphi_4 - \varphi_2)(\varphi_4 - \varphi_1)\tau} \) is a parameter variable, \(j = \sqrt{\frac{(\varphi_2 - \varphi_1)(\varphi_2 - \varphi_1)}{(\varphi_3 - \varphi_1)}} \) is the modulus of Jacobian elliptic function and \(\alpha = \sqrt{\frac{\varphi_2 - \varphi_1}{\varphi_3 - \varphi_1}} \). Using formula 400.01, substituting (2.14) into (2.4) to integrate it, we get

\[
\xi = \frac{1}{\sqrt{(\varphi_4 - \varphi_2)(\varphi_3 - \varphi_1)}} \left\{ (c + 2\varphi_1)w + 2(\varphi_2 - \varphi_1)\Pi [\text{am}(w, j), \alpha^2, j] \right\}. \tag{2.15}
\]

Thus we obtain a parametric form of solution of (1.3) as follows:

\[
\begin{cases}
\varphi = \varphi_1 + \frac{2(\varphi_2 - \varphi_1)(\varphi_3 - \varphi_1)}{\varphi_2 + \varphi_3 - 2\varphi_1 + (\varphi_3 - \varphi_2)\cosh w}, \\
\xi = \frac{1}{2\sqrt{(\varphi_2 - \varphi_1)(\varphi_3 - \varphi_1)}} \left\{ (c + 2\varphi_1)w + 4\sqrt{(\varphi_2 - \varphi_1)(\varphi_3 - \varphi_1)} \right\} \\
\quad \times \tanh^{-1} \left(\sqrt{\frac{\varphi_2 - \varphi_1}{\varphi_3 - \varphi_1}} \tan \frac{w}{2} \right)
\end{cases} \tag{2.16}
\]

2.2. Cases of one double and two real roots of \(f(\varphi) = 0 \)

(1) When \(\varphi_1 \) is a double root, \(\varphi_2 \) and \(\varphi_3 \) are two simple real roots of \(f(\varphi) = 0 \), then

\[
f(\varphi) = 4(\varphi - \varphi_1)^2(\varphi - \varphi_2)(\varphi - \varphi_3), \tag{2.17}
\]

where \(\varphi_1 < \varphi_2 < \varphi_3 \), the interval of integration is between the roots \(\varphi_1 \) and \(\varphi_2 \). Similarly, we obtain a parametric form of solution of (1.3) as follows:

\[
\begin{cases}
\varphi = \varphi_1 + \frac{2(\varphi_2 - \varphi_1)(\varphi_3 - \varphi_1)}{\varphi_2 + \varphi_3 - 2\varphi_1 + (\varphi_3 - \varphi_2)\cosh w}, \\
\xi = \frac{1}{2\sqrt{(\varphi_2 - \varphi_1)(\varphi_3 - \varphi_1)}} \left\{ (c + 2\varphi_1)w + 4\sqrt{(\varphi_2 - \varphi_1)(\varphi_3 - \varphi_1)} \right\} \\
\quad \times \tanh^{-1} \left(\sqrt{\frac{\varphi_2 - \varphi_1}{\varphi_3 - \varphi_1}} \tan \frac{w}{2} \right)
\end{cases} \tag{2.18}
\]

where \(w = 2\sqrt{(\varphi_2 - \varphi_1)(\varphi_3 - \varphi_1)\tau} \) is a parameter variable. Especially, when \(\varphi_1 = \varphi_c \), (2.18) becomes an explicit expression of solution as follows:

\[
\varphi = \frac{1}{2} \left[\varphi_2 + \varphi_3 - (\varphi_3 - \varphi_2) \cosh \xi \right]. \tag{2.19}
\]

(2) When \(\varphi_1 \) and \(\varphi_2 \) are two simple real roots, \(\varphi_3 \) is a double root of \(f(\varphi) = 0 \), then

\[
f(\varphi) = 4(\varphi - \varphi_1)(\varphi - \varphi_2)(\varphi - \varphi_3)^2, \tag{2.20}
\]

where \(\varphi_1 < \varphi_2 < \varphi_3 \), the interval of integration is between the roots \(\varphi_2 \) and \(\varphi_3 \). Substituting (2.20) into (2.12) to integrate, we obtain a parametric form of solution of (1.3) as follows:

\[
\begin{cases}
\varphi = \varphi_3 - \frac{2(\varphi_3 - \varphi_1)(\varphi_3 - \varphi_2)}{2\varphi_3 - \varphi_1 - \varphi_2 + (\varphi_2 - \varphi_1)\cosh w}, \\
\xi = \frac{1}{2\sqrt{(\varphi_3 - \varphi_1)(\varphi_3 - \varphi_2)}} \left\{ (c + 2\varphi_3)w - 4\sqrt{(\varphi_3 - \varphi_1)(\varphi_3 - \varphi_2)} \right\} \\
\quad \times \tanh^{-1} \left(\sqrt{\frac{\varphi_3 - \varphi_2}{\varphi_3 - \varphi_1}} \tan \frac{w}{2} \right)
\end{cases} \tag{2.21}
\]

where \(w = 2\sqrt{(\varphi_3 - \varphi_1)(\varphi_3 - \varphi_2)\tau} \) is a parameter variable. Especially, when \(\varphi_3 = \varphi_c \), (2.20) becomes an explicit expression of solution as follows:

\[
\varphi = \frac{1}{2} \left[\varphi_1 + \varphi_2 + (\varphi_2 - \varphi_1) \cosh \xi \right]. \tag{2.22}
\]
2.3. Cases of two double real roots of \(f(\varphi) = 0 \)

(i) When \(g = 0 \), \(c \neq 0 \) and \(h = 0 \), the \(\varphi_c \) and 0 are two double real roots of \(f(\varphi) = 0 \), then we have

\[
 f(\varphi) = 4(\varphi - \varphi_c)^2\varphi^2. \tag{2.23}
\]

Substituting into (2.11) to integrate, we obtain a peakon solution of (1.3) as follows:

\[
 \varphi = \varphi_c \exp(-|\xi|). \tag{2.24}
\]

(ii) When \(g < 0 \), \(c = 0 \) and \(h = f(\varphi_-) = f(\varphi_+) \), the \(\varphi_- \) and \(\varphi_+ \) are two double real roots of \(f(\varphi) = 0 \) then \(f(\varphi) = 4(\varphi - \varphi_-)^2(\varphi - \varphi_+)^2 \), where \(\varphi_- < \varphi_+ \). Similarly, we obtain a peakon solution of (1.3) as follows:

\[
 (\varphi_+ - \varphi)\varphi^+(\varphi - \varphi_-)^-\varphi^- = \varphi_+^-(\varphi_-)^-\varphi^- \exp[(\varphi_- - \varphi_+)|\xi|]. \tag{2.25}
\]

3. Classifications of travelling wave solutions of Eq. (1.3)

Let \(\frac{d\varphi}{dt} = z \), then \(\frac{d\varphi}{d\tau} = (c + 2\varphi)z \), Eq. (2.2) becomes the following two dimensional system,

\[
 \begin{align*}
 \frac{d\varphi}{d\tau} &= (c + 2\varphi)z, \\
 \frac{dz}{d\tau} &= 4\varphi^2 + c\varphi + g - 2z^2.
 \end{align*} \tag{3.1}
\]

From the theory of the planar dynamical system, we know that the singular points of system (3.1) have following properties.

1. When \(g > g_2 \), then \((\varphi_c, z_+) \) are two saddle points, where \(z_+ = \sqrt{c^2 + 2g} \).
2. When \(g = g_1 \), then \(\varphi_- = \varphi_+ = -\frac{c}{2}, (0, -\frac{c}{2}) \) is a degenerate saddle point.
3. When \(g_2 < g < g_1 \), and \(c > 0 \), then \((\varphi_-, 0) \) is a center point, \((\varphi_+, 0) \) is a saddle point.
4. When \(g_2 < g < g_1 \), and \(c < 0 \), then \((\varphi_+, 0) \) is a center point, \((\varphi_-, 0) \) is a saddle point.
5. If \(g = g_2 \), then \((0, \varphi_c) \) is a degenerate saddle point, \((0, \varphi_-) \) a saddle point when \(c < 0 \), \((0, \varphi_+) \) a saddle point when \(c > 0 \).
6. When \(g < g_2 \), then \((0, \varphi_+) \) are two saddle points.

Using the bifurcation method of planar systems, as [11], in different regions parameter plane, we draw the bifurcation phase portraits of Eq. (1.3) which are shown in Figures 1, 2 and 3.

Based on the above analysis, we obtain the classification of the travelling wave solutions of Eq. (1.3).

3.1. Smooth periodic wave

Satisfying any one of the following four conditions, the Eq. (1.3) has a smooth periodic wave solution as the form of the expression (2.16).

1. \(c > 0 \), \(0 \leq g < g_1 \) and \(-f_0(\varphi_-) < h < -f_0(\varphi_+) \).
2. \(c > 0 \), \(g_2 < g < 0 \) and \(-f_0(\varphi_-) < h < -f_0(\varphi_c) \).
3. \(c < 0 \), \(0 \leq g < g_1 \) and \(-f_0(\varphi_+) < h < -f_0(\varphi_-) \).
4. \(c < 0 \), \(g_2 < g < 0 \) and \(-f_0(\varphi_c) < h < -f_0(\varphi_+) \).
Figure 1. The bifurcation phase portraits of system (3.1) with $c > 0$.

3.2. Periodic cusp waves

(a) When $c > 0$, $g_2 < g < 0$ and $h = -f_0(\varphi_c)$, by using solution (2.19), we obtain a periodic cusp wave solution of Eq. (1.3) as follows:

$$u(\xi) = \frac{1}{2} \left[\varphi_2 + \varphi_3 - (\varphi_3 - \varphi_2) \cosh(\xi - 2nT) \right], \text{ for } (2n - 1)T < \xi \leq (2n + 1)T,$$

where $n = 0, \pm 1, \pm 2, \ldots$, and $T = \int_{\varphi_c}^{\varphi_1} \frac{ds}{\sqrt{(\varphi_1-s)(\varphi_2-s)}} = 2 \ln \frac{\sqrt{\varphi_2-\varphi_1}}{\sqrt{\varphi_2-\varphi_c} + \sqrt{\varphi_1-\varphi_c}}.$

(b) When $c < 0$, $g_2 < g < 0$ and $h = -f_0(\varphi_c)$, by using solution (2.22), we obtain a periodic cusp wave solution of (1.3) as follows:

$$u(\xi) = \frac{1}{2} \left[\varphi_1 + \varphi_2 + (\varphi_2 - \varphi_1) \cosh(\xi - 2nT) \right], \text{ for } (2n - 1)T < \xi \leq (2n + 1)T,$$
Figure 2. The bifurcation phase portraits of system (3.1) with $c = 0$.

where $n = 0, \pm 1, \pm 2, \cdots$, and $T = \int_{\varphi_2}^{\varphi_1} \frac{ds}{\sqrt{(s-\varphi_1)(s-\varphi_2)}} = 2 \ln \frac{\sqrt{\varphi_1-\varphi_2}+\sqrt{\varphi_2-\varphi_1}}{\sqrt{\varphi_2-\varphi_1}}$.

3.3. Periodic loop waves

Satisfying any one of the following two conditions, the Eq. (1.3) has a periodic loop wave solution which is expressed by (2.16).

1) $c \geq 0, g < g_2$ and $-f_0(\varphi_c) < -f_0(\varphi_-)$.
2) $c < 0, g < g_2$ and $-f_0(\varphi_c) < -f_0(\varphi_+)$.

3.4. Solitary loop waves

1) If $0 < c, g < g_2$ and $h = -f_0(\varphi_-)$, then the Eq. (1.3) has a solitary loop wave solution which is expressed by (2.18).
2) If $c < 0, g < g_2$ and $h = -f_0(\varphi_+)$, then the Eq. (1.3) has a solitary loop wave solution which is expressed by (2.21).

3.5. Smooth solitary waves

1) If $0 < c, 0 < g < g_1$ and $h = -f_0(\varphi_+)$, then the Eq. (1.3) has a smooth solitary wave solution which is expressed by (2.21).
2) If $c < 0, 0 < g < g_1$ and $h = -f_0(\varphi_-)$, then the Eq. (1.3) has a smooth solitary wave solution which is expressed by (2.18).

3.6. Peakons

If $c \neq 0, g = 0$ and $h = 0$, then the Eq. (1.3) has a peakon solution which is expressed by (2.24).

3.7. Kink waves

If $c = 0, g < 0$ and $h = -f_0(\varphi_-) = -f_0(\varphi_+)$, then the Eq. (1.3) has two kink solutions $u_1(x,t) = \varphi(\xi)$, for $\frac{d\varphi}{d\xi} > 0$; $u_2(x,t) = \varphi(\xi)$, for $\frac{d\varphi}{d\xi} < 0$, where $\varphi(\xi)$ and ξ satisfy the equation (2.25).

Based on the above analysis, we will simulate the bounded travelling of Eq. (1.3) using mathematical software.
Example 3.1. Choosing $c = 4$, then $g_1 = 1$ and $g_2 = -8$. We take $g = -2$, then $f_0(\varphi_c) = 16$, $f_0(\varphi_-) \approx 17.3923$ and $f_0(\varphi_+) \approx -3.3923$.

(1) Taking $h = -17$, we get $\varphi_1 = -2.2483$, $\varphi_2 \approx -1.59946$, $\varphi_3 \approx -1.16591$, $\varphi_4 \approx 1.01367$ and substituting these data into (2.16), we draw a graph of the profile of the smooth periodic wave solution which is shown in Fig. 4(a).

(2) Taking $h = -16$, we get $\varphi_1 = \varphi_c = -2$, $\varphi_2 = -1$, $\varphi_3 = 1$ and $T \approx 1.31696$ and substituting these data into (3.2), we draw a graph of the profile of the periodic cusp wave solution which is shown in Fig. 5(a).

Example 3.2. Choosing $c = -4$, then $g_1 = 1$ and $g_2 = -8$. We take $g = -2$, then $f_0(\varphi_c) = 16$, $f_0(\varphi_-) \approx -3.3923$ and $f_0(\varphi_+) \approx 17.3923$.

(1) Taking $h = -17$, we get $\varphi_1 = -1.01367$, $\varphi_2 \approx 1.16591$, $\varphi_3 \approx 1.59946$, $\varphi_4 \approx 2.2483$ and substituting these data into (2.16), we draw a graph of the profile
of the smooth periodic wave solution which is shown in Fig. 4(b).

(2) Taking $h = -16$, we get $\phi_1 = -1$, $\phi_2 = 1$, $\phi_3 = \phi_c = -2$ and $T \approx 1.31696$ and substituting these data into (3.3), we draw a graph of the profile of the periodic cusp wave solution which is shown in Fig. 5(b).

Example 3.3. Choosing $c = 4$, then $g_1 = 1$ and $g_2 = -8$. We take $g = -15$, then $f_0(\phi_c) = 120$, $f_0(\phi_-) = 118.75$ and $f_0(\phi_+) = -137.25$.

(1) Taking $h = -119$, we get $\phi_1 \approx -2.61526$, $\phi_2 \approx -2.35977$, $\phi_3 \approx -1.76155$, $\phi_4 \approx 2.73658$. Substituting these data into (2.16), we draw a graph of profile of the periodic loop wave which is shown in Fig. 6(a).

(2) Taking $h = -118.75$, we get $\phi_1 \approx -2.5$, $\phi_2 \approx -1.73607$, $\phi_3 \approx 2.73607$ and substituting these data into (2.18), we draw a graph of profile of the solitary loop wave solution which is shown Fig. 7(a).

Example 3.4. Choosing $c = -4$, then $g_1 = 1$ and $g_2 = -8$. We take $g = -15$, then $f_0(\phi_c) = 120$, $f_0(\phi_-) = -137.25$ and $f_0(\phi_+) = 118.75$.

(1) Taking $h = -119$, we get $\phi_1 \approx -2.73658$, $\phi_2 \approx 1.76155$, $\phi_3 \approx 2.35977$, $\phi_4 \approx 2.61526$ and substituting these data into (2.16), we draw a graph of profile of the periodic loop wave solution which is shown in Fig. 6(b).

(2) Taking $h = -118.75$, we get $\phi_1 \approx -2.73607$, $\phi_2 \approx 1.73607$, $\phi_3 = 2.5$. Substituting these data into (2.21), we draw a graph of profile of solitary loop wave solution which is shown Fig. 7(b).
Example 3.5. Choosing $c = 4$, then $g_1 = 1$ and $g_2 = -8$.

(1) We take $g = 0.5$, then $f_0(\varphi_c) = -4$, $f_0(\varphi_-) \approx 1.14461$ and $f_0(\varphi_+) \approx -0.269607$. Choosing $h = 0.269607$, we get $\varphi_1 \approx -2.39475$, $\varphi_2 \approx -1.31236$ and $\varphi_3 \approx -0.146447$. Substituting these data into (2.21), we draw a graph of profile of smooth solitary wave solution which is shown in Fig. 8(a).

(2) We take $g = 0$ and $h = 0$, then $\varphi_c = -2$. Substituting these data into (2.24), we draw graph of profile of a peakon solution which is shown in Fig. 9(a).

![Graph of profile of smooth solitary wave solution](image1.png)

![Graph of profile of peakon solution](image2.png)
Example 3.6. Choosing $c = -4$, then $g_1 = 1$ and $g_2 = -8$.

(1) We take $g = 0.5$, then $f_0(\varphi_+) = -4$, $f_0(\varphi_-) \approx -0.269607$ and $f_0(\varphi_+) \approx 1.14461$. Choosing $h = 0.269607$, we get $\varphi_1 \approx 0.146447$, $\varphi_2 \approx 1.31236$ and $\varphi_3 \approx 2.39475$. Substituting these data into (2.18), we draw a graph of profile of smooth solitary wave solution which is shown in Fig. 8(b).

(2) We take $g = 0$ and $h = 0$, then $\varphi_c = 2$. Substituting these data into (2.24), we draw a graph of profile of peakon solution of Fig. 9(b).

Example 3.7. Choosing $c = 0$, then $g_1 = g_2 = 0$. We take $g = -4$, then $f_0(\varphi_-) = f_0(\varphi_+) = -4$. Choosing $h = 4$, we get $\varphi_- = -1$ and $\varphi_+ = 1$. Substituting these data into (2.25), we draw two graphs of profile of kink solitary waves solutions which is shown in Fig. 10.

4. Conclusions

In this study, by using the planar bifurcation method of dynamical system, the gCH equation (1.3) have been studied, the periodic waves, periodic cusp waves, solitary waves, peakons, loops and kink waves, and their representations are obtained. We obtain classifications of travelling wave solutions of (1.3) and make numerical simulations of some bounded travelling wave by using mathematical software. The dynamical properties of these bounded travelling wave solutions mentioned above are simulated under the some parametric conditions (see Figs. 4–10).

Among these solutions obtained in this study, some of them have direct physical...
applications. For example, using the smooth solitary wave solutions, non-smooth peakon wave solutions, and kink and anti-kink wave solutions, loop wave and periodic loop wave solutions, we can explain lots of motion phenomena for water wave. For examples, the smooth solitary wave can be used to describe the motion phenomenon of a pile of water, loop wave can be used to describe the motion phenomenon of a turnup water wave.

References

