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PULLBACK ATTRACTORS FOR MODIFIED
SWIFT-HOHENBERG EQUATION ON

UNBOUNDED DOMAINS WITH
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STOCHASTIC FORCING TERMS∗
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Abstract In this paper, the existence and uniqueness of pullback attractors
for the modified Swift-Hohenberg equation defined on Rn driven by both deter-
ministic non-autonomous forcing and additive white noise are established. We
first define a continuous cocycle for the equation in L2(Rn), and we prove the
existence of pullback absorbing sets and the pullback asymptotic compactness
of solutions when the equation with exponential growth of the external force.
The long time behaviors are discussed to explain the corresponding physical
phenomenon.
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1. Introduction

The purpose of writing this article is to survey the behavior of asymptotically com-
pact of solutions for the modified Swift-Hohenberg equation when time is large
enough. J.B.Swift and P.C.Hohenberg in [14] were introduced the Swift-Hohenberg
equation when studied the convective hydrodynamics and viscous film flow. Many
authors treated the Swift-Hohenberg equation [9, 10, 12]. The Swift-Hohenberg e-
quation is a partial differential equation for a scalar field which has been widely
used as a model for the study of various issues in pattern formation. These include
the effects of noise on bifurcations, pattern selection, spatiotemporal chaos and the
dynamics of defects. It has been used to model patterns in simple fluids and in a
variety of complex fluids and biological materials, such as neural tissues. We know
that the important problem in infinite dimensional dynamical systems is to prove
the existence of attractors and study the structure of attractors in the framework
of a process. Random or Nonautonomous dynamical systems have been extensively
studied by many researchers [1, 6, 7, 11, 15–17, 19]. Recently, the theory of pullback
attractor has been successfully developed and applied [2, 5, 8, 18] in many ways.
Because the Sobolev embedding are not compact in the domain Rn, so to obtain
the D-pullback asymptotic compactness of the equation, we will appeal to the idea
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of uniform estimates on the tails of solutions. This idea can be found in the non-
autonomous deterministic equations or the random equations with only stochastic
forcing terms [3, 4, 20, 21]. Motivated by the ideas in [10, 12, 13], we accomplished
this paper. It is shown that a pullback attractor exists when the equation with
exponential growth of the external force. The master devote in this essay is to
develop the theory of pullback attractor for the modified Swift-Hohenberg equation
with both non-autonomous deterministic and random additive white noise terms. It
is worth reminding that the structure of cocycle attractors is still a very interesting
open problem which deserves much fuller treatment.

The paper is made as follows. In the section 2, we recall some main definitions
and results concerning the pullback attractors theory. In section 3, we transform the
stochastic equation into a deterministic one with random paramater and come into
being a continuous cocycle. In section 4, we devote to obtaining uniform estimates
of solution when t→∞. These estimates are necessary for proving the existence of
bounded absorbing set and the asymptotic compactness of the solution operator by
giving uniform estimates on the tails of solution. In the last section, the existence
of a pullback random attractor is proved.

2. Preliminaries

In this section, we discuss the theory of random dynamical systems which is appli-
cable to differential equations with both non-autonomous deterministic and random
additive white noise terms [22]. The pullback attractors theory is an extension ei-
ther for random systems with only stochastic terms or for only non-autonomous
terms.

Let Ω1 be a nonempty set, (Ω2,F2, P ) be a probability space, and (X, d) be a
complete separable metric space with Borel σ-algebra B(X). Suppose that there
are two groups {θ1(t)}t∈R and {θ2(t)}t∈R acting on Ω1 and Ω2. For convenience, we
often write θ1(t) and θ2(t) as θ1,t and θ2,t, respectively. In the sequel, we will call
both (Ω1, {θ1(t)}t∈R) and (Ω2,F2, P, {θ2(t)}t∈R) a parametric dynamical system.

Definition 2.1. Let (Ω1, {θ1(t)}t∈R) and (Ω2,F2, P, {θ2(t)}t∈R) be parametric dy-
namical system. A mapping Φ : R+×Ω1×Ω2×X → X is called a continuous cocycle
on X over (Ω1, {θ1(t)}t∈R) and (Ω2,F2, P, {θ2(t)}t∈R) if for all ω1 ∈ Ω1, ω2 ∈ Ω2

and t, τ ∈ R+, the following conditions are satisfied:
(i) Φ(·, ω1, ·, ·) : R+ × Ω2 ×X → X is (B(R+)×F2 × B(X),B(X))-measurable;
(ii) Φ(0, ω1, ω2, ·) is the identity on X;
(iii) Φ(t+ τ, ω1, ω2, ·) = Φ(t, θ1,τω1, θ2,τω2, ·) ◦ Φ(τ, ω1, ω2, ·);
(iv) Φ(t, ω1, ω2, ·) : X → X is continuous.

Definition 2.2. LetB andD be two families of subsets ofX which are parametrized
by (ω1, ω2) ∈ Ω1×Ω2. Then B and D are said to be equal if B(ω1, ω2) = D(ω1, ω2)
for all ω1 ∈ Ω1 and ω2 ∈ Ω2.

In the sequel, we use D to denote a collection of some families of nonempty
subsets of X:

D = {D = {∅ 6= D(ω1, ω2) ⊆ X : ω1 ∈ Ω1, ω2 ∈ Ω2}}. (2.1)

Definition 2.3. Let B = {B(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} be a family of nonempty
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subsets of X. For every ω1 ∈ Ω1 and ω2 ∈ Ω2, let

Ω(B,ω1, ω2) =
⋂
τ≥0

⋃
t≥τ

Φ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)). (2.2)

Then the family {Ω(B,ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} is called the Ω-limit set of B
and is denoted by Ω(B).

Definition 2.4. Let D be a collection of some families of nonempty subsets of X
and S = {S(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D. Then S is called a D-pullback
absorbing set for Φ if for all ω1 ∈ Ω1, ω2 ∈ Ω2 and for every B ∈ D, there exists
T = T (B,ω1, ω2) > 0 such that

Φ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)) ⊆ S(ω1, ω2) for all t ≥ T. (2.3)

Definition 2.5. Let D be a collection of some families of nonempty subsets of X.
Then Φ is said to be D-pullback asymptotically compact in X if for all ω1 ∈ Ω1 and
ω2 ∈ Ω2, the sequence

{Φ(tn, θ1,−tnω1, θ2,−tnω2, xn)}∞n=1 has a convergent subsequence in X, (2.4)

where tn → ∞, and xn ∈ B(θ1,−tnω1, θ2,−tnω2) with {B(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈
Ω2} ∈ D.

Definition 2.6. Let D be a collection of some families of nonempty subsets of X
and A = {A (ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D. Then A is called a D-pullback
attractor for Φ if the following conditions (i)− (iii) are fulfilled:
(i) A is measurable with respect to the P -completion of F2 in Ω2 and A (ω1, ω2) is
compact for all ω1 ∈ Ω1 and ω2 ∈ Ω2.
(ii) A is invariant, that is, for every ω1 ∈ Ω1 and ω2 ∈ Ω2,

Φ(t, ω1, ω2,A (ω1, ω2)) = A (θ1,tω1, θ2,tω2),∀t ≥ 0.

(iii) A attracts every member of D, that is, for everyB = {B(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈
Ω2} ∈ D and for every ω1 ∈ Ω1 and ω2 ∈ Ω2,

lim
t→∞

d(Φ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)),A (ω1, ω2)) = 0.

Suppose now Ω1 = R. Define a family {θ1,t}t∈R of shift operators by

θ1,t(h) = h+ t, for all t, h ∈ R. (2.5)

Proposition 2.1. Let D be a neighborhood closed collection of some families of
nonempty subsets of X and Φ be a continuous cocycle on X over (R, {θ1(t)}t∈R)
and (Ω2,F2, P, {θ2(t)}t∈R), where {θ1(t)}t∈R is defined by (2.5). Then Φ has a D-
pullback attractor A in D if and only if Φ is D-pullback asymptotically compact in
X and Φ has a closed measurable D-pullback absorbing set S in D. The D-pullback
attractor A is unique and is given by, for each τ ∈ R and ω ∈ Ω2,

A (τ, ω) = Ω(S, τ, ω) =
⋃
B∈D

Ω(B, τ, ω). (2.6)
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3. Cocycles for the SwiftCHohenberg equation on
Rn

Given τ ∈ R and t > τ , consider the following non-autonomous Swift-Hohenberg
equation defined for x ∈ Rn,

du+ (∆2u+ 2∆u+ au+ b|∇u|2 + u3)dt = g(x, t)dt+ h(x)dω, (3.1)

with the initial date

u(x, τ) = uτ (x), x ∈ Rn, (3.2)

where a, b are positive constant, g ∈ L2
loc(R,L

2(Rn)), h ∈ H2(Rn)
⋂
W 2,p(Rn) for

some p ≥ 2, ω is a two-sided real-valued Wiener process on a probability space.
In the sequel, we consider the probability space (Ω,F , P ), where we write

Ω = {ω ∈ C(R,R) : ω(0) = 0}.

Let F is the Borel σ-algebra induced by the compact-open topology of Ω, and P
the corresponding Wiener measure on (Ω,F). We definite a group {θ2,t}t∈R acting
on (Ω,F , P ), and the time shift by

θ2,tω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R. (3.3)

Then (Ω,F , P, {θ2,t}t∈R) is a parametric dynamical system. To this end, we need to
convert the stochastic equation with a random additive term into a corresponding
non-autonomous deterministic one.

Given ω ∈ Ω, we consider the one-dimensional Ornstein-Uhlenbeck equation:

dz + azdt = dω.

From which we can have

dz(θ2,tω) + az(θ2,tω)dt = dω. (3.4)

Then we can easy to check that the random variable z have a stationary solution
denote by

z(ω) = −a
∫ 0

−∞
eaτω(τ)dτ. (3.5)

There exists a set Ω̃ which is a θ2,t invariant set of full P measure, it can make sure

the z(θ2,tω) is continuous in t for every ω ∈ Ω̃, and the random variable |z(ω)| is

tempered. From now on, we will write Ω̃ as Ω, and not distinguish them.
Formally, if u is the solution of equation (3.1), we let the variable v(t) = u(t)−

hz(θ2,tω), which can satisfy

∂v

∂t
+ ∆2v + 2∆v + av =g(x, t)− z(θ2,tω)(∆2h+ 2∆h)

− b|∇(v + hz(θ2,tω))|2 − (v + hz(θ2,tω))3.
(3.6)

For t > τ, τ ∈ R and x ∈ Rn, the equation of (3.6) is a deterministic equation, we
can obtain a unique solution that when ω ∈ Ω, τ ∈ R and v(τ, τ, ω, vτ ) = vτ , vτ ∈
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L2(Rn), for every T > 0. v(·, τ, ω, vτ ) ∈ C([τ,∞), L2(Rn))
⋂
L2((τ, τ+T );H1(Rn)).

For each t ≥ τ , we let u(t, τ, ω, uτ ) = v(t, τ, ω, vτ ) + hz(θ2,tω) with uτ = vτ +
hz(θ2,tω). Then we obtain that u is a continuous and which is (F ,B(L2(Rn)))-
measurable in ω ∈ Ω.

So we can define a cocycle Φ : R+ ×R× Ω× L2(Rn)→ L2(Rn), and we let

Φ(t, τ, ω, uτ ) = u(t+ τ, τ, θ2,−τω, uτ ) = v(t+ τ, τ, θ2,−τω, vτ ) + hz(θ2,tω), (3.7)

where vτ = uτ − hz(ω). By above analysis we can check that Φ is a continuous
cocycle on L2(Rn) over (R, {θ1(t)}t∈R) and (Ω,F , P, {θ2(t)}t∈R). To this end, we
need to specify a collection D of families of subsets of L2(Rn).

Let B be a bounded nonempty subset of L2(Rn), and denote by

‖B‖ = sup
ϕ∈B
‖ϕ‖L2(Rn).

Let D = {D(τ, ω) : τ ∈ R,ω ∈ Ω} is a family of subsets as B, which satisfy that

lim
s→−∞

eλs‖D(τ + s, θ2,sω)‖2 = 0, (3.8)

where λ is a positive constant. We let Dλ = {D = {D(τ, ω) : τ ∈ R,ω ∈ Ω}}.
It is shown that Dλ is neighborhood closed. When deriving uniform estimate of
solution, the following condition will be employed. For ∀τ ∈ R,∫ τ

−∞
eλs‖g(·, s)‖2L2(Rn)ds <∞. (3.9)

From the formula (3.9), we can obtain that

lim
k→∞

∫ τ

−∞

∫
|x|≥k

eλs|g(x, s)|2dxds = 0. (3.10)

We can refer literature [13] to get the following inequality.

Lemma 3.1 (Gagliardo-Nirenberg Inequality). Let Ω be an open, bounded domain
of the lipschitz class in Rn. Assume that 1 ≤ p, q ≤ ∞, 1 ≤ r, 0 < θ ≤ 1 and let

k − n

p
≤ θ(m− n

q
) + (1− θ)n

r
.

Then the following inequality holds

‖u‖k,p ≤ c(Ω)‖u‖1−θr ‖u‖θm,q.

Here after, c is a arbitary positive constant, which may change it’s value from
line to line or even in the same line.

Throughout the paper, we denote (·, ·) and ‖·‖ as the inner product and norm of
L2(Rn). We also respectively denote ‖·‖Wm,p(Rn) and ‖·‖Lp(Rn) by ‖·‖m,p and ‖·‖p.
For the external force g ∈ L2(Rn), we also suppose that ‖g(t)‖2 ≤ βeα|t|, α, β > 0.



212 Z. Wang & X. Du

4. Uniform estimates of solutions

By the below estimates of solutions in L2(Rn), we will obtain the existence of Dλ-
pullback absorbing sets.

Lemma 4.1. According to the assumption of the front. Then for every τ ∈ R,ω ∈ Ω
and D = {D(τ, ω) : τ ∈ R,ω ∈ R} ∈ Dλ, there exists T = T (τ, ω,D) > 0, such that
for all t > T , the solution v of equation satisfies

‖v(t)‖2 ≤ e−δ(t−τ)‖vτ‖2 +
M

δ
+
e−δt

2δ

∫ t

−∞
eδs‖g(s)‖2ds+ ce−δtZ1(t), (4.1)∫ t

τ

eδs‖∆v(s)‖2ds ≤ 2[1− (t− τ)]eδτ‖vτ‖2 +
4M

δ
eδt +

∫ t

−∞

∫ s

−∞
eδr‖g(r)‖2drds

+ δc

∫ t

τ

Z1(s)ds+
1

δ

∫ t

−∞
eδs‖g(s)‖2ds+ cZ1(t). (4.2)

In the two inequalities, M > 0 and the Z1(t) =
∫ t
τ
eδs(‖z(θ2,tω)‖2 + ‖z(θ2,tω)‖24)ds.

Proof. Taking the inner product of (3.6) with v in L2(Rn), we get that

1

2

d

dt
‖v‖2 + ‖∆v‖2 + a‖v‖2 =2‖∇v‖2 + (g(x, t), v)− z(θ2,tω)((∆2h+ 2∆h), v)

− b
∫
Rn
|∇(v + hz(θ2,tω))|2vdx

−
∫
Rn

(v + hz(θ2,tω))3vdx. (4.3)

Hölder and Poincaré inequality give that

λ‖v(x, t)‖2 ≤ ‖∆u(x, t)‖2,

(g(x, t), v(x, t)) ≤ ‖g(x, t)‖‖v(x, t)‖ ≤ λ

2
‖v(x, t)‖2 +

1

2λ
‖g(x, t)‖2.

By the above two inequalities, so (4.3) can be translate into the following,

d

dt
‖v‖2 + ‖∆v‖2 ≤4‖∇v‖2 + 2|a|‖v‖2 − 2z(θ2,tω)((∆2h+ 2∆h), v) +

1

λ
‖g‖2

+ 2|b|
∫
Rn
|∇(v + hz(θ2,tω))|2vdx− 2

∫
Rn

(v + hz(θ2,tω))3vdx.

(4.4)
We start estimates the above inequality. Applying the lemma 3.1, we have

4‖∇v‖2 ≤ c‖∆v(t)‖‖v(t)‖ ≤ 1

4
‖∆v(t)‖2 + c‖v(t)‖2, (4.5)

‖z(θ2,tω)(∆2h+ 2∆h)‖‖v‖ ≤ 1

2
‖z(θ2,tω)(∆2h+ 2∆h)‖2 +

1

2
‖v‖2, (4.6)∫

Rn
(v + hz(θ2,tω))3vdx

=

∫
Rn

v4 + 3v3(hz(θ2,tω)) + 3v2(hz(θ2,tω))2 + v(hz(θ2,tω))3dx

≤‖v‖44 + 3‖v‖43‖hz(θ2,tω)‖4 + 3‖v‖42‖hz(θ2,tω)‖4 + ‖v‖4‖hz(θ2,tω)‖34

≤‖v‖44 +
3

4
‖v‖64 + 2‖hz(θ2,tω)‖24 +

3

4
‖v‖44 +

1

4
‖v‖24 + ‖hz(θ2,tω)‖64.

(4.7)
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Similarly, we can obtain that

2|b|
∫
Rn
|∇(v + hz(θ2,tω))|2vdx

≤2|b|‖∇(v + hz(θ2,tω))‖24‖v(t)‖2

≤c‖∆(v + hz(θ2,tω))‖2θ‖v + hz(θ2,tω)‖2(1−θ)4 ‖v + hz(θ2,tω)− hz(θ2,tω)‖2

≤1

8
‖∆(v + hz(θ2,tω))‖2 +M0

≤1

4
‖∆v‖2 +

1

4
‖z(θ2,tω)∆h‖2 +M1,

(4.8)

M0 : = c(‖v + hz(θ2,tω)‖3−2θ4 + ‖v + hz(θ2,tω)‖2(1−θ)4 ‖hz(θ2,tω)‖4)
1

1−θ ,

M1 : = c(‖v + hz(θ2,tω)‖7−6θ4 +
1

4
‖hz(θ2,tω)‖24)

1
1−θ .

(4.9)

So, from the above we can get that there exists M > 0 such that

d

dt
‖v‖2 +

1

2
‖∆v‖2 ≤M +

1

λ
‖g(x, t)‖2 + c(‖z(θ2,tω)(∆2h+ 2∆h)‖2 + ‖hz(θ2,tω)‖24)

(4.10)
and

d

dt
‖v‖2 +

λ

2
‖v‖2 ≤M +

1

λ
‖g(x, t)‖2 + c(‖z(θ2,tω)(∆2h+ 2∆h)‖2 + ‖hz(θ2,tω)‖24).

(4.11)
Letting δ = λ

2 , multiplying (4.11) by eδ(t−τ) and integrating it over (τ, t), we obtain

‖v(t)‖2 ≤e−δ(t−τ)‖vτ‖2 +
M

δ
+
e−δt

2δ

∫ t

−∞
eδs‖g(s)‖2ds

+ ce−δt
∫ t

τ

eδs(‖z(θ2,tω)(∆2h+ 2∆h)‖2 + ‖hz(θ2,tω)‖24)ds. (4.12)

In (4.12), we estimate the last term, we can get that

ce−δt
∫ t

τ

eδs(‖z(θ2,tω)(∆2h+ 2∆h)‖2 + ‖hz(θ2,tω)‖24)ds

= ce−δt
∫ t

τ

eδs(‖z(θ2,tω)‖2‖∆2h+ 2∆h‖2 + ‖h‖24‖z(θ2,tω)‖24)ds

= ce−δt
∫ t

τ

eδs(‖z(θ2,tω)‖2 + ‖z(θ2,tω)‖24)ds

:= ce−δtZ1(t). (4.13)

From (4.12) and (4.13), we can get that

‖v(t)‖2 ≤ e−δ(t−τ)‖vτ‖2 +
M

δ
+
e−δt

2δ

∫ t

−∞
eδs‖g(s)‖2ds+ ce−δtZ1(t). (4.14)

Thus, we get the desired result (4.1). Now, multiplying (4.12) by eδt and integrating
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it over (τ, t), we get that∫ t

τ

eδs‖v(s)‖2ds ≤(t− τ)eδτ‖vτ‖2 +
M

δ2
eδt +

1

2δ

∫ t

−∞

∫ s

−∞
eδr‖g(r)‖2drds

+ c

∫ t

τ

∫ s

τ

eδr(‖z(θ2,tω)(∆2h+ 2∆h)‖2 + ‖hz(θ2,tω)‖24)drds.

(4.15)
Similarly, multiplying (4.10) by eδt and integrating it over (τ, t), we get that

1

2

∫ t

τ

eδs‖∆v(s)‖2ds ≤eδτ‖vτ‖2 + δ

∫ t

τ

eδs‖v(s)‖2ds+
M

δ
eδt

+ c

∫ t

τ

eδs(‖z(θ2,tω)(∆2h+ 2∆h)‖2 + ‖hz(θ2,tω)‖24)ds

+
1

2δ

∫ t

−∞
eδs‖g(s)‖2ds. (4.16)

From (4.15) and (4.16), we can obtain that∫ t

τ

eδs‖∆v(s)‖2ds

≤2[1− (t− τ)]eδτ‖vτ‖2 +
4M

δ
eδt +

∫ t

−∞

∫ s

−∞
eδr‖g(r)‖2drds

+ 2cδ

∫ t

τ

∫ s

τ

eδr(‖z(θ2,tω)(∆2h+ 2∆h)‖2 + ‖hz(θ2,tω)‖24)drds

+
1

δ

∫ t

−∞
eδs‖g(s)‖2ds+ 2c

∫ t

τ

eδs(‖z(θ2,tω)(∆2h+ 2∆h)‖2 + ‖hz(θ2,tω)‖24)ds

≤2[1− (t− τ)]eδτ‖vτ‖2 +
4M

δ
eδt +

∫ t

−∞

∫ s

−∞
eδr‖g(r)‖2drds

+ δc

∫ t

τ

Z1(s)ds+
1

δ

∫ t

−∞
eδs‖g(s)‖2ds+ cZ1(t). (4.17)

So, the desired result (4.2) of lemma is proved.
Now we can derive the uniform estimates of solutions in H2(Rn).

Lemma 4.2. According to the assumption of the front. Then for every τ ∈ R,ω ∈ Ω
and D = {D(τ, ω) : τ ∈ R,ω ∈ R} ∈ Dλ, there exist T = T (τ, ω,D, ε) ≥ 1 such that
for all t ≥ T , the solution v of equation (3.6) satisfies

‖∆v(t)‖2 ≤ce−δ(t−τ)(‖vτ‖2 + ‖vτ‖6 + ‖vτ‖10)

+ ce−δt
∫ t

τ

eδs(‖z(θ2,sω)‖2 + ‖z(θ2,sω)‖6 + ‖z(θ2,sω)‖10)ds

+
c

δ
(2 +

1

t− τ
)e−δt

∫ t

−∞
eδs‖g(s)‖2ds+ c(1 +

1

t− τ
)e−δtZ1(t)

+ c(1 +
1

t− τ
)
4M

δ
+
c

δ
[1− e−δ(t−τ)] +G1(t) +G2(t). (4.18)

Proof. Taking the inner product of (3.6) with ∆2v in L2, we get that

L1(t, ω) = R1(t, ω), (4.19)
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where

L1(t, ω) =
1

2

d

dt
‖∆v‖2 + ‖∆2v‖2 + 2

∫
Rn

∆v∆2vdx+ a

∫
Rn

v∆2vdx,

R1(t, ω) =

∫
Rn

g(x, t)∆2vdx−
∫
Rn

∆2vz(θ2,tω)(∆2h+ 2∆h)dx

− b
∫
Rn
|∇(v + hz(θ2,tω))|2∆2vdx−

∫
Rn

(v + hz(θ2,tω))3∆2vdx.

We use the Young inequality estimate the above. We can obtain∫
Rn

∆v∆2vdx ≤ ‖∆v‖‖∆2v‖ ≤ 1

12
‖∆2v‖2 + 3‖∆v‖2, (4.20)∫

Rn
g(x, t)∆2vdx ≤ ‖g(x, t)‖‖∆2v‖ ≤ 1

12
‖∆2v‖2 + 3‖g(x, t)‖2, (4.21)∫

Rn
∆2vz(θ2,tω)(∆2h+ 2∆h)dx ≤ ‖∆2v‖‖z(θ2,tω)(∆2h+ 2∆h)‖

≤ 1

12
‖∆2v‖2 + 3‖z(θ2,tω)(∆2h+ 2∆h)‖2,

(4.22)

|b|
∫
Rn
|∇(v + hz(θ2,tω))|2∆2vdx ≤ |b|‖∇(v + hz(θ2,tω))‖24‖∆2v‖

≤ 1

12
‖∆2v‖2 + 3b2‖∇(v + hz(θ2,tω))‖44,

(4.23)

∫
Rn

(v + hz(θ2,tω))3∆2vdx ≤ ‖v + hz(θ2,tω)‖36‖∆2v‖

≤ 1

12
‖∆2v‖2 + 3‖v + hz(θ2,tω)‖66.

(4.24)

From above we can get that

d

dt
‖∆v‖2 + ‖∆2v‖2 ≤12‖∆v‖2 − 2a‖∆v‖2 + 6‖z(θ2,tω)(∆2h+ 2∆h)‖2 + 6‖g(x, t)‖2

+ 6b2‖∇(v + hz(θ2,tω))‖44 + 6‖v + hz(θ2,tω)‖66. (4.25)

In Lemma 3.1, letting k = 1, p = 4, n = m = q = r = 2, θ = 1
4 , we can obtain that

6b2‖∇(v + hz(θ2,tω))‖44 ≤ c‖v + hz(θ2,tω)‖3‖∆(v + hz(θ2,tω))‖

≤ λ

8
‖∆(v + hz(θ2,tω))‖2 + c‖v + hz(θ2,tω)‖6. (4.26)

Similarly, letting k = 0, p = 6, n = m = q = r = 2, θ = 1
6 , we can obtain that

6‖v + hz(θ2,tω)‖66 ≤ c‖v + hz(θ2,tω)‖5‖∆(v + hz(θ2,tω))‖

≤ λ

8
‖∆(v + hz(θ2,tω))‖2 + c‖v + hz(θ2,tω)‖10. (4.27)

Applying these estimates in (4.25), and letting δ = λ
2 , so we can obtain that

d

dt
‖∆v(t)‖2 + δ‖∆v‖2 ≤c{‖∆v‖2 + ‖g(x, t)‖2 + ‖z(θ2,tω(∆2h+ 2∆h))‖2

+ ‖∆hz(θ2,tω)‖2 + ‖v + hz(θ2,tω)‖6 + ‖v + hz(θ2,tω)‖10}.
(4.28)
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Multiplying (4.28) by (t− τ)eδt and integrating it over (τ, t), we can obtain that

(t− τ)eδt‖∆v(t)‖2 ≤c{
∫ t

τ

[1 + (s− τ)]eδs‖∆v‖2ds+

∫ t

τ

(s− τ)eδs‖g(s)‖2ds

+

∫ t

τ

(s− τ)eδs‖z(θ2,tω)(∆2h+ 2∆h)‖2ds

+

∫ t

τ

(s− τ)eδs‖∆hz(θ2,tω)‖2ds

+

∫ t

τ

(s− τ)eδs(‖v + hz(θ2,tω)‖6 + ‖v + hz(θ2,tω)‖10)ds},

(4.29)

and hence

‖∆v(t)‖2 ≤c(1 +
1

t− τ
)e−δt

∫ t

τ

eδs‖∆v(s)‖2ds+ ce−δt
∫ t

τ

eδs‖z(θ2,sω)∆h‖2ds

+ ce−δt
∫ t

τ

eδs‖z(θ2,sω)(∆2h+ 2∆h)‖2ds+ ce−δt
∫ t

−∞
eδs‖g(s)‖2ds

+ ce−δt
∫ t

τ

eδs‖v + hz(θ2,sω)‖6ds+ ce−δt
∫ t

τ

eδs‖v + hz(θ2,sω)‖10ds

:=I1 + I2 + I3 + I4 + I5 + I6.
(4.30)

Now, we estimate the terms on the right hand side of (4.30), and we can obtain
that

I1 =c(1 +
1

t− τ
)e−δt

∫ t

τ

eδs‖∆v(s)‖2ds

≤c[ 1

t− τ
− (t− τ)]e−δ(t−τ)‖vτ‖2 + c(1 +

1

t− τ
)
4M

δ

+ c(1 +
1

t− τ
)e−δt

∫ t

−∞

∫ s

−∞
eδr‖g(r)‖2drds+ c(1 +

1

t− τ
)e−δtZ1(t)

+ cδ(1 +
1

t− τ
)e−δt

∫ t

τ

Z1(s)ds+
c

δ
(1 +

1

t− τ
)e−δt

∫ t

−∞
eδs‖g(s)‖2ds.

(4.31)
By (4.1), through calculation and reduction, we can get that

I5 =ce−δt
∫ t

τ

eδs‖v + hz(θ2,sω)‖6ds

≤ce−δt
∫ t

τ

eδs(‖v‖2)3ds+ ce−δt
∫ t

τ

eδs‖z(θ2,sω)‖6ds

≤ c

−2δ
[e−3δ(t−τ) − e−δ(t−τ)]‖vτ‖6 +

c

δ
[1− e−δ(t−τ)] + ce−δt

∫ t

τ

e−2δs[Z1(s)]3ds

+ ce−δt
∫ t

τ

e−2δs(

∫ s

−∞
eδr‖g(r)‖2dr)3ds+ ce−δt

∫ t

τ

eδs‖z(θ2,sω)‖6ds.

(4.32)
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Similarly, we get that

I6 =ce−δt
∫ t

τ

eδs‖v + hz(θ2,sω)‖10ds

≤ce−δt
∫ t

τ

eδs(‖v‖2)5ds+ ce−δt
∫ t

τ

eδs‖z(θ2,sω)‖10ds

≤ c

−4δ
[e−5δ(t−τ) − eδτ ]‖vτ‖10 +

c

δ
[1− e−δ(t−τ)] + ce−δt

∫ t

τ

e−4δs[Z1(s)]5ds

+ ce−δt
∫ t

τ

e−4δs(

∫ s

−∞
eδr‖g(r)‖2dr)5ds+ ce−δt

∫ t

τ

eδs‖z(θ2,sω)‖10ds. (4.33)

We let

G1(t) =cδ(1 +
1

t− τ
)e−δt

∫ t

τ

Z1(s)ds+ ce−δt
∫ t

τ

e−2δs[Z1(s)]3ds

+ ce−δt
∫ t

τ

e−4δs[Z1(s)]5ds,

(4.34)

G2(t) =c(1 +
1

t− τ
)e−δt

∫ t

−∞

∫ s

−∞
eδr‖g(r)‖2drds

+ ce−δt
∫ t

τ

e−2δs(

∫ s

−∞
eδr‖g(r)‖2dr)3ds

+ ce−δt
∫ t

τ

e−4δs(

∫ s

−∞
eδr‖g(r)‖2dr)5ds.

(4.35)

From (4.30)–(4.35), we can get that

‖∆v(t)‖2 ≤ce−δ(t−τ)(‖vτ‖2 + ‖vτ‖6 + ‖vτ‖10)

+ ce−δt
∫ t

τ

eδs(‖z(θ2,sω)‖2 + ‖z(θ2,sω)‖6 + ‖z(θ2,sω)‖10)ds

+
c

δ
(2 +

1

t− τ
)e−δt

∫ t

−∞
eδs‖g(s)‖2ds+ c(1 +

1

t− τ
)e−δtZ1(t)

+ c(1 +
1

t− τ
)
4M

δ
+
c

δ
[1− e−δ(t−τ)] +G1(t) +G2(t). (4.36)

So the proof is completed.
The following uniform estimates are necessary condition for getting the asymp-

totic compactness of equation defined on unbounded domains. We derive uniform
estimates on the tails of solution when time and space variables are large enough.

Lemma 4.3. According to the assumption of the front. Then for every τ ∈ R, ω ∈
Ω and D = {D(τ, ω) : τ ∈ R,ω ∈ R} ∈ Dλ. Then for every ε > 0, there exist
T = T (τ, ω,D, ε) ≥ 1 and K = K(τ, ω, ε) ≥ 1 such that for all t ≥ T , the solution
v of equation (3.6) with ω replaced by θ2,−τω satisfies∫

|x|≥K
|v(τ, τ − t, θ2,−τω, vτ−t)(x)|2dx ≤ ε,

where vτ−t ∈ D(τ − t, θ2,−τω).
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Proof. Let ρ be a smooth function defined on R+, such that 0 ≤ ρ(s) ≤ 1 for all
s ∈ R+, and

ρ(s) =

{
0 for 0 ≤ s ≤ 1,

1 for s ≥ 2.
(4.37)

Then there exists a positive constant c such that |ρ′(s)| ≤ c for all s ∈ R+.

Taking the inner product of(3.6) with ρ( |x|
2

k2 )v in L2(Rn), we get that

L2(t, ω) = R2(t, ω), (4.38)

where

L2(t, ω) =
1

2

d

dt

∫
Rn

ρ(
|x|2

k2
)|v|2dx+

∫
Rn

∆2vρ(
|x|2

k2
)vdx+

∫
Rn

2∆vρ(
|x|2

k2
)vdx

+ a

∫
Rn

ρ(
|x|2

k2
)v2dx,

R2(t, ω) =− b
∫
Rn

ρ(
|x|2

k2
)|∇(v + hz(θ2,tω))|2vdx−

∫
Rn

ρ(
|x|2

k2
)v(v + hz(θ2,tω))3dx

−
∫
Rn

ρ(
|x|2

k2
)vz(θ2,tω)(∆2h+ 2∆h)dx+

∫
Rn

ρ(
|x|2

k2
)vg(x, t)dx.

We estimate L2(t, ω), we can obtain

|
∫
Rn

∆2vρ(
|x|2

k2
)vdx| ≤ λ

2

∫
Rn

ρ(
|x|2

k2
)v2dx+

1

2λ

∫
Rn

(∆2v)2ρ(
|x|2

k2
)dx, (4.39)

|
∫
Rn

2∆vρ(
|x|2

k2
)vdx| ≤ λ

∫
Rn

ρ(
|x|2

k2
)v2dx+

1

λ

∫
Rn

ρ(
|x|2

k2
)(∆v)2dx. (4.40)

We estimate R2(t, ω), we can obtain

|
∫
Rn

ρ(
|x|2

k2
)v[g(x, t)− z(θ2,tω)(∆2h+ 2∆h)]dx|

≤λ
2

∫
Rn

ρ(
|x|2

k2
)v2dx+

1

λ

∫
Rn

ρ(
|x|2

k2
)[(g(x, t))2 + (z(θ2,tω)(∆2h+ 2∆h))2]dx,

(4.41)

|b
∫
Rn

ρ(
|x|2

k2
)|∇(v + hz(θ2,tω))|2vdx|

≤λ
2
|b|

∫
Rn

ρ(
|x|2

k2
)v2dx+

1

2λ
|b|

∫
Rn

ρ(
|x|2

k2
)|∇(v + hz(θ2,tω))|4dx,

(4.42)

|
∫
Rn

ρ(
|x|2

k2
)v(v + hz(θ2,tω))3dx|

≤λ
2
|b|

∫
Rn

ρ(
|x|2

k2
)v2dx+

1

2λ

∫
Rn

ρ(
|x|2

k2
)(v + hz(θ2,tω))6dx.

(4.43)
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By above estimate we let

M(t, ω) =
1

λ

∫
Rn

ρ(
|x|2

k2
)[(g(x, t))2 + (z(θ2,tω)(∆2h+ 2∆h))2]dx

+
1

2λ
|b|

∫
Rn

ρ(
|x|2

k2
)|∇(v + hz(θ2,tω))|4dx

+
1

2λ

∫
Rn

ρ(
|x|2

k2
)(v + hz(θ2,tω))6dx. (4.44)

Let λ1 = 2a− 5λ− λ|b|, the final reduction to obtain that

d

dt

∫
Rn

ρ(
|x|2

k2
)|v|2dx+ λ1

∫
Rn

ρ(
|x|2

k2
)v2dx

≤ 1

λ
‖∆2v‖2 +

2

λ
‖∆v‖2 +

2

λ
‖g(x, t)‖2 +

2

λ
‖z(θ2,tω)(∆2h+ 2∆h)‖2

+
|b|
λ
‖∇(v + hz(θ2,tω))‖4L4(Rn) +

1

λ
‖v + hz(θ2,tω)‖6L6(Rn). (4.45)

By the inequalities (4.26) and (4.27), we can ulteriorly obtain that

d

dt

∫
Rn

ρ(
|x|2

k2
)|v|2dx+ λ1

∫
Rn

ρ(
|x|2

k2
)v2dx

≤ 1

λ
‖∆2v‖2 + (

2

λ
+
λ

2
)‖∆v‖2 +

2

λ
‖g(x, t)‖2 +

2

λ
‖z(θ2,tω)(∆2h+ 2∆h)‖2

+
λ

2
‖∆hz(θ2,tω)‖2 + c‖v + hz(θ2,tω)‖6 + c‖v + hz(θ2,tω)‖10. (4.46)

We multiply (4.46) by eλt and then integrate the inequality on (τ − t, τ) with t ≥ 0,
we get that for each ω ∈ Ω,∫

Rn
ρ(
|x|2

k2
)|v(τ, τ − t, ω, vτ−t)|2dx− e−λt

∫
Rn

ρ(
|x|2

k2
)|vτ−t(x)|2dx

≤ 1

λ
e−λt

∫ τ

τ−t
eλs‖∆2v‖2ds+H1(t, ω) +H2(t, ω). (4.47)

In the above the

H1(t, ω) =(
2

λ
+
λ

2
)e−λt

∫ τ

τ−t
eλs‖∆v‖2ds+

2

λ

∫ τ

τ−t
eλ(s−τ)‖g(x, s)‖2ds

+
2

λ

∫ τ

τ−t
eλ(s−τ)‖z(θ2,sω)(∆2h+ 2∆h)‖2ds

+
λ

2

∫ τ

τ−t
eλ(s−τ)‖z(θ2,sω)∆h‖2ds,

H2(t, ω) =ce−λt
∫ τ

τ−t
eλs‖v + hz(θ2,sω)‖6ds+ ce−λt

∫ τ

τ−t
eλs‖v + hz(θ2,sω)‖10ds.

(4.48)

In (4.47), we let H0(t, ω) = e−λt
∫ τ
τ−t e

λs‖∆2v‖2ds.
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From the front inequality of (4.25), we multiply it by eλs, and integrate it over
(τ − t, τ), we can obtain that∫ τ

τ−t
eλs‖∆2v‖2ds

≤
∫ τ

τ−t
(12− 2a)eλs‖∆v‖2ds+ 6

∫ τ

τ−t
eλs‖z(θ2,sω)(∆2h+ 2∆h)‖2ds

+

∫ τ

τ−t
6eλs‖g(x, s)‖2ds+ 6b2

∫ τ

τ−t
eλs‖∇(v + hz(θ2,sω))‖44ds

+ 6

∫ τ

τ−t
eλs‖v + hz(θ2,sω)‖66ds. (4.49)

Replacing ω by θ2,−τω in (4.47) and (4.48). By the front estimate of (4.26), (4.27),
and (4.31)–(4.33), we can get that H0(t, θ2,−τω), H1(t, θ2,−τω) and H2(t, θ2,−τω)
are arbitrarily samll when the time t is large enough. So we can get that the
right hand of the below inequality is also arbitrarily samll. There exists a large
time T , when t ≥ T , there have a arbitrarily small variable ε > 0, we can let the
H0(t, θ2,−τω) ≤ λε

3 , H1(t, θ2,−τω) ≤ ε
3 and H2(t, θ2,−τω) ≤ ε

3 .∫
Rn

ρ(
|x|2

k2
)|v(τ, τ − t, θ2,−τω, vτ−t)|2dx− e−λt

∫
Rn

ρ(
|x|2

k2
)|vτ−t(x)|2dx

≤ 1

λ
H0(t, θ2,−τω) +H1(t, θ2,−τω) +H2(t, θ2,−τω). (4.50)

Since vτ−t ∈ D(τ − t, θ2,−τω) and D ∈ Dλ, we can obtain that

lim sup
t→∞

e−λt
∫
Rn

ρ(
|x|2

k2
)|vτ−t(x)|2dx ≤ lim sup

t→∞
e−λt‖D(τ−t, θ2,−τω)‖2 = 0. (4.51)

Which along with (4.50), we can obtain that there exist T (τ, ω,D) such that for all
t ≥ T ∫

|x|≥
√
2k

|v(τ, τ − t, θ2,−τω, vτ−t)|2dx

≤
∫
Rn

ρ(
|x|2

k2
)|v(τ, τ − t, θ2,−τω, vτ−t)|2dx

≤ 1

λ
H0(t, θ2,−τω) +H1(t, θ2,−τω) +H2(t, θ2,−τω)

≤ 1

λ
· λε

3
+

2ε

3
= ε. (4.52)

So the lemma is proved.
Now, we start to derive uniform estimates on the solutions u of the equation

(3.1), we will base on the estimate of the solutions v of the equation (3.6). By (3.7),

we now define another family D̃ of subsets of L2(Rn) from D. Given τ ∈ R and
ω ∈ Ω, set

D̃(τ, ω) = {ϕ ∈ L2(Rn) : ‖ϕ‖2 ≤ 2‖D(τ, ω)‖2 + 2|z(ω)|2‖h‖2}. (4.53)

Let D̃ be the family consisting of those sets given by above, that is to say,

D̃ = {D̃(τ, ω) : D̃(τ, ω) is defined by (4.53), τ ∈ R,ω ∈ Ω}. (4.54)
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Since |z(ω)| is tempered and D ∈ Dλ, it is easy to check that D̃ given by (4.54)
also belongs to Dλ. Furthermore, if uτ−t ∈ D(τ − t, θ2,−tω), then vτ−t = uτ−t −
hz(θ2,−tω) belongs to D̃(τ− t, θ2,−tω). So we can obtain that the uniform estimates
of the solutions of equation (3.1) in H2(Rn) from (3.7), Lemma 4.1 and Lemma 4.2.

5. Existence of attractors for the Swift-Hohenberg
equation

We next show that Φ is Dλ-pullback asymptotically compact in L2(Rn).

Lemma 5.1. According to the assumption of the front. Then Φ is Dλ-pullback
asymptotically compact in L2(Rn), that is to say, for every τ ∈ R,ω ∈ Ω, D =
{D(τ, ω) : τ ∈ R,ω ∈ Ω} ∈ Dλ, and tn → ∞, u0,n ∈ D(τ − tn, θ2,−tnω, u0,n), the
sequence Φ(tn, τ − tn, θ2,−tnω, u0,n) has a convergent subsequence in L2(Rn).

Proof. In order to prove the Φ is pullback asymptotically compact, we need to
show that for every ε > 0, there has a finite covering of balls of radius less than
ε for the sequence Φ(tn, τ − tn, θ2,−tnω, u0,n). Let K > 0, denote by QK = {x ∈
Rn : |x| ≤ K} and QcK = Rn\QK . It follows form Lemma 4.3 that there exist
K = K(τ, ω, ε) ≥ 1 and N1 = N1(τ, ω,D, ε) ≥ 1 such that for all n ≥ N1,

‖Φ(tn, τ − tn, θ2,−tnω, u0,n)‖L2(QcK) ≤
ε

2
. (5.1)

By Lemma 4.2 and the final analysis of the fourth part, we can obtain that there
exists N2 = N2(τ, ω,D, ε) ≥ N1 such that for all n ≥ N2,

‖Φ(tn, τ − tn, θ2,−tnω, u0,n)‖H2(QK) ≤ C(τ, ω), (5.2)

where C(τ, ω) is the constant which can control by the right-hand side of (4.36).
By the compactness of embedding H2(QK) ↪→ L2(QK), the sequence Φ(tn, τ −
tn, θ2,−tnω, u0,n) is precompact in L2(QK), and hence it has a finite covering in
L2(QK) of balls of radius less than ε

2 . So together with (5.1), we can obtain the
conclution that Φ(tn, τ − tn, θ2,−tnω, u0,n) has a finite covering in L2(Rn) of balls
of radius less than ε, we finish the proof.

In the next section, we prove the opinion that the existence of attractors for the
cocycle Φ of the modified Swift-Hohenberg equation.

Theorem 5.1. According to the assumption of the front. Then the cocycle Φ as-
sociated with problem (3.1)–(3.2) has a unique Dλ-pullback attractor A ∈ Dλ in
L2(Rn).

Proof. Attention that Φ has a closed measurable Dλ-pullback absorbing set by
lemma 4.1, and the Φ is Dλ-pullback asymptotically compact in L2(Rn) by lemma
5.1, hence allow from proposition 2.7 we can immediately obtain the existence of a
unique Dλ-pullback attractor A ∈ Dλ in L2(Rn).
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[9] L. A. Peletier and V. Rottschäfer, Large time behaviour of solutions of the
Swift-Hohenberg equations, C.R. Acad. Sci., 336(2003), 225–230.

[10] M. Polat, Global attractor for a modified Swift-Hohenberg equation, Comput.
Math. Appl., 57(2009), 62–66.

[11] M. Scheutzow, Comparison of various concepts of a random attractor: A case
study, Arch. Math.(Basel), 78(2002), 233–240.

[12] L. Song, Y. Zhang and T. Ma, Global attractor for a modified Swift-Hohenberg
equation in Hk spaces, Nonlinear Anal., 72(2010), 183–191.

[13] H. P. Sun and Y. P. Jong, Pullback attractor for a non-autonomous modi-
fied Swift-Hohenberg equation, Computers and Mathematics with Applications,
67(2014), 542–548.

[14] J. B. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective
instability. Phy. Rev. A, 15(1977), 319–328.

[15] B. Wang, Random attractors for non-autonomous stochastic wave equations
with multiplicative noise, Discrete and continuous dynamical systems, 34(2013),
269–300.

[16] B. X. Wang, Random attractors for the stochastic Benjamin-Bona-Mahony
equation on unbounded domains, J. Differential Eq., 246(2009), 2506–2537.

[17] Y. Wang, Y. Liu and Z. Wang, Random attractors for the partly dissipative
stochastic lattice dynamical system, J. Diff. Equ. Appl., 8(2008), 799–817.



Pullback attractors for modified Swift-Hohenberg equation 223

[18] J. Wang and Y. Wang, Pullback attractors for reaction-diffusion delay equa-
tions on unbounded domains with non-autonomous deterministic and stochastic
forcing terms, Journal of Mathematical Physics, 8(2013), 1–26.

[19] Z. Wang and S. Zhou, Random attractor for stochastic reactionCdiffusion equa-
tion with multiplicative noise on unbounded domains, Journal of Mathematical
Analysis and Applications, 1(2011), 160–172.

[20] B. Wang, Existence and upper semicontinuity of attractors for stochastic equa-
tions with deterministic non-autonomous terms, Stochastics and Dynamics,
4(2014), 1–31.

[21] B. Wang, Pullback attractors for non-autonomous reaction-diffusion equations
on Rn , Frontiers of Mathematics in China, 4(2009), 563–583.

[22] B. Wang, Sufficient and necessary criteria for existence of pullback attrac-
tors for non-compact random dynamical systems, J. Differential Equations,
253(2012), 1544–1583.


	Introduction
	Preliminaries
	Cocycles for the Swift–Hohenberg equation on Rn 
	Uniform estimates of solutions 
	Existence of attractors for the Swift-Hohenberg equation

