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Abstract In this paper, we get a time-delay new financial hyperchaotic sys-
tem by modifying an old financial hyperchaotic system. we study the sta-
bility of a time-delay financial hyperchaotic system via adaptive periodically
intermittent linear control method. Stability is obtained by using Lyapunov
stability theorem, adaptive update laws and differential inequalities. More-
over, some numerical simulations are performed to show the advantage of the
applications of this method.
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1. Introduction

During the past decades, the control and synchronization of chaos has been an im-
portant research topic and developed extensively. The synchronization and control
of chaos has been studied widely due to its importance in theory and potential
applications in various areas, such as secure communication, biological systems,
mechanics, neural network, information science and so on [1, 6]. So far, there have
been a lot of investigations on this subject. Many important fundamental results
for the synchronization and control of nonlinear systems have been found by some
researchers in the field of physics, engineering, biology and mathematics. Pecora
and Carrol had found chaos synchronization and proposed a successful method to
synchronize two identical chaotic systems with different initial conditions [2, 13].

To synchronize and stabilize chaotic systems, some important control methods
have been put forward such as state feedback control [17], impulsive control [4,19],
sliding control [5–16], predictive feedback control [14], intermittent control [7,20], et
al. Recently, intermittent control of nonlinear system has drawn increasing interest
in process control, ecosystem management and communication.

Comparing with continuous control method, intermittent control is more effi-
cient when the system output is measured intermittently rather than continuously,
and its cost is lower. It has been widely used in engineering fields for its practica-
bility and ease of implementation in engineering control. In view of those merits,
a lot of researches have been studied in recent years. As a discontinuous feedback
control, the control time of intermittent is periodic. In every period, the time when
the controller works is denoted as work time and the rest is regarded as rest time.
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In [8], authors got the synchronization conditions of chaotic systems with time delay
with the method of intermittent linear state feedback control, Lyapunov function
and linear matrix inequality. Huang et al. discussed parameter mismatches of a
delayed chaotic system by using intermittent linear state feedback in [9]. In [10],
authors investigated projective synchronization of a hyperchaotic system via peri-
odically intermittent control, but in this paper, authors did not considerate time
delay of hyperchaotic system. In [11], authors displayed an exponential stabiliza-
tion and synchronization of time-varying delays neural networks via periodically
intermittent control. Yu et al. studied synchronization of delay nonlinear systems
via periodically nonlinear intermittent control in [18]. In [3], some simple criteria
were derived for the exponential synchronization of complex dynamical networks
under pinning periodically intermittent control. Last year, Sun et al. investigated
synchronization of delayed complex dynamical networks via adaptive periodically
intermittent control [15].

To the best of our knowledge, the above works have not researched on adap-
tive intermittent linear. Therefore, we construct an adaptive intermittent linear
controller to analyze stabilization of hyperchaotic system.

Chinese and western economy occurred chaotic phenomena in 1985. Chaotic
phenomena was shown in 2007 global economic crisis. Based on the existence of in
financial market, we firstly constructed a financial hyperchaotic system in [17].

Control and synchronization of the financial chaotic or hyperchaotic system
has significance [4]. With the development of economy, the financial system has
attracted more and more attention. There exists a chaos phenomenon in economic
and financial systems, which means that the system itself has intrinsic instability,
and generally it is harmful to systems. However, the financial hyperchaotic system
shows more complex dynamical behaviors.

In real life, financial system shows more sophisticated phenomenon and hence we
modify the old system model in [17]. Accordingly, in this paper, we will give a novel
time-delay financial hyperchaotic system and analyze its stabilization. Although
many methods have been proposed to stabilize the financial hyperchaotic system
like state feedback control. In the process of control, sample controllers are more
effective in practical and ease of implement. In fact, the fewer the controllers, the
lower the costs. Therefore, discontinuous control is much fitter for the realistic
situations. Adaptive update laws stabilize the financial hyperchaotic system faster.

All in above, we will investigate stability of a new financial hyperchaotic sys-
tem via adaptive periodically intermittent linear control. Then, we will give its
stabilization criterion and simulation results with the method by using MATLAB.

The rest of this paper is organized as follows. In section 2, the novel time-delay
financial hyperchaotic system is given. In section 3, adaptive periodically intermit-
tent control scheme is introduced. In section 4, adaptive periodically intermittent
control scheme of a time-delay financial hyperchaotic system for stability is shown.
In section 5, numerical simulations are presented to verify the effectiveness of the
theoretical results. Finally, the conclusions are drawn in section 6.

2. A time-delay financial hyperchaotic System

Yu et al. proposed a financial hyperchaotic system without time-delay in [17]. How-
ever, time-delay phenomena often happens in real practice. To show the complexity
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in real life, we add time-delay to the system in [17] and get a novel time-delay fi-
nancial hyperchaotic system:

ẋ = z + (y − a)x+ w(t− τ),

ẏ = 1− by − x2,

ż = −x− cz,

ẇ = −dxy − kw(t− τ),

(2.1)

where the interest rate x, the investment demand y, the price exponent z, and
the average profit margin w are the state variables and a, b, c, d, k are pos-
itive parameters,τ is the time-delay. If τ = 0, the system (2.1) changes into
the system in [17]. There are three unstable equilibrium points: P0(0, 1/b, 0, 0),

P1,2(±θ, k+ack
c(k−d) ),∓ θc ,dθ(1+ac)

cd−ck ) ,where θ =
√

kb+abck
c(d−k) + 1 . Letting parameters a =

0.9, b = 0.2, c = 1.5, d = 0.2 and k = 0.17 and τ = 0, we calculated the four Lya-
punov exponents with Wolf algorithm to be L1 = 0.034432, L2 = 0.018041, L3 = 0
and L4 = −1.1499. The Lyapunov exponents of system (2.1) is presented in Figure
1. When τ = 0, the 3-dimensional phase portraits of financial hyperchaotic system
(2.1) are shown in Figure 2 (a)-(d). More dynamics behaviors about system (2.1)
would be found in [17].

Figure 1. Lyapunov exponents spectrum of system (2.1) when τ = 0.

Remark 2.1 (The background of financial hyperchaotic system in [17]). The sys-
tem in [5] was constructed in the background of the global economic crisis occurred
in 2007 and still exists nowadays. As this global economic crisis did not caused the
great depression like in 1920s-1930s, so the system is a weak hyperchaotic finance
system. Although the largest Lyapunov exponent of the system is relatively small,
the hyperchaotic financial system exactly reflects the global economic crisis.

Remark 2.2 (The reason for adding time-delay to the old system in [17]). Time-
delay phenomenon is often encountered in many practical control systems such as
communication systems, electrical networks, financial systems, engineering systems
and process control systems. Whenever time delay is presented in the systems,
some erratic behavior could occur, bringing about oscillations, instability and poor
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Figure 2. Phase portraits of hyperchaotic finance system(2.1) when τ = 0.

performances. On the other hand, one can design the delayed feedback controller to
improve the controlling effect. Therefore, the stability analysis and control design
of time-delay systems are of great importance for both theoretical and practical
reasons.

The financial system (2.1) is an extremely complex nonlinear system which is
composed of many elements. In nonlinear financial systems, time delay is also a
very important factor. Due to a lot of uncertainty, the general differential equations
can not fully describe some economic phenomena. Therefore, time delay is added
in Eq.(2.1).

3. Adaptive periodically intermittent control scheme

Consider a class of certain hyperchaotic system with time delay:

ẋ = Ax(t) + f(x(t)) + g(x(t− τ)). (3.1)

The controlled system is designed as:

ẋ = Ax(t) + f(x(t)) + g(x(t− τ)) + u(t), (3.2)

where x ∈ Rn is the state vector of the systems (3.1) and (3.2), A ∈ Rn×n, f, g:
Rn×n → Rn×n are continuous nonlinear functions and f(0) = 0, g(0) = 0, τ is the
time delay and u(t) is the adaptive controller of the system (3.2). The u(t) is a
adaptive periodically intermittent controller and it is defined as:

u (t) =

−Kx(t), nT ≤ t ≤ nT + δ,

0, nT + δ < t ≤ (n+ 1)T,
(i = 1, 2, 3, · · · , n) (3.3)
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k̇i =

λix
T
i xi, nT ≤ t ≤ nT + δ,

0, nT + δ < t ≤ (n+ 1)T,
(i = 1, 2, 3, · · · , n)

where u(t) = (u1(t), u2(t), ..., un(t)), K = (k1(t), k2(t), ..., kn(t)), λ = (λ1, λ2, ..., λn),
T > 0 is the control period, and δ > 0 is called the control width. Our goal is to
design suitable δ, T,K such that the system (3.2) is stable.

Assumption 3.1. Let f(x), g(x(t − τ)) are bounded functions, that is there ex-
ist constants matrices L and P , for any x, such that ‖f(x(t))‖2 ≤ L‖x(t)‖2,
with L = diag {l1, l2, · · · , ln} ≥ 0, ‖g(x(t − τ))‖2 ≤ P‖x(t − τ)‖2 with P =
diag {p1, p2, · · · , pn} ≥ 0.

Lemma 3.1 (Sanchez and Perez). For any vectors x, y ∈ Rm and a positive-defined
matrix Q ∈ Rm×m, the matrix inequality 2xT y ≤ xTQx+ yTQ−1y holds.

Lemma 3.2 (Huang, Li and Liu [8]). V (t) ≤M exp(− ρ
ω t), M = ‖V (0)‖τ e(v1+v2)ωeρ

can be obtained, if there exist positive constants u1, u2, v1, v2 such that the following
condition holds:

(i) ρ = r(δ − τ)− (v1 + v2)(ω − δ) > 0,

(ii)

 V̇ (t) ≤ −u1V (t) + u2V (t− τ), nω ≤ t < nω + δ,

V̇ (t) ≤ v1V (t) + v2V (t− τ), nω + δ ≤ t < (n+ 1)ω,

where r is the unique positive solution to −r = −u1 + u2e
rτ , τ is the time delay, δ

is the control width, ω is the control period.

Theorem 3.1 (Stabilization criterion). System (3.2) is stable if there exist positive
constants α1, α2, d1, d2, d3 and d1 > d2 , such that the following conditions hold:

(i) AT +A+ α−1
1 I + α−1

2 I + α1L+ d1I ≤ 0,

(ii) AT +A+ α−1
1 I + α−1

2 I + α1L− d3I ≤ 0,

(iii) η = r(δ − τ)− (d2 + d3) (T − δ) > 0,

where r is the unique positive solution to −r = −d1 + d2e
rτ , A is the matrix of

system (3.1) and (3.2), AT is the translation of matrix A, L is a positive constant
in Assumption 3.1, I is the identity matrix.

Proof. Construct the following positive-defined Lyapunov function:

V (t) = xT (t)x(t) +

n∑
i=1

k2
i

λi
. (3.4)

Calculate the derivation V̇ (t) with respect to time along the trajectories of the
controlled system (3.2). For nT ≤ t < nT + δ, using Assumption 3.1, Lemma 3.1
and condition (i) in Theorem 3.1, we get the following estimate:

V̇ (t) = ẋT (t)x(t) + xT (t)ẋ(t) + 2

n∑
i=1

ki
λi
k̇i

= (Ax(t) + f(x(t)) + g(x(t− τ))−Kx(t))Tx(t) + xT (t)(Ax(t) + f(x(t))

+g(x(t− τ))−Kx(t)) + 2

n∑
i=1

kix
2
i
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= xT (t)(AT +A−KT −K + 2K)x(t) + 2fT (x(t))x(t) + 2gT (x(t− τ))x(t)

≤ xT (t)(AT +A−KT −K + 2K)x(t) + α2g
T (x(t− τ))g(x(t− τ))

+α−1
2 xT (t)x(t) + α1f

T (x(t))f(x(t)) + α−1
1 xT (t)x(t)

≤ xT (t)(AT +A+ α−1
1 + α−1

2 )x(t) + α1x
T (t)Lx(t)

+α2x
T (t− τ)Px(t− τ)

≤ xT (t)(AT +A+ α−1
1 + α−1

2 + α1L+ d1I)x(t) + α2PV (t− τ)− d1V (t)

≤ −d1V (t) + d2V (t− τ).

Note that d1 > 0, d2 = α2P and P is a positive matrix in Assumption 3.1. Then
we have

V̇ (t) ≤ −d1V (t) + d2V (t− τ), nT ≤ t < nT + δ. (3.5)

For nT + δ ≤ t < (n+ 1)T , using Assumption 3.1, Lemma 3.1 and condition (ii) in
Theorem 3.1, we get the following estimate:

V̇ (t) = ẋT (t)x(t) + xT (t)ẋ(t)

= (Ax(t) + f(x(t)) + g(x(t− τ)))Tx(t) + xT (t)(Ax(t) + f(x(t)) + g(x(t− τ)))

= xT (t)(AT +A)x(t) + 2fT (x(t))x(t) + 2gT (x(t− τ))x(t)

≤ xT (t)(AT +A)x(t) + α2g
T (x(t− τ))g(x(t− τ)) + α−1

2 xT (t)x(t)

+α1f
T (x(t))f(x(t)) + α−1

1 xT (t)x(t)

≤ xT (t)(AT +A+ α−1
1 + α−1

2 + α1L− d3I)x(t) + α2PV (t− τ) + d3V (t)

≤ d3V (t) + d2V (t− τ).

Note that d3 > 0, d2 = α2P and P is a positive matrix in Assumption 3.1. Then
we have

V̇ (t) ≤ d3V (t) + d2V (t− τ), nT + δ ≤ t < (n+ 1)T. (3.6)

By Lemma 3.2, we have

V (t) ≤ M̄ exp
−ηt
T

, t > 0, (3.7)

where M̄ =‖ V (0) ‖τ exp[(d2 + d3)T ] exp(η), η = r(δ − τ) − (d2 + d3)(T − δ) > 0.
By Eqs. (3.4) and (3.7), we have

‖ x(t) ‖2≤ M̄ exp(
−ηt
T

), t > 0.

Therefore, we obtained:

‖ x(t) ‖≤
√
M̄ exp(

−ηt
T

), t > 0.

The above inequality implies that the controlled system is exponential stabilization.
The proof is complete.

Remark 3.1. Let λ be the largest eigenvalue of AT +A. If we replace the first two
conditions in Theorem 1 by the two scalar equalities d∗1 = −λ−α−1

1 −α
−1
2 −α1L, d

∗
3 =

λ + α−1
1 + α−1

2 + α1L, where d∗1 > d1, d
∗
3 > d3, it is easy to see that Theorem 3.1

also holds. The results are rewritten as the following corollary.
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Corollary 3.1. The controlled system is globally exponentially stable, if there exist
a positive constant P and 0 < δ < 1, such that η = r(δ− τ)− (d2 + d∗3)(T − δ) > 0,
where d∗1 = −λ− α−1

1 − α
−1
2 − α1L, d

∗
3 = λ+ α−1

1 + α−1
2 + α1L.

Based on Lyapunov stability theory, we studied stable in the controlled system.
By using the adaptive intermittent linear control, the controlled system can be
stabilized easily. Some sufficient conditions for stabilization via adaptive intermit-
tent linear control are derived rigorously. So we can apply this method to control
financial hyperchaotic system.

4. Stability of system (2.1) via adaptive periodically
intermittent linear control

In this section, we stabilize the unstable equilibrium point P0(0, 1/b, 0, 0) of the
time- delay financial hyperchaotic system by periodically intermittent linear con-
trol method. At first, we make a transformation of the financial hyperchaotic sys-
tem(2.1) at the equilibrium point P0. Thus we get a new hyperchaotic system,
which has an unstable equilibrium point P ′0. Therefore, we can use Lyapunov sta-
bility theory and Theorem 3.1 to stabilize it. Let

x1 = x,

x2 = y − 1
b ,

x3 = z,

x4 = w,

the system can be written as:

ẋ1 = x3 +
(

1
b − a

)
x1 + x4(t− τ) + x1x2,

ẋ2 = −bx2 − x2
1,

ẋ3 = −x1 − cx3,

ẋ4 = −dbx1 − kx4(t− τ)− dx1x2.

(4.1)

The controlled hyperchaotic system is described as follows:

ẋ1 = x3 +
(

1
b − a

)
x1 + x4(t− τ) + x1x2 + u1,

ẋ2 = −bx2 − x2
1 + u2,

ẋ3 = −x1 − cx3 + u3,

ẋ4 = −dbx1 − kx4(t− τ)− dx1x2 + u4,

(4.2)

where the controllers are designed as follows:

ui(t) =

{
−kixi(t), nT ≤ t < nT + δ,

0, nT + δ ≤ t < (n+ 1)T,
(i = 1, 2, 3, 4)



86 L. Zhang, G. Cai & X. Fang

and the adaptive laws are given as:

k̇i =

{
λix

2
i , nT ≤ t < nT + δ,

0, nT + δ ≤ t < (n+ 1)T.
(i = 1, 2, 3, 4)

In system (4.2), we select parameters a = 0.9, b = 0.2, c = 1.5, d = 0.2 and k = 0.17.

Therefore, the linear matrix A =


4.1 0 −1 −1

0 −0.2 0 0

1 0 −1.5 0

−1 0 0 0

, the nonlinear function vector

f(x) = (x1x2,−x2
1, 0,−0.2x1x2)T , and the time-delay function vector g(x(t− τ)) =

(x4(t− τ), 0, 0,−0.17x4(t− τ))T . We choose positive matrices L = P = 0.5I, α1 =
α2 = 1, d1 = 1, d2 = 0.5, d3 = 1, then system (4.2) satisfies all conditions in Theorem
3.1. From Theorem 3.1, system (4.2) is prove to be stabled at the equilibrium point
P ′0(0, 0, 0, 0). Consequently, the system (2.1) is stable at the equilibrium point
P0(0, 1

b , 0, 0).
Unstable equilibrium point P1,2 also stable by using adaptive intermittent con-

trol method. Those proofs omitted here because they are similar with that of
stabilizing the unstable equilibrium point P0.

5. Numerical simulations

To verify the results, some numerical simulations are performed. The financial hy-
perchaotic system (2.1) is rewritten as system (4.1) at unstable equilibrium point
P0. It shows chaotic behavior when the parameters are chosen as a = 0.9, b =
0.2, c = 1.5, d = 0.2, k = 0.17 and the initial values of the control system (4.1) are
designed as (x1(0), x2(0), x3(0), x4(0)) = (−1,−2,−3,−4), τ = 0.5. Using MAT-
LAB, time evolutions of (x1, x2, x3, x4) are system (4.1) is demonstrated in Figure
3.

To verify the effectiveness of adaptive intermittent linear control method, we
choose system (4.2) as the controlled system. The parameters are chosen as a =
0.9, b = 0.2, c = 1.5, d = 0.2, k = 0.17. The initial values of the controlled system
(4.2) are designed as (x1(0), x2(0), x3(0), x4(0)) = (4, 3, 2, 1) and the time delay is
τ = 0.5. The initial values of the unknown parameters are designed k̇i = 1(i =
1, 2, 3, 4) and λ1 = 12, λ2 = 12, λ3 = 12, λ4 = 12 respectively. Assuming the
controllers are switched on the T = 1s and = 0.8s. we get the time evaluation
of states in the controlled system (4.2) with adaptive intermittent linear control,
which is shown in Figure 4. Figure 5 presents the evolution of ‖x(t)‖ of the system
(4.2) with adaptive intermittent linear control. Figure 6 shows the estimations of
adaptive gains ki(i = 1, 2, 3, 4) of financial hyperchaotic systems (4.2).

Comparing Figure 3 with Figure 4, we find that the time evaluations of xi(t)(i =
1, 2, 3, 4) of system (4.1) without controller present irregular phenomenon in Figure
3, in other words, system (4.1) shows chaotic behavior. However, it is stabilized
quickly by adding adaptive intermittent linear control (see Figure 4). It verifies the
feasibility and effectiveness of adaptive intermittent linear control method.

In order to illustrate the advantage of the adaptive intermittent control method,
we give a numerical simulation of system (4.2) with intermittent linear control
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Figure 3. Time evolutions of x1, x2, x3, x4 of system (4.1).
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Figure 4. Time evolutions of x1, x2, x3, x4 of system (4.2)with adaptive intermittent linear control.
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Figure 5. Time evolutions of |x(t)| of system
(4.2)with adaptive intermittent linear control.
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Figure 6. Time evolutions of adaptive gain
ki, (i = 1, 2, 3, 4) of the system (4.2) with adap-
tive intermittent linear control.

and make a comparison between intermittent linear control method and adaptive
intermittent linear control. We also choose system (4.2) as the controlled system.
The parameters are chosen as a = 0.9, b = 0.2, c = 1.5, d = 0.2, k = 0.17. The
initial values of the controlled system are also chosen as (x1(0), x2(0), x3(0), x4(0)) =
(4, 3, 2, 1) and the time delay is τ = 0.5. The control gains are designed as ki =
4(i = 1, 2, 3, 4). Assuming the controllers are switched on T = 1s and = 0.8s, we
get the time evaluation of states in the controlled system (4.2) with intermittent
linear control (see Figure 7).
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Figure 7. Time evolutions of x1, x2, x3, x4 of system (4.2)with intermittent linear control.

From Figures 4 and 7, it is easy to find that the states with adaptive intermittent
linear control method have smaller fluctuation than those with intermittent linear
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control method. It is obvious that the states of controlled system are stabilized faster
under the adaptive intermittent linear method than those only under intermittent
linear control.

All the above results show that the advantage, correctness and effectiveness of
adaptive intermittent linear control method. As we all know, intermittent control is
a discontinuous control. Because controllers does not work in the full time period, it
needs fewer controllers in real process than continuous control like adaptive control,
and it saves much cost in real process. Therefore, the adaptive intermittent control
method is superior to others not only on convergence velocity but also on the cost.

Remark 5.1. Adaptive controllers have the merit of simple design, but continuous
control needs more energy. Intermittent controllers can save much energy with sim-
ple design and less economy consumption. The new adaptive intermittent controller
constituted in this study integrates the advantages of adaptive controller and inter-
mittent controller. Therefore, the proposed method in this study can be applied to
many fields, such as secure communication and commercial systems.

6. Conclusion

In this paper, the adaptive intermittent control method of a time-delay financial
hyperchaotic system has been analyzed. With less conservative conditions, the con-
trolled system could be stable at its equilibrium points by Lyapunov stability theory
and differential inequalities. Adaptive intermittent control speeds up stabilization
velocity of the system. Besides, adaptive update laws are proposed to m stabi-
lize the control gain. Finally, numerical simulations have been presented to verify
effectiveness and correctness of adaptive intermittent control method.
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