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EXISTENCE RESULTS OF SECOND ORDER
IMPULSIVE FUNCTIONAL DIFFERENTIAL
EQUATIONS WITH INFINITE DELAY AND

FRACTIONAL DAMPING∗

Shengli Xie

Abstract In this paper we prove the existence, uniqueness, regularity and
continuous dependence of mild solutions for second order impulsive function-
al differential equations with infinite delay and fractional damping in Banach
spaces. We generalize the existence theorem of integer order differential e-
quations to the fractional order case. The results obtained here improve and
generalize some known results.
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1. Introduction

Consider the following second order impulsive functional differential equations Cauchy
problem with infinite delay and fractional damping:

x′′(t)−BDα
t x(t) = Ax(t) + f

(
t, xt, D

γ
t xt
)
, t ∈ [0, b], t 6= ti, (1.1)∆x(ti) = Ii(xti , x

′
ti),∆x

′(ti) = Ji(xti , x
′
ti), i = 1, 2, . . . , n,

x0 = ϕ ∈ B, x′0 = ψ ∈ B,
(1.2)

where Dα
t , D

γ
t are the Caputo’s fractional derivative operator of order α, γ ∈ (0, 1),

A is the infinitesimal generator of a strongly continuous cosine function of bounded
linear operators (C(t))t∈R on a Banach space X,B : X → X is a bounded linear
operator. The history xt, x

′
t : (−∞, 0]→ X, xt(θ) = x(t+ θ) and x′t(θ) = x′(t+ θ)

belong to some abstract phase space B defined axiomatically; 0 = t0 < t1 < · · · <
tn < tn+1 = b are fixed numbers and the symbol 4x(ti) represent the jump of the
function x at ti, which is defined by 4x(ti) = x(t+i ) − x(t−i ) for i = 1, 2, . . . , n.
4x′(ti) has the same meaning.

Impulsive differential equations with delay and fractional derivatives have played
an important role in describing dynamics of populations subject to abrupt changes
as well as other phenomena such as harvesting, diseases, and so forth, which has
been used for constructing many mathematical models in science and engineer-
ing. The theory of fractional differential equations has been extensively studied by
many authors [3–5,7,15–17,20–24,27,29,30]. To obtain existence of mild solutions
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in these papers, usually,the compactness condition on associated family of operators
and pulse items, restrictive conditions on a priori estimation are used. For exam-
ple, authors in [10] studied the existence of mild solutions for a damped impulsive
system:

x′′(t) = Ax(t) +Bx′(t) + f(t, x(t), x(a(t)), x′(t), x′(b(t))), t ∈ [0, b],

∆x(ti) = Ii(x(ti), x
′(ti)), ∆x′(ti) = Ji(x(ti), x

′(ti)), i = 1, 2, . . . , n,

x(0) = x0, x
′(0) = z,

(1.3)

the compactness conditions on associated family of operators and and pulse items,
the restrictive conditions on a priori estimation

µ =

n∑
i=1

[
(N1 +M)cIi + (M +N)cJi

]
< 1, (1.4)

(M +N)
[
‖B‖b+ lim inf

r→∞

W (4r)

r

∫ b

0

m(s)ds
]

+

n∑
i=1

[
(M +N1)Li + (M +N)Ki

]
< 1,

(1.5)

are used. Recently, authors [1] used the measure of noncompactness without the
compactness assumption on associated family of operators, to obtain the existence
of mild solutions for the following fractional order integro-differential system:Dq

tx(t) = Ax(t) +

∫ t

0

a(t, s)f(s, xs, x(s))ds, t ∈ [0, b],

x(t) = ϕ(t), t ∈ (−∞, 0],

the restrictive conditions on a priori estimation and measure of noncompactness
estimation

bqaCq,M‖µ2‖L1(J,R+) < q,

16aη∗ < 1, (1.6)

are used in [1]. However, to the best of the author’s knowledge, fractional derivatives
are introduced here for such problems for the first time.

In this paper, using the Kuratowski measure of noncompactness and progressive
estimation method, we prove the existence, uniqueness, regularity and continu-
ous dependence of mild solutions for the problem (1.1)–(1.2). The compactness
condition of pulse items, some restrictive conditions on a priori estimation and non-
compactness measure estimation have been removed to obtain the existence and
uniqueness of mild solutions. Our results improve and generalize the corresponding
results in [2, 10]. Finally, an example of non-compact semigroups is given.

The paper is organized as follows. In section 2 we give some basic concepts and
Lemmas. In section 3 we discuss the existence, uniqueness and regularity of mild
solutions, in section 4 we discuss the continuous dependence of mild solutions. Our
results are based on the properties of equicontinuous semigroups and the ideas and
techniques in Xie [28].
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2. Preliminaries

In this paper, X will be a Banach space with norm ‖ · ‖ and A : D(A) ⊂ X → X
is the infinitesimal generator of a strongly continuous cosine family (C(t))t∈R of
bounded linear operators on X and (S(t))t∈R is the sine function associated with

(C(t))t∈R, which is defined by S(t)x =
∫ t

0
C(s)xds, x ∈ X, t ∈ R. We designate

by N,N certain constants such that ‖C(t)‖ ≤ N and ‖S(t)‖ ≤ N for every t ∈
J = [0, b]. We refer the reader to [6] for the necessary concepts about cosine
functions. As usual we denote by [D(A)] the domain of A endowed with the graph
norm ‖x‖A = ‖x‖ + ‖Ax‖, x ∈ D(A). Moreover, the notation E stands for the
space formed by the vector x ∈ X for which the function C(·)x is of class C1.
It was proved by Kisyński [18] that the space E endowed with the norm ‖x‖E =
‖x‖+ sup0≤t≤b ‖AS(t)x‖, x ∈ E, is a Banach space. The operator valued function

G(t) =
[
C(t) S(t)
AS(t) C(t)

]
is a strongly continuous group of linear operators on the space

E ×X generated by the operator A = [ 0 I
A 0 ] defined on D(A)× E. It follows from

this that AS(t) : E → X is a bounded linear operator and that AS(t)x→ 0 (t→ 0)
for each x ∈ E. Furthermore, if x : [0,∞) → X is a locally integrable function,

then z(t) =
∫ t

0
S(t − s)x(s)ds defines an E-valued continuous function. This is a

consequence of the fact that∫ t

0

G(t− s)[0, x(s)]T ds =
[ ∫ t

0

S(t− s)x(s)ds,

∫ t

0

C(t− s)x(s)ds
]T
,

defines an (E ×X)-valued continuous function. Next N1 =: supt∈J ‖AS(t)‖L(E,X)

in which L(E,X) stands for the Banach space of bounded linear operators from E
into X and we abbreviate this notation to L(X) when E = X.

We say that a function u : [σ, b] → X is a normalized piecewise continuous
function on [σ, b] if u is piecewise continuous and left continuous on (σ, b]. We
denote by PC([σ, b], X) the space formed by the normalized piecewise continuous
functions from [σ, b] into X. In particular, we introduce the space PC formed by
all functions u : [0, b] → X such that u is continuous at t 6= ti, u(t−i ) = u(ti)
and u(t+i ) exists for all i = 1, 2, · · · , n. It is clear that PC endowed with the
norm ‖x‖pc = supt∈J ‖x(t)‖ is a Banach space. Similarly, We say that x ∈ PC is
piecewise smooth if x is continuously differentiable at t 6= ti, i = 1, 2, · · · , n, and for

t = ti, i = 1, 2, · · · , n, there are the right derivative x′(t+i ) = lim
s→0+

x(ti + s)− x(ti)

s

and the left derivative x′(t−i ) = lim
s→0−

x(ti + s)− x(ti)

s
. Furthermore, we denote the

space by PC1 = {x ∈ PC : x′(t) is continuous at t 6= ti, x
′(t−i ) and x′(t+i ) exist, i =

1, 2, · · ·n}. Then PC1 endowed with the norm ‖u‖1 = ‖u‖pc + ‖u′‖pc is a Banach
space. Next, for u ∈ PC1 we represent by u′(t) the left derivative at t > 0 and by
u′(0) the right derivative at zero.

Let J0 = [0, t1], J1 = (t1, t2], J2 = (t2, t3], · · · , Jn = (tn, b], J0 = J0, J1 =
[t1, t2], J2 = [t2, t3], · · · , Jn = [tn, b]. For x ∈ PC, we denote by x̃i, i = 0, 1, . . . , n,
the function x̃i ∈ C(J i, X) given by x̃i(t) = x(t), t ∈ (ti, ti+1] and x̃i(ti) = x(t+i ).

Moreover, for V ⊂ PC and i = 0, 1, . . . , n, we use the notation Ṽi for Ṽi = {x̃i :
x ∈ V }. By Lemma 1.1 in [10], we know that a set V ⊆ PC is relatively compact

if and only if each set Ṽi = {x̃i : x ∈ V } is relatively compact in C(J i, X) for every
i = 0, 1, . . . , n.
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In this work we will employ an axiomatic definition of the phase space ß in-
troduced by Hale and Kato [13] which appropriated to treat retarded impulsive
differential equations.

Definition 2.1 ( [13]). The phase space B is a linear space of functions mapping
(−∞, 0] into X endowed with a seminorm ‖·‖B and B satisfies the following axioms:

(A) If x : (−∞, σ+ b]→ X (b > 0) is such that xσ ∈ B and x|[σ,σ+b] ∈ PC([σ, σ+
b], X), then for every t ∈ [σ, σ + b) the following conditions hold:

(i) xt is in B,

(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t − σ) sup{‖x(s)‖ : σ ≤ s ≤ t} + M(t − σ)‖xσ‖B, where
H > 0 is a constant; K,M : [0,∞)→ [1,∞),K(·) is continuous, M(·) is
locally bounded and H,K,M are independent of x(·).

(B) The space B is complete.

Remark 2.1. If the function x(·) of (A) is continuous on [σ, σ+b), xt is a B-valued
continuous function on [σ, σ + b). see [13].

Example 2.1. The phase space PCr(X) × L2(h,X). Let h : (−∞,−r] → (0,∞)
be a positive function verifying the conditions (g6) and (g7) of [14]. This means
that h(·) is Lebesgue integrable on (−∞,−r) and that there exists a non-negative
and locally bounded function γ : (−∞, 0] → [0,∞) such that h(ξ + θ) ≤ γ(ξ)h(θ),
for all ξ ≤ 0, θ ∈ (−∞,−r) \ Nξ, where Nξ ⊆ (−∞,−r) is a set with Lebesgue
measure zero. Let the space B = PCr × L2(h,X), (r ≥ 0) be formed of all classes
of functions ψ : (−∞, 0] → X such that ψ|[−r,0] ∈ PC([−r, 0], X), ψ(·) is Lebesgue
measurable on (−∞,−r] and h(·)‖ψ(·)‖p is Lebesgue integrable on (−∞,−r]. The
seminorm ‖ · ‖B is defined by

‖ψ‖B = sup
θ∈[−r,0]

‖ψ(θ)‖+
(∫ −r
−∞

h(s)‖ψ(s)‖2ds
) 1

2

.

It follows from the proof of [14] (Th.1.3.8) that B is a phase space which verifies
the axioms (A) and (B) of our work. Moreover, when r = 0 this space coincides

with C0 × L2(h,X) and the parameters H = 1, C(t) = γ(−t) 1
2 and K(t) = 1 +( ∫ 0

−t h(θ)dθ
) 1

2 , t ≥ 0.

In this paper, we denote by α(·) and αpc(·) the Kuratowski measure of noncom-
pactness of X and PC(J,X). Kb := supt∈J K(t),Mb := supt∈JM(t).

Lemma 2.1 ( [9]). (1) If W ⊂ PC(J,X) is bounded, then α(W (t)) ≤ αpc(W ),

α(W (t)) ∈ L1(J,R+) and α
( ∫ t

0
W (s)ds

)
≤ 2

∫ t
0
α
(
W (s)

)
ds, t ∈ J .

(2) If W ⊂ PC(J,X) is piecewise equicontinuous bounded set, then α(W (t))

is piecewise continuous on J , αpc(W ) = supt∈J α(W (t)) and α
( ∫ t

0
W (s)ds

)
≤∫ t

0
α(W (s))ds, t ∈ J .
(3) If W ⊂ PC1(J,X) is bounded and the elements of W ′ are equicontinuous on

each Ji (i = 0, 1, · · · , n), then αpc1(W ) = max
{

supt∈J α(W (t)), supt∈J α(W ′(t))
}

,
where αpc1(·) denotes the Kuratowski measure of noncompactness in space PC1(J,X).

Lemma 2.2 ( [25,26]). Suppose that A is the infinitesimal generator of a strongly
continuous cosine family (C(t))t∈R, g : R → X is a continuously differentiable
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function and p(t) =
∫ t

0
S(t− s)g(s)ds. Then p(t) ∈ D(A), p′(t) =

∫ t
0
C(t− s)g(s)ds

and

p′′(t) =

∫ t

0

C(t− s)g′(s)ds+ C(t)g(0) = Ap(t) + g(t).

Lemma 2.3 (Mónch, [19]). Let Ω be a bounded open subset in a Banach space X
and 0 ∈ Ω. Assume that the operator F : Ω → X is continuous and satisfies the
following conditions:

(1) x 6= λFx, ∀ λ ∈ (0, 1), x ∈ ∂Ω;
(2) V is relatively compact if V ⊂ co({0} ∪ F (V )) for any countable set V ⊂ Ω.

Then F has a fixed point in Ω.

3. Existence and uniqueness of mild solutions

Definition 3.1. A function x : (−∞, b]→ X is called a mild solution of the system
(1.1)–(1.2) if x(·)|J ∈ PC1, the condition (1.2) is satisfied and

x(t) =



ϕ(t), t ≤ 0,

C(t)ϕ(0) + S(t)ψ(0) +

∫ t

0

S(t− s)
[
BI1−α

0 x′(s) + f
(
s, xs, I

1−γ
0 x′s)

]
ds

+
∑
ti<t

C(t− ti)Ii(xti , x′ti) +
∑
ti<t

S(t− ti)Ji(xti , x′ti), t ∈ J,

(3.1)

where I1−α
0 x′(s) =

∫ s
0

(s−r)−α
Γ(1−α) x

′(r)dr is the Riemann-Liouville fractional integra-
tion.

When ϕ(0), Ii(xti , x
′
ti) ∈ E, x(t) is continuously differentiable on Ji and

x′(t) =



ψ(t), t ≤ 0,

AS(t)ϕ(0) + C(t)ψ(0) +

∫ t

0

C(t− s)
[
BI1−α

0 x′(s) + f
(
s, xs, I

1−γ
0 x′s)

]
ds

+
∑
ti<t

AS(t− ti)Ii(xti , x′ti) +
∑
ti<t

C(t− ti)Ji(xti , x′ti), t ∈ J.

(3.2)
We make the following hypotheses.

(H1) f : J × B ×X → X satisfies the following conditions:

(1) For every (u, v) ∈ B×X, the function f(t, u, v) : J → X is strongly measurable
and f(t, ·, ·) : B ×X → X is continuous for a.e. t ∈ J ;

(2) There is an integrable function q(·) : J → R+ such that

‖f(t, u, v)‖ ≤ q(t)(‖u‖B + ‖v‖), t ∈ J, u ∈ B, v ∈ X;

(3) For any bounded set U, V ⊂ PC, there is a constant l > 0 such that

α
(
f(t, Vt, U(t))

)
≤ l[α(Vt) + α(U(t))], t ∈ J ;

where Vt = {xt : x ∈ V } ⊂ B (t ∈ J).
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(H ′1) The function f(·) is continuous, f(t, 0, 0) = 0 (t ∈ J) and there is a positive
constant Lf such that

‖f(t, u1, v1)− f(t, u2, v2)‖

≤ Lf (‖u1 − u2‖B + ‖v1 − v2‖), t ∈ J, (uk, vk) ∈ B ×X (k = 1, 2).

(H2) Ii ∈ C(B × B, E), Ji ∈ C(B × B, X), there are constants ci > 0 and di > 0
such that, for each i = 1, 2, · · · , n,

‖Ii(u, v)‖E ≤ ci(‖u‖B + ‖v‖B), ‖Ji(u, v)‖ ≤ di(‖u‖B + ‖v‖B).

(H ′2) Ii(0, 0) = Ji(0, 0) = 0 (i = 1, · · · , n), there are constants ci > 0 and di > 0
such that, for each i = 1, 2, · · · , n, (u1, v1), (u2, v2) ∈ B × B,

‖Ii(u1, v1)− Ii(u2, v2)‖E ≤ ci(‖u1 − u2‖B + ‖v1 − v2‖B),

‖Ji(u1, v1)− Ji(u2, v2)‖ ≤ di(‖u1 − u2‖B + ‖v1 − v2‖B).

Let S(b) = {x : (−∞, b]→ X : x0 = 0, x(·)|J ∈ PC}. Then S(b) is a Banach space
endowed with the norm ‖x‖b = ‖x0‖B + supt∈J ‖x(t)‖ = supt∈J ‖x(t)‖. The space
S1(b) =: {x : (−∞, b]→ X : x0 = 0, x′0 = 0, x(·)|J ∈ PC1} endowed with the norm
‖x‖PC1 .

Theorem 3.1. Assume that ϕ(0), Ii(xti , x
′
ti) ∈ E and conditions (H1), (H2) are

satisfied. Then the system (1.1)–(1.2) has at least one mild solution.

Proof. If x(·) satisfies the equations (3.1) and (3.2), we can decompose x(·) as
x(t) = y(t) + u(t), x′(t) = y′(t) + v(t), where

y(t) =

{
ϕ(t), t ≤ 0,

C(t)ϕ(0) + S(t)ψ(0), t ∈ J,
y′(t) =

{
ψ(t), t ≤ 0,

AS(t)ϕ(0) + C(t)ψ(0), t ∈ J,

u(t) =

{
0, t ≤ 0,

u(t), t ∈ J,
v(t) =

{
0, t ≤ 0,

v(t), t ∈ J,
(3.3)

which implies that y0 = ϕ, y′0 = ψ and xt = yt + ut, x
′
t = y′t + vt, t ∈ J . Clearly,

‖y(t)‖ ≤ N‖ϕ(0)‖E + N‖ψ(0)‖ =: L1, ‖y′(t)‖ ≤ N1‖ϕ(0)‖E + N‖ψ(0)‖ =: L′,
‖yt‖ß ≤ Kb‖y‖b + Mb‖ϕ‖ß =: M1, ‖y′t‖ß ≤ Kb‖y′‖b + Mb‖ψ‖ß =: M ′ for t ∈ J ,
where ‖y‖b = supt∈J ‖y(t)‖, ‖y′‖b = supt∈J ‖y′(t)‖.

Let the map T = (T1, T2) : S(b)× S(b)→ S(b) be defined by

T1(u, v)(t) =



∫ t

0

S(t− s)
[
BI1−α

0 (v(s) + y′(s)) + f
(
s, us + ys, I

1−γ
0 (vs + y′s)

)]
ds

+
∑
ti<t

C(t− ti)Ii(uti + yti , vti + y′ti)

+
∑
ti<t

S(t− ti)Ji(uti + yti , vti + y′ti), t ∈ J,

(3.4)
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T2(u, v)(t) =



∫ t

0

C(t− s)
[
BI1−α

0 (v(s) + y′(s)) + f
(
s, us + ys, I

1−γ
0 (vs + y′s)

)]
ds

+
∑
ti<t

AS(t− ti)Ii(uti + yti , vti + y′ti)

+
∑
ti<t

C(t− ti)Ji(uti + yti , vti + y′ti), t ∈ J.

(3.5)
The product space S(b) × S(b) endows the norm ‖(u, v)‖b = ‖u‖b + ‖v‖b. Then
T1, T2 are well defined with values in S(b). In addition, from the axioms of phase
space, the Lebesgue dominated convergence theorem,the condition (H1) and (H2),
it is easy to show that T = (T1, T2) is continuous. It is easy to see that if (u, v) is a
fixed point of T , then u + y is a mild solution of the system (1.1)–(1.2). First, we
show that the set

Ω0 = {(u, v) ∈ S(b)× S(b) : (u, v) = λT (u, v) for some λ ∈ (0, 1)}

is bounded. If (u, v) ∈ Ω0, there exists a λ ∈ (0, 1) such that (u, v) = λ(T1(u, v), T2(u, v)).
When t ∈ J0 = [0, t1], it follows from (3.4), (3.5) and (H1)(2) that

‖u(t)‖ ≤ ‖T1(u, v)(t)‖ ≤ N‖B‖
∫ t

0

I1−α
0 ‖v(s) + y′(s)‖ds

+N

∫ t

0

q(s)
(
‖us + ys‖B + I1−γ

0 ‖vs + y′s‖B
)
ds

≤ N
[
L′Γ‖B‖+ (M1 +M ′Γ)qb

]
+N [HΓ‖B‖+Kb(Γ + q)]

∫ t

0

(‖u‖s + ‖v‖s)ds,

(3.6)

‖v(t)‖ ≤ N
[
L′Γ‖B‖+ (M1 +M ′Γ)qb

]
+N [HΓ‖B‖+Kb(Γ + q)]

∫ t

0

(‖u‖s + ‖v‖s)ds,
(3.7)

where Γ = max{ b1−α

Γ(2−α) ,
b1−γ

Γ(2−γ)},Γ(2−α) is the Gamma function, q = supt∈J ‖q(t)‖,
‖u‖s = sup0≤r≤s ‖u(r)‖, ‖v‖s = sup0≤r≤s ‖v(r)‖, s ∈ J0. Since ‖u‖s and ‖v‖s are
continuous nondecreasing on J0, (3.6) and (3.7) imply that

‖u‖t + ‖v‖t ≤ (N +N)[L′Γ‖B‖+ (M1 +M ′Γ)qb
]

+ (N +N)[HΓ‖B‖+Kb(Γ + q)]

∫ t

0

(‖u‖s + ‖v‖s)ds.
(3.8)

By the Gronwall Lemma and (3.8), there is a constant G0 > 0 independent of u, v
and λ ∈ (0, 1), such that ‖u‖t + ‖v‖t ≤ G0, t ∈ J0. Hence ‖ut‖B ≤ KbG0, ‖vt‖B ≤
KbG0, t ∈ J0. It follows from this and the condition (H2) that

‖I1(ut1 + yt1 , vt1 + y′t1)‖E ≤ 2c1(KbG0 +M1 +M ′) =: δ1,

‖J1(ut1 + yt1 , vt1 + y′t1)‖ ≤ 2d1(KbG0 +M1 +M ′) =: η1,

‖u(t+1 )‖ = ‖u(t1) + I1(ut1 + yt1 , vt1 + y′t1)‖ ≤ G0 + δ1,

‖v(t+1 )‖ = ‖v(t1) + J1(ut1 + yt1 , vt1 + y′t1)‖ ≤ G0 + η1.
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When t ∈ J1, ũ1, ṽ1 ∈ C([J1, , X). It is similar to (3.6) and (3.7), we get

‖ũ1(t)‖ ≤ Nδ1 +Nη1 +N‖B‖
∫ t

0

I1−α
0 ‖v(s) + y(s)‖ds

+Nq

∫ t

0

(
‖us + ys‖B + I1−γ

0 ‖vs + y′s‖B
)
ds

≤ Nδ1 +Nη1 +G0 +Q1

+N [HΓ‖B‖+ qKb(Γ + 1)]

∫ t

t1

(‖ũ1‖s + ‖ṽ1‖s)ds,

(3.9)

‖ṽ1(t)‖ ≤ N1δ1 +Nη1 +G0 +Q′1

+N [HΓ‖B‖+ qKb(Γ + 1)]

∫ t

t1

(‖ũ1‖s + ‖ṽ1‖s)ds,
(3.10)

where ‖ũ1‖s = supt1≤r≤s ‖ũ1(r)‖, ‖ṽ1‖s = supt1≤r≤s ‖ṽ1(r)‖, Q1 > 0 and Q′1 > 0
are fixed constants. We have by (3.9) and (3.10),

‖ũ1‖t + ‖ṽ1‖t ≤ (N +N)[HΓ‖B‖+ qKb(Γ + 1)]

∫ t

t1

(‖ũ1‖s + ‖ṽ1‖s)ds

+ (N +N1)δ1 + (N +N)η1 + 2G0 +Q1 +Q′1, t ∈ J1.

(3.11)

Using the Gronwall Lemma once again and (3.11), there exists a constant G1 > 0
such that ‖ũ1‖t + ‖ṽ1‖t ≤ G1, t ∈ [t1, t2], so ‖u‖t + ‖v‖t ≤ G1 and ‖ut‖B ≤
Kb(G0 +G1), ‖vt‖B ≤ Kb(G0 +G1), t ∈ J1.

Similarly, there is a constant Gi > 0 such that sup
ti≤s≤t

‖ũi(s)‖+ sup
ti≤s≤t

‖ṽi(s)‖ ≤

Gi, t ∈ J i (i = 2, 3, · · · , n). Let G ≥ G0 + G1 + · · · + Gn, then ‖(u, v)‖b ≤ G and
Ω0 is bounded.

Second, we verify that the conditions of Lemma 2.3 are satisfied. Let R > G
and

ΩR = {(u, v) ∈ S(b)× S(b) : ‖(u, v)‖b < R}.

Then ΩR is a bounded open set and (0, 0) ∈ ΩR. Since R > G, we know that
(u, v) 6= λT (u, v) for any (u, v) ∈ ∂ΩR and λ ∈ (0, 1).

Suppose that V ⊂ ΩR is a countable set and V ⊂ co({(0, 0)} ∪ T (V )). Let

V1 = {x ∈ S(b) : ∃ z ∈ S(b), (x, z) ∈ V }, V2 = {z ∈ S(b) : ∃ x ∈ S(b), (x, z) ∈ V }.

Then we have

V ⊂ V1 × V2 ⊂ co({0} ∪ T1(V ))× co({0} ∪ T2(V ))

⊂ co({0} ∪ T1(V1 × V2))× co({0} ∪ T2(V1 × V2)).
(3.12)

Since C(t) and S(t) are strongly continuous, it follows from (3.4) and (3.5) that

Tk
(
(Ṽ1)i × (Ṽ2)i

)
is equicontinuous on every J i = [ti, ti+1], which together with

(3.12) implies that (Ṽk)i is equicontinuous on every J i (k = 1, 2, i = 0, 1, · · · , n).
In the following, we verify that the sets V1, V2 are relatively compact in PC.

Without loss of generality, we do not distinguish Vk|Ji and (Ṽk)i, where Vk|Ji is the
restriction of Vk on Ji = (ti, ti+1] (k = 1, 2, i = 1, 2, · · · , n).
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When t ∈ J0, by properties of noncompactness measure, Lemma 2.1 and (H1)(3),

α(V1(t)) ≤ α(T1(V1 × V2)(t))

≤ 2N
∫ t

0
Γ‖B‖α(V2(s))ds+ 2lN

∫ t
0

[
α(V1s + Γα(V2s)

]
ds

≤ 2NKb

[
HΓ‖B‖+ l(1 + Γ)

] ∫ t

0

(
sup

0≤τ≤s
α(V1(τ)) + sup

0≤τ≤s
α(V2(τ))

)
ds,

(3.13)

α(V2(t)) ≤ α(Γ2(V1 × V2)(t))

≤ 2NKb

[
HΓ‖B‖+ l(1 + Γ)

] ∫ t

0

(
sup

0≤τ≤s
α(V1(τ)) + sup

0≤τ≤s
α(V2(τ))

)
ds.

(3.14)
Since α(Vk(t)) (k = 1, 2) is continuous nondecreasing on J0, (3.13) and (3.14) imply
that

sup
0≤s≤t

α(V1(s)) + sup
0≤s≤t

α(V2(s))

≤ 2(N +N)
[
HΓ‖B‖+ l(1 + Γ)

] ∫ t

0

(
sup

0≤τ≤s
α(V1(τ)) + sup

0≤τ≤s
α(V2(τ))

)
ds.

(3.15)
From (3.15) we know that α(Vk(t)) = 0 (k = 1, 2), t ∈ J0. Thence V1 and V2 are
relatively compact in C(J0, X). Since

α(V1t1 + yt1) ≤ α(V1t1) ≤ Kb sups∈J0 α(V1(s)) = 0,

α(V2t1 + y′t1) ≤ α(V2t1) ≤ Kb sups∈J0 α(V2(s)) = 0,

I1(·, ·) and J1(·, ·) are continuous,

α
(
I1(V1t1 + yt1 , V2t1 + y′t1)

)
= α

(
J1(V1t1 + yt1 , V2t1 + y′t1)

)
= 0. (3.16)

When t ∈ J1, we have by (3.4), (3.5) and (3.16),

α(V1(t))

≤ 2NKb

[
HΓ‖B‖+ l(1 + Γ)

] ∫ t

t1

(
sup

t1≤τ≤s
α(V1(τ)) + sup

t1≤τ≤s
α(V2(τ))

)
ds,

α(V2(t))

≤ 2NKb

[
HΓ‖B‖+ l(1 + Γ)

] ∫ t

t1

(
sup

t1≤τ≤s
α(V1(τ)) + sup

t1≤τ≤s
α(V2(τ))

)
ds.

(3.17)

(3.17) implies that

sup
t1≤s≤t

α(V1(s)) + sup
t1≤s≤t

α(V2(s))

≤ 2(N +N)Kb

[
HΓ‖B‖+ l(1 + Γ)

] ∫ t

t1

(
sup

t1≤τ≤s
α(V1(τ)) + sup

t1≤τ≤s
α(V2(τ))

)
ds.

Consequently, α(Vk(t)) = 0, t ∈ J1 (k = 1, 2) and Vk is relatively compact in
C(J1, X).

Similarly, we can show that Vk is relatively compact in C(J i, X) (k = 1, 2, i =
2, 3, · · · , n). So Vk is relatively compact in S(b). Lemma 2.3 concludes that T has
a fixed point (u, v) in ΩR. Then the system (1.1)–(1.2) has a mild solution.
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Theorem 3.2. Assume that ϕ(0), Ii(xti , x
′
ti) ∈ E and conditions (H ′1), (H2) are

satisfied. Then the system (1.1)–(1.2) has a unique mild solution.

Proof. We have by (H ′1),

‖f(t, u, v)‖ ≤ Lf (‖u‖B + ‖v‖), t ∈ J, u ∈ B, v ∈ X,

α(f(t, Vt, U(t))) ≤ Lf [α(Vt) + α(U(t))], t ∈ J, bounded U, V ⊂ PC(J,X).

Then the conditions (H1) and (H2) of Theorem 3.1 are satisfied. According to
Theorem 3.1, the system (1.1)–(1.2) has at least one mild solution.

We now prove the uniqueness. Let (u, v), (w, z) ∈ ΩR be two fixed points of the
operator T defined by (3.3) and (3.4). When t ∈ J0, we have

‖u(t)− w(t)‖ = ‖T1(u, v)(t)− T1(w, z)(t)‖

≤ N‖B‖Γ
∫ t

0

‖v(s)− z(s)‖ds+NLf

∫ t

0

(‖us − ws‖B + Γ‖vs − zs‖B)ds

≤ NKb(1 + Γ)(H‖B‖+ Lf )

∫ t

0

(‖u− w‖s + ‖v − z‖s)ds,

(3.18)

‖v(t)− z(t)‖ = ‖T2(u, v)(t)− T2(w, z)(t)‖

≤ NKb(1 + Γ)(H‖B‖+ Lf )

∫ t

0

(‖u− w‖s + ‖v − z‖s)ds.
(3.19)

(3.18) and (3.19) imply that

‖u−w‖t + ‖v− z‖t ≤ (N +N)Kb(1 + Γ)(H‖B‖+Lf )

∫ t

0

(‖u−w‖s + ‖v− z‖s)ds.

Consequently, u(t) = w(t), v(t) = z(t), t ∈ J0, and so ut1 = wt1 , vt1 = zt1 .
When t ∈ J1 = [t1, t2], it is easy to get

‖ũ1(t)− w̃1(t)‖ = ‖T1(ũ1, ṽ1)(t)− T1(w̃1, z̃1)(t)‖
≤ N‖I1(ut1 + yt1 , vt1 + y′t1))− I1(wt1 + yt1 , zt1 + y′t1))‖E

+N
[
‖J1(ut1 + yt1 , vt1 + y′t1))− J1(wt1 + yt1 , zt1 + y′t1))‖

+NKb(1 + Γ)(H‖B‖+ Lf )

∫ t

0

(‖u− w‖s + ‖v − z‖s)ds

= NKb(1 + Γ)(H‖B‖+ Lf )

∫ t

t1

(‖ũ1 − w̃1‖s + ‖ṽ1 − z̃1‖s)ds,

‖ṽ1(t)− z̃1(t)‖ = ‖T2(ũ1, ṽ1)(t)− T2(w̃1, z̃1)(t)‖

≤ NKb(1 + Γ)(H‖B‖+ Lf )

∫ t

t1

(‖ũ1 − w̃1‖s + ‖ṽ1 − z̃1‖s)ds,

‖ũ1 − w̃1‖t + ‖ṽ1 − z̃1‖t

≤ (N +N)Kb(1 + Γ)(H‖B‖+ Lf )

∫ t

t1

(‖ũ1 − w̃1‖s + ‖ṽ1 − z̃1‖s)ds.

Consequently, u(t) = w(t), v(t) = z(t), t ∈ J1 and ut2 = wt2 , vt2 = zt2 .
Similarly, we can prove that u(t) = w(t), v(t) = z(t), t ∈ Ji (i = 2, 3, · · · ,m).

Hence u(t) = w(t), v(t) = z(t), t ∈ J .
It is similar to the proof of Theorem 3.2, we can obtain the following theorem.
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Theorem 3.3. Assume that ϕ(0), Ii(xti , x
′
ti) ∈ E and conditions (H ′1), (H ′2) are

satisfied. Then the system (1.1)–(1.2) has a unique mild solution.

In the next result, for x ∈ X,Xx : (−∞, 0]→ X represents the function defined
by Xx(θ) = 0 for θ < 0 and Xx(0) = x.

Theorem 3.4. Assume that the conditions of Theorem 3.2 are satisfied and u(·) is
a mild solution of the system (1.1)–(1.2). Then, for i = 1, 2, · · · , n, ũi(·) is a mild
solution of the following abstract Cauchy problemx′′(t) = Ax(t) +BDα

t ũi(t) + f
(
t, (ũi)t, D

γ
t (ũi)t

)
, t ∈ J i,

xti = uti + XIi(uti ,u′ti ) ∈ B, x
′
ti = u′ti + XJi(uti ,u′ti ) ∈ B.

(3.20)

Proof. For i = 1, 2, · · · , n, the mild solution of the problem (3.20) can be expressed
as

ũi(t) = C(t− ti)[u(ti) + Ii(uti , u
′
ti)] + S(t− ti)[u′ti + Ji(uti , u

′
ti)]

+

∫ t

ti

S(t− s)
[
BI1−α

0 (ũi)
′(s) + f

(
s, xs, I

1−γ
0 (ũi)

′
s)
]
ds, t ∈ J i.

(3.21)

From (3.2) and (3.21) it is easily to verify that ũi(·) ∈ C1(J i, X) is the mild solution
of the problem (3.20) for i = 1, 2, · · · , n. (refer Corollary 2.2 [10]).

In the following, we study the regularity of mild solutions for the system (1.1)–
(1.2).

Definition 3.2. A function u : (−∞, b] → X is called a classical solution of the
system (1.1)–(1.2) if u ∈ PC1, u(·) is a function of class C2 on J \ {t1, t2, · · · , tn}
and that verifies the equation (1.1) on J \ {t1, t2, · · · , tn} and the condition (1.2).

Definition 3.3. A function u : (−∞, b] → X is called a strong solution of the
system (1.1)–(1.2) if u ∈ PC1, ũi ∈ W 2,1([ti, ti+1], X) for every i = 0, 1, · · · , n, the
equation (1.1) is satisfied a.e. on J and the condition (1.2) is satisfied.

A Banach space X has the Radon-Nikodym property if for each λ-continuous
vector measure µ : Σ→ X of bounded variation there exists h ∈ L1(µ,X) such that
µ(B) =

∫
B
hdλ for all B ∈ Σ.

Theorem 3.5. Assume that the conditions of Theorem 3.2 are satisfied, the space
X has Radon-Nikodym property and Bx ∈ L1(J,E). If u(·) is a mild solution of
the system (1.1)–(1.2) and the following conditions are satisfied:

(a) ϕ(0), uti + Ii(uti , u
′
ti) ∈ D(A) and ψ(0), u′ti + Ji(uti , u

′
ti) ∈ E for every

i = 1, 2, · · · , n;
(b) The function f : J × Ω → X (Ω is a open set in B ×X) is continuous and

satisfies the Carathédodory conditions on E:
(i) f(·, u, v) is measurable on J for each (u, v) ∈ Ω,
(ii) f(t, ·, ·) is continuous on Ω for t ∈ J a.e.,
(iii) For each R > 0, there is a integrable function βR : J → R+ such that

‖f(t, u, v)‖E ≤ βR(t) a.e. for t ∈ J and for all (u, v) ∈ Ω such that ‖u‖B+‖v‖ ≤ R.
Then u(·) is a classical solution of the system (1.1)–(1.2).

Proof. Theorem 3.4 implies that ũi(·) is the mild solution of the system (3.20)
for each i = 1, 2, · · · , n. Then ũi, ũ

′
i ∈ C(J i, X), and so (ũi)t, (ũi)

′
t are continuous

on J i.
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Since ũi(·) is the mild solution of the following Cauchy problemx′′(t) = Ax(t) +BDα
t ũi(t) + f

(
t, (ũi)t, D

γ
t (ũi)t

)
, t ∈ J i,

x(ti) = uti + Ii(uti , u
′
ti), x

′(ti) = u′ti + Ji(uti , u
′
ti), i = 1, 2, . . . , n,

the function hi(t) =: BDα
t ũi(t) + f

(
t, (ũi)t, D

γ
t (ũi)t

)
∈ C(J i, X) ∩ L1(J i, E). Sim-

ilarly, we have h0(t) =: BDα
t u(t) + f(t, ut, D

γ
t ut) ∈ C([0, t1], X) ∩ L1([0, t1], E) for

the following Cauchy problemx′′(t) = Ax(t) +BDα
t u(t) + f

(
t, ut, D

γ
t ut
)
, t ∈ J0,

x(0) = ϕ(0), x′(0) = ψ(0).
(3.22)

It follows from Theorem 3.1 [11] that u(·) is a classical solution of the system (1.1)–
(1.2).

Theorem 3.6. Assume that the conditions of Theorem 3.2 are satisfied and u(·)
is a mild solution of the system (1.1)–(1.2). If the space X has Radon-Nikodym
property and the following conditions hold:

(a) ϕ(0), u(ti) + Ii(uti , u
′
ti) ∈ D(A) and ψ(0), u′(ti) + Ji(uti , u

′
ti) ∈ E for every

i = 1, 2, · · · , n. (b) For every bounded set D1 ⊆ B, D2 ⊆ X,C(·)f(t, x, y), t ∈
J, (x, y) ∈ D1 ×D2, is uniformly Lipschitz continuous.

Then u(t) is a strong solution of the system (1.1)–(1.2).

Proof. For any t ∈ (ti, ti+1) and ε > 0 such that t + ε ∈ (ti, ti+1), we get from
(3.21) that

‖ũi′(t+ ε)− ũi′(t)‖
≤‖A[S(t+ ε− ti)− S(t− ti)][u(ti) + Ii(uti , u

′
ti)]‖

+ ‖[C(t+ ε− ti)− C(t− ti)][u′(ti) + Ji(uti , u
′
ti)]‖

+

∫ t

ti

‖C(t− s)‖‖BI1−α
0 [ũi

′(s+ ε)− ũi′(s)]‖ds

+

∫ ε+ti

ti

‖C(t+ ε− s)‖‖BI1−α
0 ũi

′(s))‖ds

+

∫ t

ti

‖[C(t+ ε− s)− C(t− s)]f(s, ũi(s), I
1−γ
0 (ũi)

′
s)‖ds

+

∫ ε+t

t

‖C(t+ ε− s)f(s, ũi(s), I
1−γ
0 (ũi)

′
s)‖ds

≤C1ε+N‖B‖Γ
∫ t

ti

‖ũi′(s+ ε)− ũi′(s))‖ds,

where C1 > 0 is a constant independent of t and ε, and the fact that AS(t −
ti)[u(ti) + Ii(uti , u

′
ti)], C(t− ti)[u′(ti) + Ji(uti , u

′
ti)] are Lipschitz continuous on J i

has been used (see [12]). Therefore, from the Gronwall Lemma we know that ũi
′(t)

is Lipschitz continuous on J i for each i = 1, 2, · · · , n. Since X has Radon-Nikodym
property, it follows from Proposition 3.3 [11] that ũi(t) is a strong solution of the
system (1.1)–(1.2) for each i = 1, 2, · · · , n. A similar argument permit us to prove
that ũ0(t) is a strong solution of the system (1.1)–(1.2). The proof is completed.
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4. Continuous dependence of mild solutions

Theorem 4.1. Let the conditions (H ′1), (H ′2) be satisfied and Ii(xti , x
′
ti) ∈ E. Then

for each (ϕ,ψ), (ϕ∗, ψ∗) ∈ B×B, ϕ(0), ϕ∗(0) ∈ E, x(t) = y(t)+u(t), x∗(t) = y∗(t)+
w(t) are the corresponding mild solution of the system (1.1)–(1.2), the following
inequalities hold:

‖(u, v)− (w, z)‖Ji ≤ (ρi + ηi)e
(N+N)σb(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B), (4.1)

for i = 0, 1, · · · , n, where σ = Kb

[
(1 + H‖B‖)Γ + Lf

]
> 0, ηi, ρi (i = 0, 1, · · · , n)

stand different positive constants.

Proof. Let x′(t) = y′(t) + v(t), (x∗)′(t) = (y∗)′(t) + z(t), t ∈ J . When t ∈ J0, by
(3.3), Definition 2.1 and simple calculation, there are constants ρ0 > 0 and η0 > 0
such that

‖u(t)− w(t)‖ ≤ N‖B‖
∫ t

0

I1−α
0

(
‖v(s)− z(s)‖+ ‖y′(s)− (y∗)′(s)‖

)
ds

+NLf

∫ t

0

[
‖us − ws‖B + ‖ys − y∗s‖B

+ I1−γ
0 (‖vs − zs‖B + ‖y′s − (y∗)′s‖B)

]
ds

≤ ρ0(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B)

+Nσ

∫ t

0

(‖u− w‖s + ‖v − z‖s)ds,

(4.2)

‖v(t)− z(t)‖ ≤ η0(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B)

+Nσ

∫ t

0

(‖u− w‖s + ‖v − z‖s)ds.
(4.3)

(4.2) and (4.3) imply that

‖u− w‖t + ‖v − z‖t ≤ (ρ0 + η0)(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B)

+ (N +N)σ

∫ t

0

(‖u− w‖s + ‖v − z‖s)ds.

Consequently,

‖(u, v)− (w, z)‖J0 ≤ (ρ0 + η0)e(N+N)σb(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B).

When t ∈ J1 = (t1, t2], we have by (H ′2),

‖I1(ut1 + yt1 , vt1 + (yt1)′)− I1(wt1 + y∗t1 , zt1 + (y∗t1)′)‖E
≤ c1

[
Kb(‖u− w‖t1 + ‖v − z‖t1) + ‖yt1 − y∗t1‖B + ‖(yt1)′ − (y∗t1)′‖B

]
≤ e1(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B),

‖J1(ut1 + yt1 , vt1 + (yt1)′)− J1(wt1 + y∗t1 , zt1 + (y∗t1)′)‖
≤ γ1(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B),

where e1, γ1 are positive constants. It is similar to (4.2) and (4.3), there are con-
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stants ρ1 > 0 and η1 > 0 such that

‖ũ1 − w̃1‖t + ‖ṽ1 − z̃1‖t
≤ (ρ1 + η1)(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B)

+ (N +N)σ

∫ t

t1

(‖ũ1 − w̃1‖s + ‖ṽ1 − z̃1‖s)ds.
(4.4)

Consequently,

‖(u, v)− (w, z)‖J1 ≤ (ρ1 + η1)e(N+N)σb(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B).

Similarly, we can prove that there are constants ρk > 0, ηk > 0 (k = 2, 3, · · · , n)
such that

‖(u, v)− (w, z)‖Jk ≤ (ρk + ηk)e(N+N)σb(‖ϕ− ϕ∗‖B + ‖ψ − ψ∗‖B).

Remark 4.1. Some restrictive conditions are not used in Theorem 3.2 and Theorem
3.3, which is different from the corresponding results in [4, 8].

5. An example

Let X = L2([0, π]) and A be the operator given by Af = f ′′ with domain

D(A) = {f ∈ X : f, f ′are absolutely continuous, f ′′ ∈ X, f(0) = f(π) = 0}.

It is well known that A is the infinitesimal generator of a strongly continuous cosine
family C(t)), t ∈ R on X. Moreover, A has discrete spectrum, the eigenvalues are

−n2, n ∈ N, with corresponding normalized eigenvectors zn(ξ) :=
√

2
π sin(nξ) and

the following properties hold:

(i) {zn : n ∈ N} is an orthonormal basis of X.

(ii) For f ∈ X,C(t)f =
∑∞
n=1 cos(nt)(f ; zn)zn. Moreover, it follow from this

expression that S(t)f =
∑∞
n=1

sin(nt)
n (f ; zn)zn, that S(t) is compact for t > 0 and

that ‖C(t)‖ = 1 and ‖S(t)‖ = 1 for every t ∈ R.

(iii) If Φ denotes the group of translations on X defined by Φ(t)x(ξ) = x̃(ξ+ t),
where x̃ is the extension of x with period 2π, then C(t) = 1

2 (Φ(t) + Φ(−t));A = B2

where B is the infinitesimal generator of the group Φ and E = {x ∈ H1(0, π) :
x(0) = x(π) = 0}, see [6] for details.

(iv) The functions ϕ,ψ defined by ϕ(θ, ξ) = ϕ(θ)(ξ), ψ(θ, ξ) = ψ(θ)(ξ) belong to
B.

In the next application, B should be the phase space B = PC0 × L2(h,X) in
2.1, where h : (−∞, 0]→ R is a positive Lebesgue integrable function. We can take

H = 1,M(t) = γ(−t) 1
2 and K(t) = 1 +

( ∫ 0

−t h(θ)dθ
) 1

2 for t ≥ 0.

Example 5.1. Consider second order impulsive differential system with fractional
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derivative damping:

∂2

∂t2
u(t, ξ) =

∂2

∂ξ2
u(t, ξ) + cDα

t u(t, ξ) +

∫ ξ

0

a(s)Dα
t u(t, s)ds

+

t∫
−∞

µ(s− t)u(s, ξ)ds+Dγ
t ut(ξ), t ∈ [0, 1], ξ ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, 1],

u(θ, ξ) = ϕ(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π],

∂

∂t
u(θ, ξ) = ψ(θ, ξ), θ ∈ (−∞, 0], ξ ∈ [0, π],

∆u(ti, ξ) =

0∫
−∞

qi(θ)
∂

∂t
u(ti + θ, ξ)dθ, i = 1, 2, · · · , n,

∆u′(ti, ξ) =

0∫
−∞

qi(θ))
u(s, x)

1 + |u(s, x)|
dθ, i = 1, 2, · · · , n,

(5.1)

where Dα
t , D

γ
t are the Caputo’s fractional derivative operator of order α, γ ∈ (0, 1],

c ∈ R, a ∈ L2([0, π]), ϕ, ψ ∈ C0 × L2(h,X), 0 < t1 < · · · < tn < 1. Assume that the
following conditions are satisfied:

(a) The function µ : R → R+ is continuous and d =
( ∫ 0

−∞ h−1(θ)µ2(θ)dθ
) 1

2 <
∞;

(b) qi ∈ C(R,R) and ci =
( ∫ 0

−∞ q2
i (θ)h−1(θ)dθ

) 1
2 <∞ for each i = 1, 2, · · · , n;

(c) qi ∈ C(R,R) and di =
( ∫ 0

−∞ q2
i (θ)h

−1(θ)dθ
) 1

2 <∞ for each i = 1, 2, · · · , n.

Then the system (5.1) has a unique PC1–mild solution.

Proof. The system (5.1) can be modeled as the abstract Cauchy problem (1.1)
by defining

Bx(ξ) = cx(ξ) +

ξ∫
0

a(s)x(s)ds,

f(t, ϕ, y)(ξ) =

0∫
−∞

µ(θ)ϕ(θ, ξ)dθ + y(ξ),

Ii(ϕ,ψ)(ξ) =

0∫
−∞

qi(θ)ψ(θ, ξ)dθ,

Ji(ϕ,ψ)(ξ) =

0∫
−∞

qi(θ)
ϕ(θ, ξ)

1 + |ϕ(θ, ξ)|
dθ,

where f(t, ·, ·), Ii(·, ·) (i = 1, 2, · · · , n) and B are bounded linear operators, ‖Ii‖ ≤
ci, ‖Ji‖ ≤ di (i = 1, 2, · · · , n) and ‖B‖ ≤ |c|+ ‖a‖L2 .
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Moreover, for (t, φ, u), (t, ψ, v) ∈ [0, 1]× B ×X → X, we have

‖f(t, φ, u(t))− f(t, ψ, v(t))‖L2

≤
( ∫ π

0

( ∫ 0

−∞
µ(t, θ)[φ(θ, x)− ψ(θ, x)]dθ + [u(t, x)− v(t, x)]

)2
dx
) 1

2

≤
( ∫ π

0

( ∫ 0

−∞
µ(t, θ)[φ(θ, x)− ψ(θ, x)]dθ

)2
dx
) 1

2 +
( ∫ π

0

[u(t, x)− v(t, x)]2dx
) 1

2

≤
( ∫ 0

−∞

µ2(t, θ)

h(θ)
dθ

∫ 0

−∞
h(θ)‖φ(θ, ·)− ψ(θ, ·)‖2L2dθ

) 1
2 + ‖u(t)− v(t)‖L2

≤d(t)‖φ− ψ‖B + ‖u(t)− v(t)‖L2

≤Lf
(
‖φ− ψ‖B + ‖u(t)− v(t)‖L2

)
,

where Lf = max{sup0≤t≤1 d(t), 1}. Hence the condition (H ′1) is satisfied and all
conditions of Theorem 3.2 are satisfied, therefore the system (5.1) has a unique
PC1–mild solution. However,

(N +N)Kb(1 + Γ)(H‖B‖+ Lf ) ≥ 2(1 + Γ)(‖B‖+ d) > 1,

the restrictive conditions(1.4), (1.5) and (1.6) are not hold.

Remark 5.1. If α = γ = 1 is in the system (1.1)–(1.2), all of our conclusions still
holds, it improves and generalize the results in [10].
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