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Abstract This paper is concerned with the traveling waves of a reaction-
diffusion SIRQ epidemic model with relapse. We find that the existence and
nonexistence of traveling waves are determined by the basic reproduction num-
ber of the system and the minimal wave speed. This threshold dynamics is
proved by Schauder’s fixed-point theorem combining Lyapunov functional with
the theory of asymptotic spreading. Moreover, the numerical simulations are
provided to illustrate our analytical results and the effect of the relapse is also
discussed.
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1. Introduction

In recent years, several large-scale epidemic disease, such as SARS, Ebola, MERS
and so on is global outbreak. These diseases have rapid diffusion and higher mor-
tality. The data from WHO shows that the death rate of SARS was 11%, while the
mortality rate of MERS was rised 37.8% by May 25th 2015. More background and
information about MERS and SARS can be found in [4] and the references therein.
Thus, the laws of spread and diffusion of epidemic disease again become the focus
of theoretical researchers and medical professionals. Constructing the model is an
important method to study the spread trends of epidemic disease.

Recently, reaction-diffusion equations have been used by many authors in epi-
demiology and virology. Researchers have established many kinds of epidemic dis-
ease model with diffusion such as SIR model [12,14], SIS model [3,17], Lyme disease
model [31,33], malaria model [16] and so on. Some authors specifically studied the
global stability of reaction-diffusion models [10,11,13,18,27,28,30], others discussed
the traveling wave solutions [15, 26, 29, 32]. Both stability and traveling wave solu-
tions are closely related to the basic reproduction number.

From a lot of literature about traveling wave solutions of the epidemic disease
models, we find that most of them discussed the existence of traveling wave solu-
tions on some classical models. These classical models usually contain two or three
equations to describe the spread process of the disease and the equations cover the
most basic factors in the spread of the disease. However, many other importan-
t factors that affect the spread of disease do not arise in some classical models.
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These important factors including age, environment, climate, birth rate, relapse
rate, disease-related death rate, etc. If we add all the factors into the model, the
number of equations in the system is bound to increase and the structure of each
equation will become complicate, which will bring some difficulties to discuss the
corresponding system.

As we all know, many diseases are difficult to cure. For example, HBV (hepatitis
B virus), tuberculosis, AIDS and cancer are all the diseases with relapse. But so
far, there is almost no literature discussion about the traveling wave solutions of
epidemic disease model with relapse. Why no one to study this valuable problem?
The most likely reason is that removed individuals will build a link to the susceptible
people or infection people after joining the relapse to the model. Intuitively, after
joining the relapse, the coupling between the equations in the system is stronger. It
makes the proof of the uniform boundedness of the solutions of the wave system very
difficult. Particularly, it is very hard to prove the boundary asymptotic behavior
of traveling waves for most epidemic models, such as reaction-diffusion epidemic
disease model with relapse.

In this paper, we first present a reaction-diffusion SIRQ model with relapse and
then obtain its associated wave system. By complex calculation, we can obtain
the basic reproduction number R0 and the critical wave speed c∗ of system (2.1).
Then, for the case R0 > 1 and c > c∗, we intend to consider the existence of
traveling waves of system (2.1). Due to the non-monotonic of system (2.1) and the
appearance of the relapse, it is difficult to obtain the existence of traveling waves
which connect the disease-free equilibrium and the endemic equilibrium. Note that
the methods used in [14, 15, 24] can not be used directly to discuss system (2.1).
However, inspired by the methods in [6, 7, 25], we can still obtain the existence
of traveling waves through Schauder’s fixed theorem on a suitable invariant set.
That is, we construct an invariant cone in a large bounded domain defined by the
initial value function, then pass to the unbounded domain by a limiting argument.
Further, we can prove the boundary asymptotic behavior of traveling waves at +∞
by constructing appropriate Lyapunov functional under some restrictive conditions,
see also [5, 15]. Additionally, for the case R0 > 1 with 0 < c < c∗ and R0 < 1, the
nonexistence of traveling waves is also proved by applying the properties of system
(2.1). Finally, numerical simulations are further given to verify our results.

The organization of this paper is as follows. In Section 2, the model is given
under some assumptions. In Section 3, we discuss the conditions about the ex-
istence and nonexistence of traveling wave solutions of reaction-diffusion system.
The boundedness of the traveling wave solutions is also shown in this section. Some
numerical simulations are given in Section 4. The paper ends with a brief discussion
in Section 5.

2. The model formulation

In this section, we consider a reaction-diffusion SIRQ with relapse and give the cor-
responding assumptions. Our model is divided into four compartments, namely the
susceptible compartment (S), infective compartment (I), removed individuals (R)
and permanent rehabilitee (Q). The parameters description and transfer diagram
are shown below:

From Figure 1, then the following system with the initial-boundary-value con-
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Table 1. State variables and parameters of SIRQ model.

Parameter Description
S(x, t) Number of susceptible at location x and time t.

I(x, t) Number of infective at location x and time t.

R(x, t) Number of removed individuals at location x and time t.

Q(x, t) Number of permanent rehabilitee at location x and time t.

ρ Relapse rate .

β Effective transmission rate .

φ The per-capita recovery (treatment or education) rate.

ω The permanent rehabilitation rate.

µ Natural mortality rate.

ηi, i = 1, 2, 3 The disease-related death rate.

Figure 1. Transfer diagram for the SIRQ model.

ditions is constructed by:

∂S

∂t
= d1∆S + Λ− βSI

N
− µS, x ∈ Ω, t > 0,

∂I

∂t
= d2∆I +

βSI

N
+ ρR− (µ+ η1 + φ)I, x ∈ Ω, t > 0,

∂R

∂t
= d3∆R+ φI − ρR− (µ+ η2 + ω)R, x ∈ Ω, t > 0,

∂Q

∂t
= ωR− (µ+ η3)Q, x ∈ Ω, t > 0,

∂S

∂n
=
∂I

∂n
=
∂R

∂n
= 0, x ∈ ∂Ω, t > 0,

S(x, 0) = S0(x) > 0, I(x, 0) = I0(x) > 0,

R(x, 0) = R0(x) > 0, Q(x, 0) = Q0(x) > 0, x ∈ Ω,

N = S(x, t) + I(x, t) +R(x, t) +Q(x, t),

(2.1)

where β denotes the per-capita effective contact rate (transmission rate), that is,
βSI
N denotes the rate of transitions from S to I, the result of the frequency-dependent

interactions between individuals in the classes S and I, µ denotes the natural mor-
tality rate , ρ denotes the rate of relapse, φ denotes the per-capita recovery (treat-
ment or education) rate, ω denotes the permanent cure rate and Λ denotes the total

recruitment rate into this homogeneous social mixing community. ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

is

the Laplacian operator on R2, d1, d2, d3 > 0 are diffusion coefficients, and all con-
stant parameters are positive. Neumann boundary conditions ∂S

∂n = ∂I
∂n = ∂R

∂n = 0
denote that the change rate on the boundary of the region Ω is equal to 0.

By the next generation matrices method [22, 23], we can obtain that the basic
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reproduction number of (2.1) is

R0 :=
β(ρ+ µ+ η2 + ω)

ρ(µ+ η1) + (µ+ η1 + φ)(µ+ η2 + ω)
,

as di = 0 (i = 1, 2, 3). In the next section, we will show that R0 is an important
threshold value to obtain the existence and non-existence of traveling waves of
system (2.1). Meanwhile, it is easy to see that system (2.1) has two positive constant
equilibria: the diseases-free equilibrium E0(Λ

µ , 0, 0, 0) and the positive constant

endemic equilibrium E∗(S∗, I∗, R∗, Q∗) if R0 > 1, where

S∗ =

(
µ+ η1 + φ− ρφ

ρ+µ+η2+ω

)(
φ

ρ+µ+η2+ω + φω
(ρ+µ+η2+ω)(µ+η3) + 1

)
β (ρ+ µ+ η2 + ω) + ρφ− (µ+ η1 + φ) (ρ+ µ+ η2 + ω)

I∗,

R∗ =
φ

ρ+ µ+ η2 + ω
I∗, Q∗ =

φω

(ρ+ µ+ η2 + ω) (µ+ η3)
I∗,

and

I∗ =

βΛ
µ −

βΛ
µR0

β
R0

+ βφ
(ρ+µ+η2+ω)R0

+ βφω
(ρ+µ+η2+ω)(µ+η3)R0

> 0

is a unique positive solution of f(I) = 0, in which

f(I) = I2

(
− β2

µR2
0

+
βφ(ω + µ+ η3)

(ρ+ µ+ η2 + ω)(µ+ η3)R0
+
β2 + µβ

µR0

)
+ I

(
βΛ

µR0
− βΛ

µ

)
.

3. Traveling waves

3.1. Existence of traveling waves

In this section, we consider the existence and non-existence condition of traveling
waves of (2.1). Letting ζ = x+ ct, then the wave equation of system (2.1) is

cS′(ζ) = d1S
′′(ζ) + Λ− βS(ζ)I(ζ)

N(ζ)
− µS(ζ),

cI ′(ζ) = d2I
′′(ζ) +

βS(ζ)I(ζ)

N(ζ)
+ ρR(ζ)− (µ+ η1 + φ)I(ζ),

cR′(ζ) = d3R
′′(ζ) + φI(ζ)− ρR(ζ)− (µ+ η2 + ω)R(ζ),

cQ′(ζ) = ωR(ζ)− (µ+ η3)Q(ζ).

(3.1)

Since Q is only relevant to R, we only need consider the following system:

cS′(ζ) = d1S
′′(ζ) + Λ− βS(ζ)I(ζ)

N(ζ)
− µS(ζ),

cI ′(ζ) = d2I
′′(ζ) +

βS(ζ)I(ζ)

N(ζ)
+ ρR(ζ)− (µ+ η1 + φ)I(ζ),

cR′(ζ) = d3R
′′(ζ) + φI(ζ)− ρR(ζ)− (µ+ η2 + ω)R(ζ),

N(ζ) = Ñ(ζ) = S(ζ) + I(ζ) +R(ζ).

(3.2)
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Next, we prove the existence of traveling waves when R0 > 1. Linearizing the
second and the third equations of (3.2) at (S0, 0, 0), we get cI ′(ζ) = d2I

′′(ζ) + βI(ζ) + ρR(ζ)− (µ+ η1 + φ)I(ζ),

cR′(ζ) = d3R
′′(ζ) + φI(ζ)− ρR(ζ)− (µ+ η2 + ω)R(ζ).

Looking for the solutions of form (I,R) = (q1, q2)eλζ , where qi > 0, i = 1, 2 and
λ > 0. Therefore, we have cλq1 = d2λ

2q1 + βq1 + ρq2 − (µ+ η1 + φ)q1,

cλq2 = d3λ
2q2 + φq1 − ρq2 − (µ+ η2 + ω)q2.

(3.3)

Let

Ã =

d2 0

0 d3

 , B̃ =

 c 0

0 c

 ,

and

M(λ, c) = Ãλ2 − B̃λ+ F − V.

Then (3.3) can be rewritten as MQT = 0, where Q = (q1, q2). We now consider the

equation (−Aλ2 + Bλ+ I)−1(V −1F )Q = Q, where A = V −1Ã and B = V −1B̃. If
we let

M(λ, c) = (−Aλ2 +Bλ+ I)−1(V −1F ),

where

F =

β 0

0 0

 , V =

µ+ η1 + φ −ρ

−φ ρ+ µ+ η2 + ω

 ,

and

V −1 =
1

l

ρ+ µ+ η2 + ω ρ

φ µ+ η1 + φ

 ,

in which l = ρ(µ+ η1) + (µ+ η1 + φ)(µ+ η2 + ω), then

A = V −1Ã =
1

l

d2(ρ+ µ+ η2 + ω) d3ρ

d2φ d3(µ+ η1 + φ)


and

B = V −1B̃ =
1

l

 c(ρ+ µ+ η2 + ω) cρ

cφ c(µ+ η1 + φ)

 .

Thus, we have

−Aλ2 +Bλ+ I =

 l1 l2

l3 l4

 ,
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where

l1 = (ρ+ µ+ η2 + ω)

(
−λ

2d2

l
+
λc

l
+

1

ρ+ µ+ η2 + ω

)
, (3.4)

l2 = ρ

(
−λ

2d3

l
+
λc

l

)
, l3 = φ

(
−λ

2d2

l
+
λc

l

)
, (3.5)

and

l4 = (µ+ η1 + φ)

(
−λ

2d3

l
+
λc

l
+

1

µ+ η1 + φ

)
. (3.6)

Hence,

(−Aλ2 +Bλ+ I)−1 =
1

l1l4 − l2l3

 l4 −l2
−l3 l1

 ,

V −1F =
1

l

β(ρ+ µ+ η2 + ω) 0

βφ 0

 ,

M(λ, c) =
1

l

 1
Θ1(λ,c) 0

1
Θ2(λ,c) 0

 ,

where

Θ1(λ, c) =
l1l4 − l2l3

(−λ2d3

l + λc
l )β[(ρ+ µ+ η2 + ω)(µ+ η1 + φ)− ρφ] + β(ρ+ µ+ η2 + ω)

and

Θ2(λ, c) =
l1l4 − l2l3

βφ
.

We take d = max{d2, d3}. Note that λ = c
2d , it follows from (3.4)–(3.6) that

l1l4 − l2l3

=(−d2
c2

4d2l
+

c2

2dl
)(−d3

c2

4d2l
+

c2

2dl
){(ρ+ µ+ η2 + ω)(µ+ η1 + φ)− ρφ}

+ (ρ+ µ+ η2 + ω)(−d2
c2

4d2l
+

c2

2dl
) + (µ+ η1 + φ)(−d3

c2

4d2l
+

c2

2dl
) + 1.

Due to d = max {d2, d3}, there are c2

l ( 2d−d2

4d2 ) > 0 and c2

l ( 2d−d3

4d2 ) > 0. Let

A1 = (ρ+ µ+ η2 + ω)(µ+ η1 + φ)− ρφ,
A2 = ρ+ µ+ η2 + ω,

A3 = µ+ η1 + φ,

B1 = β[(ρ+ µ+ η2 + ω)(µ+ η1 + φ)− (1− u2)ρφ],

B2 = β(ρ+ µ+ η2 + ω).
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Then

∂Θ1( c
2d , c)

∂c
=

[
2c5

l
(
2d− d2

4d2
)(

2d− d3

4d2
)2A1B1 +

4c3

l
(
2d− d2

4d2
)(

2d− d3

4d2
)A1B2

+
2c

l
(
2d− d2

4d2
)A2B2 +

2c

l
(
2d− d3

4d2
)(A3B2 −B1)

]
÷[
c2

l
(
2d− d3

4d2
)B1 +B2]2.

In view of A3B2−B1 > 0, we see that
∂Θ1( c2d ,c)

∂c > 0. That is, Θ1( c
2d , c) is increasing

on c and nonnegative. Similarly, Θ2( c
2d , c) is increasing on c and nonnegative as well.

Since Θi(
c

2d , c) is increasing and nonnegative for c ∈ [0,+∞), the matrix M( c
2d , c)

is decreasing on c ∈ [0,+∞). In particular, if c = 0, then l1 = l4 = 1, l2 = l3 = 0.
Hence,

M
( c

2d
, c
)

=
1

l

1 0

0 1

 ·
β(ρ+ µ+ η2 + ω) 0

βφ 0

 = V −1F.

Note that l1l4 − l2l3 → +∞ as c → +∞. Therefore, M( c
2d , c) → 0 as c → +∞.

Following from that r(M( c
2d , c)) < 1, r(M(0, 0)) = r(M(0, c)) = r(V −1F ) > 1

and r(M) is continuous and monotonically increasing with respect to the nonneg-
ative matrix M , there exists a unique c∗ > 0 such that r(M( c

∗

2d , c
∗)) = 1 and

r(M( c
2d , c)) < 1 for c > c∗. Next fixing c > c∗, we discuss the monotonicity of

Θi(λ, c) in λ ∈ [0, c2d ]. Firstly, we have

∂Θ2(λ, c)

∂λ
= [(−2d2

λ

l
+
c

l
)(−d3

λ2

l
+
λc

l
)A1 + (−d2

λ2

l
+
λc

l
)(−2d3

λ

l
+
c

l
)A1

+(−2d2
λ

l
+
c

l
)A2 + (−2d3

λ

l
+
c

l
)A3]/[βφ]2.

Now denote

C1(λ) = (−2d2
λ

l
+
c

l
)(−d3

λ2

l
+
λc

l
)A1 + (−d2

λ2

l
+
λc

l
)(−2d3

λ

l
+
c

l
)A1

+(−2d2
λ

l
+
c

l
)A2 + (−2d3

λ

l
+
c

l
)A3]

and

C2(λ) = (−2d
λ

l
+
c

l
)[2(−dλ

2

l
+
λc

l
)A1 +A2 +A3].

Noticed that if λ ∈ [0, c2d ], we can obtain C2(λ) ≥ 0. As we know that d =

max {d2, d3}, so we get that C1(λ) > C2(λ) ≥ 0. Hence, ∂Θ2(λ,c)
∂λ > 0. Therefore we

prove that Θ2(λ, c) is increasing in λ ∈ [0, c2d ]. Similarly,

∂Θ1(λ, c)

∂λ
= [(−2d2

λ

l
+
c

l
)(−d3

λ2

l
+
λc

l
)A1 + (−d2

λ2

l
+
λc

l
)(−2d3

λ

l
+
c

l
)A1

+(−2d2
λ

l
+
c

l
)A2 + (−2d3

λ

l
+
c

l
)A3] · [(−d3

λ2

l
+
λc

l
)B1 +B2]

−[(−d2
λ2

l
+
λc

l
)(−d3

λ2

l
+
λc

l
)A1 + (−d2

λ2

l
+
λc

l
)A2

+(−d3
λ2

l
+
λc

l
)A3 + 1] · (−2d3

λ

l
+
c

l
)B1/[(−d3

λ2

l
+
λc

l
)B1 +B2]2,
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in view of [(−d3
λ2

l + λc
l )B1 +B2]2 > 0, so we only need focus on

C3(λ) = (−2d2
λ

l
+
c

l
)(−d3

λ2

l
+
λc

l
)2A1B1 + (−2d2

λ

l
+
c

l
)(−d3

λ2

l
+
λc

l
)A1B2

+(−d2
λ2

l
+
λc

l
)(−2d3

λ

l
+
c

l
)A1B2 + (−d2

λ2c

l2
+ d3

λ2c

l2
)A2B1

+(−2d2
λ

l
+
c

l
)A2B2 + (−2d3

λ

l
+
c

l
)(A3B2 −B1).

We denote that

C4(λ) = (−2dλl + c
l )[(−d

λ2

l + λc
l )2A1B1 + (−dλ

2

l + λc
l )A1B2

+(A2B2 +A3B2 −B1)].

Thus if λ ∈ [0, c2d ], we can obtain C4(λ) > 0. As we know that d = max {d2, d3},
so we get that C3(λ) > C4(λ) ≥ 0. Hence, ∂Θ1(λ,c)

∂λ > 0. Therefore, we prove
that Θ1(λ, c) is increasing in λ ∈ [0, c2d ]. Since Θi(λ, c) is increasing in λ ∈ [0, c2d ],

we conclude that the matrix M(λ, c) is decreasing and nonnegative in λ ∈ [0, c2d ].
Consequently, there exists a λc ∈ (0, c2d ) such that

r(M(λ, c))


= 1 if λ = λc,

< 1 if λ ∈ (λc,
c

2d ],

> 1 if λ ∈ [0, λc).

Lemma 3.1. Assume that R0 = r(FV −1) > 1. Then there exists c∗ > 0 such that
for each c > c∗, there exist λc ∈ (0, c2d ) and Qc > 0 satisfying det(M(λc, c)) = 0
and M(λc, c)Qc = 0.

Proof. Following the above arguments, there exists a unique c∗ > 0, for any
c > c∗, there exists λc ∈ [0, c2d ] with r(M(λc, c)) = 1. Then the Perron-Frobenius
theorem implies that there exists a Qc ∈ R2 with positive components such that
M(λc, c)Qc = Qc. Multiplying the matrix −Aλ2

c +Bλc + I on two sides of the last
equality, we have (Aλ2

c − Bλc + V −1F − I)Qc = 0. Multiplying V to this equality
yields M(λc, c)Qc = 0, this completes the proof.

Remark 3.1. If c < c∗, then at least one of the equations in (3.3) has no real root.

In the sequel, we assume c > c∗ and let Qc := (q1, q2)T as obtained in Lemma
3.1.

Lemma 3.2. The vector valued map Φ(x) = (ϕ1(x), ϕ2(x))T with ϕi(x) = qie
λcx

satisfies the following system: cϕ′1(x) = d2ϕ
′′
1(x) + βϕ1(x) + ρϕ2(x)− (µ+ η1 + φ)ϕ1(x),

cϕ′2(x) = d3ϕ
′′
2(x) + φϕ1(x)− ρϕ2(x)− (µ+ η2 + ω)ϕ2(x).

(3.7)

Proof. By Lemma 3.1, we know that M(λc, c)Qc = 0 and Qc = (q1, q2)T . Then
(q1, q2)T satisfies  cλcq1 = d2λ

2
cq1 + βq1 + ρq2 − (µ+ η1 + φ)q1,

cλcq2 = d3λ
2
cq2 + φq1 − ρq2 − (µ+ η2 + ω)q2.

(3.8)
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Multiplying eλcx on both sides of (3.8), we get cλcq1e
λcx = d2λ

2
cq1e

λcx + βq1e
λcx + ρq2e

λcx − (µ+ η1 + φ)q1e
λcx,

cλcq2e
λcx = d3λ

2
cq2e

λcx + φq1e
λcx − ρq2e

λcx − (µ+ η2 + ω)q2e
λcx.

As we know that ϕ′i(x) = λcqie
λcx and ϕ′′i (x) = λ2

cqie
λcx, therefore (3.7) holds.

Lemma 3.3. The function S+ ≡ S0 = Λ
µ satisfies the following equation

cS
′

+(x) ≥ d1S
′′

+(x) + Λ− µS+(x)− βS+(x)ϕ1(x)

S+(x) + ϕ1(x) + ϕ2(x)
.

The proof is trivial and we omit it here.

Lemma 3.4. For each $ > 0 sufficiently small and ρ > 1 large enough, the map
p1(x) defined by p1(x) = max{S0(1− ρe$x), Λ

µ+β } satisfies the following system of
differential inequality:

d1p
′′
1(x)− cp′1(x) + Λ− β p1(x)ϕ1(x)

p1(x) + ϕ1(x)
− µp1(x) ≥ 0. (3.9)

Proof. When x < X
′

:= 1
$ ln β

ρ(µ+β) , S0(1 − ρe$x) > Λ
µ+β and p1(x) = S0(1 −

ρe$x). One has

d1p
′′
1(x)− cp′1(x) + Λ− β p1(x)ϕ1(x)

p1(x) + ϕ1(x)
− µp1(x)

≥− d1S0ρ$
2e$x + cS0ρ$e

$x + µS0ρe
$x − βq1e

λcx

≥[S0ρ$(c−$d1) + µS0ρ− βq1ρ
−(λc−$) 1

$ ]e$x.

Keeping ρ$ = 1 and letting ρ→ +∞, there exist ρ > 0 and $ > 0 such that

S0ρ$(c−$d1) + µS0ρ− βq1ρ
−(λc−$) 1

$ > 0,

which implies that (3.9) holds. If x ≥ X
′
, then S0(1 − ρe$x) ≤ Λ

µ+β . Hence,

p1(x) = Λ
µ+β , it is sufficient to prove that

d1p
′′
1(x)− cp′1(x) + Λ− β p1(x)ϕ1(x)

p1(x) + ϕ1(x)
− µp1(x)

≥d1p
′′
1(x)− cp′′1(x) + Λ− βp1(x)− µp1(x)

≥0,

which is true in view of

Λ− β · Λ

µ+ β
− µ · Λ

µ+ β
= 0.

This completes the proof.

Lemma 3.5. Let ε > 0 be small enough with ε < min
{
$
2 ,

λc

2

}
and λc + ε < c

2d .
Then the function

Ψ(x) = (ψ1(x), ψ2(x))T = Qceλcx max{1−Meεx, 0}
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satisfies the following inequalities:

cψ′1(x) ≤ d2ψ
′′

1 (x) +
βp1(x)ψ1(x)

p1(x) + ψ1(x) + ϕ2(x)
+ ρψ2(x)

−(µ+ η1 + φ)ψ1(x), (3.10)

cψ′2(x) ≤ d3ψ
′′

2 (x) + φψ1(x)− ρψ2(x)− (µ+ η2 + ω)ψ2(x), (3.11)

for any x < X
′′

:= − 1
ε lnM , where M > 0 is sufficiently large so that X

′′
< X

′
.

Proof. When x < X
′′
< X

′
, ψi(x) = qie

λcx(1 −Meεx), p1(x) = S0(1 − ρe$x),
ϕi(x) = qie

λcx, i = 1, 2. Consequently, we get

cψ′1(x)− d2ψ
′′
1 (x)− β p1(x)ψ1(x)

p1(x) + ψ1(x) + ϕ2(x)
− ρψ2(x) + (µ+ η1 + φ)ψ1(x)

≤
[
M(−cq1ε+ d2q12λcε+ d2q1ε

2) + β
q2
1 + q1q2

S0(1− ρe−$ 1
ε lnM )

]
e(λc+ε)x

and

cψ′2(x)− d3ψ
′′
2 (x)− φψ1(x) + ρψ2(x) + (µ+ η2 + ω)ψ2(x)

= M(−cq2ε+ d3q22λcε+ d3q2ε
2)e(λc+ε)x.

Then for sufficiently large M > 0, we have that (3.10) and (3.11) hold.

Let X∗ := − 1
ε ln M(λc+ε)

λc
< X

′′
. It is obvious that ϕi(·) is increasing on

(−∞, X∗]. For X > −X∗, we define

Γ =




χ1

ξ1

ξ2

 ∈ C(Ω,R3)

∣∣∣∣∣∣∣∣∣∣∣∣

p1(x) ≤ χ1(x) ≤ S0, x ∈ [−X,X],

ψi(x) ≤ ξi(x) ≤ ϕi(x), x ∈ [−X,X],

χ1(±X) = p1(±X), ξi(±X) = ψi(±X),

i = 1, 2,


, (3.12)

where Ω = [−X,X]. For any given (χ1(·), ξ1(·), ξ2(·)) ∈ Γ, we consider the following
boundary value problems:

−d1S
′′(x) + cS′(x)− Λ + (β + µ)S(x) = βg1[χ1, ξ1, ξ2](x),

−d2I
′′(x) + cI ′(x) + (µ+ η1 + φ)I(x) = βf1[χ1, ξ1, ξ2](x) + ρξ2(x),

−d3R
′′(x) + cR′(x) + ρR(x) + (µ+ η2 + ω)R(x) = φξ1(x),

(3.13)

with
S(±X) = p1(±X), I(±X) = ξ1(±X), R(±X) = ξ2(±X), (3.14)

where

f1[χ1, ξ1, ξ2](x) =


χ1(x)ξ1(x)

χ1(x) + ξ1(x) + ξ2(x)
, χ1(x)ξ1(x) 6= 0,

0, χ1(x)ξ1(x) = 0,

g1[χ1, ξ1, ξ2](x) =


χ1(x)(χ1(x) + ξ2(x))

χ1(x) + ξ1(x) + ξ2(x)
, χ1(x)(χ1(x) + ξ2(x)) 6= 0,

0, χ1(x)(χ1(x) + ξ2(x)) = 0.
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It is easy to verify that f1 and g1 are continuous functions on x ∈ [−X,X] as
below. Then problems (3.13)–(3.14) admit a unique solution (S(·), I(·), R(·)) with
S, I,R ∈ W2,p([−X,X]), where p > 1. By the embedding theorem, we know
W2,p([−X,X]) ↪→ C1,α([−X,X]) and 0 < α < 1. Thus, S, I,R ∈ C1,α([−X,X]).
Now define an operator T = (T1, T2, T3) on Γ as

S = T1(χ1, ξ1, ξ2), I = T2(χ1, ξ1, ξ2), R = T3(χ1, ξ1, ξ2).

Theorem 3.1. The operator T maps Γ into Γ and is completely continuous.

Proof. Let (χ1(·), ξ1(·), ξ2(·)) ∈ Γ and (S(·), I(·), R(·)) = T (χ1, ξ1, ξ2)(·). By
virtue of the embedding theorem, we have S(·), I(·), R(·) ∈ C([−X,X],R). Now we
show that p1(x) ≤ S(x) ≤ S0 for x ∈ [−X,X]. Furthermore, S(±X) ≤ S0, S0 is
a supersolution of (3.13), and hence we have S(x) ≤ S0 for x ∈ [−X,X]. We note
that S(−X) = p1(−X), S(X

′
) ≥ p1(X

′
) = Λ

µ+β . Then for x ∈ (−X,X ′), by (3.9)
we have

0 ≥ −d1p
′′
1(x) + cp′1(x)− Λ + β

p1(x)ϕ1(x)

p1(x) + ϕ1(x)
+ µp1(x)

≥ −d1p
′′
1(x) + cp′1(x)− Λ + β

p1(x)ξ1(x)

p1(x) + ξ1(x) + ξ2(x)
+ µp1(x)

≥ −d1p
′′
1(x) + cp′1(x)− Λ + (µ+ β)p1(x)− βg1(x),

which implies that p1(·) is a subsolution of (3.13) on [−X,X ′ ]. Here, we use the

fact that the function u(u+a)
u+v+a is nondecreasing on u and nonincreasing on v for

(u, v) ∈ (0,+∞) × [0,+∞), where a ≥ 0. Consequently, the maximum principle
yields that S(x) ≥ p1(x) for x ∈ [−X,X ′ ]. Combining the above arguments, we
know that p1(x) ≤ S(x) ≤ S0 for x ∈ [−X,X]. Similarly, we can confirm that
ψ1(x) ≤ I(x) ≤ ϕ1(x), ψ2(x) ≤ R(x) ≤ ϕ2(x) for x ∈ [−X,X].

By the classical embedding theorems, we have that T is a compact operator from
Γ into Γ. Now we show that T : Γ → Γ is continuous. First of all, we show that
f1, g1 are continuous operators from Γ to C([−X,X],R+). Consider f1 first. Let
χ1,1, χ1,2, ξ1,1, ξ1,2, ξ2,1,ξ2,2 ∈ C[−X,X] with p1(x) ≤ χ1,1(x), χ1,2(x) ≤ S0, ψ1(x) ≤
ξ1,1(x), ξ1,2(x) ≤ ϕ1(x), ψ2(x) ≤ ξ2,1(x), ξ2,2(x) ≤ ϕ2(x) for x ∈ [−X,X] when
χ1,1(x), χ1,2(x), ξ1,1(x), ξ1,2(x), ξ2,1(x), ξ2,2(x) 6= 0, we have

|f1[χ1,1, ξ1,1, ξ2,1](x)− f1[χ1,2, ξ1,2, ξ2,2](x)|

=

∣∣∣∣ χ1,1ξ1,1
χ1,1 + ξ1,1 + ξ2,1

− χ1,2ξ1,2
χ1,2 + ξ1,2 + ξ2,2

∣∣∣∣
≤ |ξ1,1 − ξ1,2|+ |χ1,1 − χ1,2|+ |ξ2,2 − ξ2,1| . (3.15)

If χ1,1(x)ξ1,1(x)χ1,2(x)ξ1,2(x) = 0 and χ1,1(x)ξ1,1(x) + χ1,2(x)ξ1,2(x) 6= 0, for ex-
ample, χ1,1(x) = 0 and χ1,2(x)ξ1,2(x) 6= 0, we have

|f1[χ1,1, ξ1,1, ξ2,1](x)− f1[χ1,2, ξ1,2, ξ2,2](x)| ≤ |χ1,1 − χ1,2| .

Therefore, f1 is Lipschitz continuous. Similarly, we can also prove that g1 is Lips-
chitz continuous. Thus, the operator T is continuous on Γ. The proof is complete.
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Combining the above arguments, we know that T : Γ→ Γ is a completely con-
tinuous operator. Obviously, Γ is a bounded closed convex set. Hence, Schauder’s
fixed point theorem implies that there exists (SX , IX , RX) ∈ Γ such that

(SX(x), IX(x), RX(x)) = T (SX , IX , RX)(x)

for x ∈ [−X,X].

Theorem 3.2. For each given Y > −X∗, there exists some C0 = C0(Y ) > 0 such
that

‖SX‖C3[−Y,Y ] , ‖IX‖C3[−Y,Y ] , ‖RX‖C3[−Y,Y ] ≤ C0 (3.16)

for any X > Y .

Proof. By the definition of the operator T and Schauder’s fixed point theorem,
we have that (SX , IX , RX) satisfies

cS′X = d1S
′′
X + Λ− βSXIX

NX
− µSX ,

cI ′X = d2I
′′
X +

βSXIX
NX

+ ρRX − (µ+ η1 + φ)IX ,

cR′X = d3R
′′
X + φIX − ρRX − (µ+ η2 + ω)RX .

(3.17)

Thus, SX , IX , RX are all of class W2,p(−X,X), p ≥ 2. By the embedding theorem,
we have W2,p(−X,X) ↪→ C1+α[−X,X] for some α ∈ (0, 1). In addition, it is
not difficult to prove that f1[χ1, ξ1, ξ2] and g1[χ1, ξ1, ξ2] are all of class Cα[−X,X],
which implies that SX , IX , RX ∈ C2+α[−X,X]. Then, SX , IX , RX ∈ C3[−X,X]
according to (3.17).

By the above arguments, we have SX(ζ) ≤ S0 for any ζ ∈ [−X,X]. Moreover,
according to (3.17), we have

d1S
′′
X − cS′X − µSX =

βSXIX
NX

− Λ, (3.18)

and

SX(ζ) =
1

d1(λ+
S − λ

−
S )

∫ ζ

−X
eλ
−
S (ζ−t)

[
Λ− βSX(t)IX(t)

NX(t)

]
dt

+
1

d1(λ+
S − λ

−
S )

∫ X

ζ

eλ
+
S (ζ−t)

[
Λ− βSX(t)IX(t)

NX(t)

]
dt, (3.19)

where λ±S =
c±
√
c2+4d1µ

2d1
. For any ζ ∈ [−X,X], we get

d

dζ
SX(ζ) =

λ−S
d1(λ+

S − λ
−
S )

∫ ζ

−X
eλ
−
S (ζ−t)

[
Λ− βSX(t)IX(t)

NX(t)

]
dt

+
λ+
S

d1(λ+
S − λ

−
S )

∫ X

ζ

eλ
+
S (ζ−t)

[
Λ− βSX(t)IX(t)

NX(t)

]
dt.

Hence,∣∣∣∣ ddζ SX(ζ)

∣∣∣∣ ≤ (βS0 + Λ)
∣∣λ−S ∣∣

d1(λ+
S − λ

−
S )

∫ ζ

−X
eλ
−
S (ζ−t)dt+

(βS0 + Λ)λ+
S

d1(λ+
S − λ

−
S )

∫ X

ζ

eλ
+
S (ζ−t)dt

≤ 2(βS0 + Λ)

d1(λ+
S − λ

−
S )

:= M0.
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By (3.17),

|S′′X(ζ)| ≤ c

d1
|S′X |+

Λ

d1
+

1

d1

∣∣∣∣βSXIXNX

∣∣∣∣+
1

d1
|µSX |

≤ c

d1
M0 +

Λ

d1
+

1

d1
(β + µ)S0 := M1.

Similarly, according to (3.17), we can obtain that the solution of (3.17) has the
following formulation by

IX(ζ) =
1

d2(λ+
I − λ

−
I )

∫ ζ

−Y
eλ
−
I (ζ−t)

[
βSX(t)IX(t)

NX(t)
+ ρRX(t)

]
dt

+
1

d2(λ+
I − λ

−
I )

∫ Y

ζ

eλ
+
I (ζ−t)

[
βSX(t)IX(t)

NX(t)
+ ρRX(t)

]
dt,

where λ±I =
c±
√
c2+4d2(µ+η1+φ)

2d2
. Then

d

dζ
IX(ζ) =

λ−I
d2(λ+

I − λ
−
I )

∫ ζ

−Y
eλ
−
I (ζ−t)

[
βSX(t)IX(t)

NX(t)
+ ρRX(t)

]
dt

+
λ+
I

d2(λ+
I − λ

−
I )

∫ Y

ζ

eλ
+
I (ζ−t)

[
βSX(t)IX(t)

NX(t)
+ ρRX(t)

]
dt.

Therefore,∣∣∣∣ ddζ IX(ζ)

∣∣∣∣ ≤ 2βS0

d2(λ+
I − λ

−
I )

+
βS0

d2(λ+
I − λ

−
I )

+
βS0

d2(λ+
I − λ

−
I )

+

∣∣λ−I ∣∣
d2(λ+

I − λ
−
I )
ρq2

∣∣∣∣eλ−I (−Y ) 1

λ+
I − λ

−
I

e(λ+
I −λ

−
I )Y

∣∣∣∣ := C1(Y ).

By (3.17), there is |I ′′X(ζ)| ≤ C2(Y ) for some constant C2(Y ). Similarly, we can also
obtain the boundness of |R′X(ζ)| and |R′′X(ζ)|. We denote |R′X(ζ)| < C3(Y ), and
|R′′X(ζ)| < C4(Y ). Now, choose

C0 = C0(Y ) = max
{
M0,M1, Ck(Y ), k = 1, 2, 3, 4

}
.

Thus, we obtain |S′′′X (ζ)| , |I ′′′X (ζ)| , |R′′′X(ζ)| < C0 for any ζ ∈ [−Y, Y ]. Hence,
‖SX‖C3[−Y,Y ] , ‖IX‖C3[−Y,Y ] , ‖RX‖C3[−Y,Y ] ≤ C0. The proof is complete.

Let {Xn} be an increasing sequence with Xn > X∗ and lim
n→+∞

Xn = +∞. By

Theorem 3.2, we can obtain that {SXn} is relatively compact set of C2 ([−Y, Y ] ,R).
Hence, according to Arzela-Ascoli theorem, there exists some convergence subse-
quence, denoted by {SXnn}, converges to S in C2

loc(R). Similarly, we can prove
that IXnn → I,RXnn → R in C2

loc(R).
We further show that (S(ζ), I(ζ), R(ζ)) satisfies the boundary conditions

S(−∞) = S0 = Λ
µ , S(+∞) = S∗,

I(−∞) = 0, I(+∞) = I∗,

R(−∞) = 0, R(+∞) = R∗,

(3.20)
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when d1 = d2 = d3. It is not difficult to verify that S(−∞) = S0 = Λ
µ , I(−∞) = 0

and R(−∞) = 0 by Lemmas 3.2-3.5. Moreover, noting that when d1 = d2 = d3, we
know that N(ζ) ≤ Λ

µ for ζ ∈ R. In fact, N(ζ) = Λ
µ is a solution of the following

ordinary differential equation

cu′(ζ) = du′′(ζ) + Λ− µu,

where d = di (i = 1, 2, 3). Moreover, we have

cN
′ ≥ dN ′′ + Λ− µN − η1I − (η2 + ω)R.

Thus, S(ζ), I(ζ), R(ζ) ≤ Λ
µ for ζ ∈ R.

Next, we show that

lim
ζ→+∞

S(ζ) = S∗, lim
ζ→+∞

I(ζ) = I∗, lim
ζ→+∞

R(ζ) = R∗,

by the Lyapunov method which is used in [5,15]. First, by the comparison principle,
it is obvious that S(ζ) > 0 for ζ ∈ R. Additionally, we know I(ζ) > 0 for all
ζ ∈ (−∞,− 1

ε lnM). Consider the second equation of system (3.1) on [X1, X2] with
X1 < − 1

ε lnM < X2. Assume there is some ζ0 ∈ (X1, X2) such that I(ζ0) = 0. By
the second equation of system (3.1), we have

−dI ′′(ζ) + cI ′(ζ) + (µ+ η1 + φ)I(ζ) ≥ 0, ζ ∈ (X1, X2).

Then, the strong maximum principle implies that I(ζ) ≡ 0 for all ζ ∈ [X1, X2],
which is a contradiction. If I(X2) = 0, the same contradiction can be obtained.
Thus, I(ζ) > 0 in any bounded set of R. By the same method, we also can prove

that R(ζ) > 0 in any bounded set of R. Moreover, we can prove that S′(ζ)
S(ζ) ,

I′(ζ)
I(ζ)

and R′(ζ)
R(ζ) are bounded on R. We know that

S(ζ) =
1

d1(λ+
S − λ

−
S )

∫ ζ

−∞
eλ
−
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt

+
1

d1(λ+
S − λ

−
S )

∫ +∞

ζ

eλ
+
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt.

Then

S′(ζ) =
λ−S

d1(λ+
S − λ

−
S )

∫ ζ

−∞
eλ
−
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt

+
λ+
S

d1(λ+
S − λ

−
S )

∫ +∞

ζ

eλ
+
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt.

Hence, we can obtain that

S′(ζ)

S(ζ)
=
λ−S
∫ ζ
−∞ eλ

−
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt+ λ+

S

∫ +∞
ζ

eλ
+
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt∫ ζ

−∞ eλ
−
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt+

∫ +∞
ζ

eλ
+
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt

,
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therefore, ∣∣∣∣S′(ζ)

S(ζ)

∣∣∣∣ ≤
∣∣λ−S ∣∣ ∣∣∣∫ ζ−∞ eλ

−
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt
∣∣∣

Λ
µ+β

+
λ+
S

∣∣∣∫ +∞
ζ

eλ
+
S (ζ−t)

[
Λ− βS(t)I(t)

N(t)

]
dt
∣∣∣

Λ
µ+β

≤ (µ+ β)
2

µ
.

Likeness,

I(ζ) =
1

d2(λ+
I − λ

−
I )

∫ ζ

−∞
eλ
−
I (ζ−t)

[
βS(t)I(t)

N(t)
+ ρR(t)

]
dt

+
1

d2(λ+
I − λ

−
I )

∫ +∞

ζ

eλ
+
I (ζ−t)

[
βS(t)I(t)

N(t)
+ ρR(t)

]
dt

and

I ′(ζ) =
λ−I

d2(λ+
I − λ

−
I )

∫ ζ

−∞
eλ
−
I (ζ−t)

[
βS(t)I(t)

N(t)
+ ρR(t)

]
dt

+
λ+
I

d2(λ+
I − λ

−
I )

∫ +∞

ζ

eλ
+
I (ζ−t)

[
βS(t)I(t)

N(t)
+ ρR(t)

]
dt.

Hence, we obtain that

I ′(ζ)

I(ζ)

=
λ−I
∫ ζ
−∞ eλ

−
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt+ λ+

I

∫ +∞
ζ

eλ
+
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt∫ ζ

−∞ eλ
−
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt+

∫ +∞
ζ

eλ
+
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt

.

Then,∣∣∣∣I ′(ζ)

I(ζ)

∣∣∣∣
≤

∣∣λ−I ∣∣ ∣∣∣∫ ζ−∞ eλ
−
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt
∣∣∣∣∣∣∫ ζ−∞ eλ

−
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt+

∫ +∞
ζ

eλ
+
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt
∣∣∣

+
λ+
I

∣∣∣∫ +∞
ζ

eλ
+
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt
∣∣∣∣∣∣∫ ζ−∞ eλ

−
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt+

∫ +∞
ζ

eλ
+
I (ζ−t)

[
βS(t)I(t)
N(t) + ρR(t)

]
dt
∣∣∣

≤
∣∣λ−I ∣∣+ λ+

I .

Similarly, we can also prove that
∣∣∣R′(ζ)R(ζ)

∣∣∣ ≤ ∣∣λ−R∣∣+λ+
R. To sum up, there exists some

constant Ĉ > 0 such that∣∣∣∣S′(ζ)

S(ζ)

∣∣∣∣+

∣∣∣∣I ′(ζ)

I(ζ)

∣∣∣∣+

∣∣∣∣R′(ζ)

R(ζ)

∣∣∣∣ ≤ Ĉ, ζ ∈ R. (3.21)



162 C. Zhu, W. Li & F. Yang

Now, we define the Lyapunov functional as follows:

W (S, I,R)(ζ) = c

(
S(ζ)− S∗ − S∗ ln

S(ζ)

S∗

)
+ c

(
I(ζ)− I∗ − I∗ ln

I(ζ)

I∗

)
+

ρc

ρ+ µ+ η2 + ω

(
R(ζ)−R∗ −R∗ ln

R(ζ)

R∗

)
+ d1S

′(ζ)

(
S∗
S(ζ)

− 1

)
+d2I

′(ζ)

(
I∗
I(ζ)

− 1

)
+

ρd3

ρ+ µ+ η2 + ω
R′(ζ)

(
R∗
R(ζ)

− 1

)
. (3.22)

By the above discussion, it is not difficult to see that W is well defined and bounded
from below. Hence

dW

dζ
= (1− S∗

S
)[Λ− βSI

N
− µS]

+(1− I∗
I

)[
βSI

N
+ ρR− (µ+ η1 + φ)I]

+
ρ

ρ+ µ+ η2 + ω
(1− R∗

R
)[φI − ρR− (µ+ η2 + ω)R]

−d1
S∗ (S′)

2

S2
− d2

I∗ (I ′)
2

I2
− ρ

ρ+ µ+ η2 + ω
d3R∗

R∗ (R′)
2

R2
.

Substituting the expressions of the derivatives from system (2.1) and using the
relation at the endemic equilibrium state, we get

Λ =
βS∗I∗
N

+ µS∗,

thus

dW

dζ
= −µ (S − S∗)2

S
+
βS∗I∗
N

(1− S∗
S

) + (µ+ η1 + φ)I∗

+

[
−(µ+ η1 + φ)I∗ +

βS∗I∗
N

+
ρφI∗

ρ+ µ+ η2 + ω

]
I

I∗

−βS∗I∗
N

S

S∗
− ρR∗

I∗R

IR∗
− ρφI∗
ρ+ µ+ η2 + ω

IR∗
I∗R

+ ρR∗

−d1
S∗ (S′)

2

S2
− d2

I∗ (I ′)
2

I2
− ρ

ρ+ µ+ η2 + ω
d3R∗

R∗ (R′)
2

R2
. (3.23)

At the endemic equilibrium state, we also know that
βS∗I∗
N

+ ρR∗ − (µ+ η1 + φ)I∗ = 0,

φI∗ − (ρ+ µ+ η2 + ω)R∗ = 0.
(3.24)

Thus 
ρφI∗

ρ+ µ+ η2 + ω
= ρR∗,

− (µ+ η1 + φ)I∗ +
βS∗I∗
N

+
ρφI∗

ρ+ µ+ η2 + ω
= 0.

(3.25)
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Substituting (3.25) into (3.23) and simplifying, we get

dW

dζ
= −µ (S − S∗)2

S
+
βS∗I∗
N

(1− S∗
S
− S

S∗
)

+ρR∗(1−
I∗R

IR∗
− IR∗
I∗R

) + (µ+ η1 + φ)I∗

−d1
S∗ (S′)

2

S2
− d2

I∗ (I ′)
2

I2
− ρ

ρ+ µ+ η2 + ω
d3R∗

R∗ (R′)
2

R2
.

From (3.24), we have

(µ+ η1 + φ)I∗ =
(1− u1)βS∗I∗

N
+ (1− u2)ρR∗.

Hence

dW

dζ
= −µ (S − S∗)2

S
+
βS∗I∗
N

(2− S∗
S
− S

S∗
) + ρR∗(2−

I∗R

IR∗
− IR∗
I∗R

)

−d1

S∗

(
S
′
)2

S2
− d2

I∗

(
I
′
)2

I2
− ρ

ρ+ µ+ η2 + ω
d3R∗

R∗

(
R
′
)2

R2
. (3.26)

As we know, −µ (S−S∗)2

S ≤ 0, 2− S∗
S −

S
S∗
≤ 0 and 2− I∗R

IR∗
− IR∗

I∗R
≤ 0. Hence,

dW

dζ
≤ 0.

Thus, W is decreasing.
Now, we choose an increasing sequence {ζn}n≥0 such that ζn → +∞ as n→ +∞

and let

{Sn(ζ) = S(ζ + ζn)}n≥0, {In(ζ) = I(ζ + ζn)}n≥0, {Rn(ζ) = R(ζ + ζn)}n≥0.

Due to the regularity and the uniform boundedness of Sn, In and Rn, we know Sn, In
and Rn have convergence subsequences, still denoted by Sn, In and Rn. Then we
can assume that Sn, In and Rn converge to some nonnegative functions S∞, I∞
and R∞ in C2

loc(R). Furthermore, since W (S, I,R)(ζ) is non-increasing on ζ and
bounded from below, for large n, there exists a constant C1 such that

C1 ≤W (Sn, In, Rn)(ζ) = W (S, I,R)(ζ + ζn) ≤W (S, I,R)(ζ).

Thus, there exists some V ∈ R such that

lim
n→+∞

W (Sn, In, Rn)(ζ) = lim
ζn→+∞

W (S, I,R)(ζ + ζn) = V,

for any ζ ∈ R. According to (3.22), we have

lim
n→+∞

W (Sn, In, Rn)(ζ) = W (S∞, I∞, R∞)(ζ), ζ ∈ R,

hence,
W (S∞, I∞, R∞)(ζ) ≡ V. (3.27)
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Differentiating both sides of (3.27), we can obtain that dW
dζ (S∞, I∞, R∞)(ζ) = 0.

That is

− µ (S∞ − S∗)2

S∞
+
βS∗I∗
N∞

(2− S∗
S∞
− S∞

S∗
) + ρR∗(2−

I∗R∞
I∞R∗

− I∞R∗
I∗R∞

)

− d1
S∗ (S′∞)

2

S2
∞

− d2
I∗ (I ′∞)

2

I2
∞

− ρ

ρ+ µ+ η2 + ω
d3R∗

R∗ (R′∞)
2

R2
∞

= 0.

We deduce that

S(ζ) ≡ S∗, I(ζ) ≡ I∗, R(ζ) ≡ R∗, S′(ζ) ≡ 0, I ′(ζ) ≡ 0, R′(ζ) ≡ 0.

Finally, since the sequence {ζn} is arbitrary, this leads us to

lim
ζ→+∞

(S(ζ), I(ζ), R(ζ)) = (S∗, I∗, R∗).

This shows the boundary condition (3.20) and completes the proof.

Theorem 3.3. Assume that R0 = r(FV −1) > 1 and d1 = d2 = d3. Then for any
c > c∗, where c∗ is determined by Lemma 3.1, (3.2) admits a nonnegative traveling
wave solution (S(ζ), I(ζ), R(ζ)) with ζ = x + ct satisfying the boundary conditions
(3.20).

3.2. Non-existence of traveling wave solutions when R0 > 1
and 0 < c < c∗

Below, we always assume that d1 = d2 = d3. Inspired by [15, Theorem 4.2], we
obtain the following result.

Theorem 3.4. If R0 > 1 and 0 < c < c∗, then there exist no bounded nontrivial
positive solutions of (3.2) with (3.20).

Proof. For some c ∈ (0, c∗), assume there exists nontrivial positive solution
(S, I,R) of (3.2) with (3.20) by contradiction.

If 0 < c <
√

4d2 (β − µ− η1 − φ) + 4d2ρ
q2
q1

, the equation

d2q1λ
2 − cq1λ+ βq1 + ρq2 − (µ+ η1 + φ)q1 = 0

has no real solution.
By (3.20), for any ε > 0 we can take Mε > 0 large enough such that

S0 − ε ≤ S (ζ) < S0 for any ζ < −Mε.

Thus, for ζ < −Mε, we have

cI ′ (ζ) ≥ d2I
′′(ζ) +

β(S0 − ε)I(ζ)

N(ζ)
− (µ+ η1 + φ)I(ζ). (3.28)

Obviously, S (ζ) +R (ζ) ≤ Λ
µ . Therefore,

S (ζ) +R (ζ) <
Λ

µ
+ 1 := M̃0.
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Then

cI ′ (ζ) ≥ d2I
′′(ζ) +

β(S0 − ε)I(ζ)

M̃0 + I(ζ)
− (µ+ η1 + φ)I(ζ).

Moreover, there exists a constant h > 1 large enough, such that

βS0I(ζ)[
M̃0 + I(ζ)

]h+1
≤ βS (ζ) I(ζ)

M̃0 + I(ζ)
, ζ ≥ −Mε. (3.29)

In fact, it is equivalent to the following inequality

S0[
M̃0 + I(ζ)

]h ≤ S (ζ) , ζ ≥ −Mε, (3.30)

which is available for h large enough. Then

cI ′ (ζ) ≥ d2I
′′(ζ) +

βS0I(ζ)[
M̃0 + I(ζ)

]h+1
− (µ+ η1 + φ)I(ζ), ζ ≥ −Mε.

We define that

b (u) = inf
v∈(u,Λµ )

β (S0 − ε) v[
M̃0 + I(ζ)

]h+1
.

Combining (3.28)–(3.30), we can obtain that u(x, t) = I(x+ ct) > 0 satisfies

∂u(x, t)

∂t
≥ d2

∂2u(x, t)

∂x2
+ b (u(x, t))− (µ+ η1 + φ)u(x, t), x ∈ R, t > 0,

u(x, 0) = I(x) > 0, x ∈ R.

By the comparison principle [20, Theorem 2.2], u(x, t) is an upper solution of the
following initial value problem

∂ω(x, t)

∂t
= d2

∂2ω(x, t)

∂x2
+ b (ω(x, t))− (µ+ η1 + φ)ω(x, t), x ∈ R, t > 0,

ω(x, 0) = I(x) > 0, x ∈ R.

By the theory of asymptotic spreading [21, Theorem 2.5], we obtain that

lim inf
t→∞

ω(x, t) > 0, |x| ≤ c+ c∗

2
t.

Hence,

lim inf
t→∞

u(x, t) ≥ lim inf
t→∞

ω(x, t) > 0, |x| ≤ c+ c∗

2
t. (3.31)

Let −x = c+c∗

2 t, then x+ ct→ −∞ if t→∞. In this case, we have

lim
t→∞

u(x, t) = lim
t→∞

I(x+ ct) = 0,

which contradicts (3.31). This completes the proof of the theorem.
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3.3. Non-existence of traveling wave solutions when R0 < 1

Theorem 3.5. If R0 < 1, then for any c > 0 there exist no bounded nontrivial
solutions of (3.2) with S(−∞) = S0, I(−∞) = 0, R(−∞) = 0.

Proof. Consider the following system cI ′(ζ) = d2I
′′(ζ) +

βS(ζ)I(ζ)

N(ζ)
+ ρR(ζ)− (µ+ η1 + φ)I(ζ),

cR′(ζ) = d3R
′′(ζ) + φI(ζ)− ρR(ζ)− (µ+ η2 + ω)R(ζ).

(3.32)

It is easy to see that the equation

d2λ
2 − cλ− (µ+ η1 + φ) = 0

has two roots

λ±I =
c±

√
c2 + 4d2(µ+ η1 + φ)

2d2
, σI = d2(λ+

I − λ
−
I ),

and the equation
d3λ

2 − cλ− (ρ+ µ+ η2 + ω) = 0

has two roots

λ±R =
c±

√
c2 + 4d3(ρ+ µ+ η2 + ω)

2d3
, σR = d2(λ+

R − λ
−
R).

Set

fI(ζ) =
βS(ζ)I(ζ)

N(ζ)
+ ρR(ζ) and fR(ζ) = φI(ζ).

Then, it follows from (3.32) that
I(ζ) =

1

σI

[∫ ζ

−∞
eλ
−
I (ζ−t)fI(t)dt+

∫ +∞

ζ

eλ
+
I (ζ−t)fI(t)dt

]
,

R(ζ) =
1

σR

[∫ ζ

−∞
eλ
−
R(ζ−t)fR(t)dt+

∫ +∞

ζ

eλ
+
R(ζ−t)fR(t)dt

]
.

Integrating from −∞ to +∞,∫ +∞

−∞
I(ζ)dζ =

∫ +∞

−∞

1

σI
[

∫ ζ

−∞
eλ
−
I (ζ−t)fI(t)dt+

∫ +∞

ζ

eλ
+
I (ζ−t)fI(t)dt]dζ

=
β

µ+ η1 + φ

∫ +∞

−∞
I(ζ)dζ +

ρ

µ+ η1 + φ

∫ +∞

−∞
R(ζ)dζ. (3.33)

Similarly,∫ +∞

−∞
R(ζ)dζ =

∫ +∞

−∞

1

σR

[∫ ζ

−∞
eλ
−
R(ζ−t)fR(t)dt+

∫ +∞

ζ

eλ
+
R(ζ−t)fR(t)dt

]
dζ

=
φ

ρ+ µ+ η2 + ω

∫ +∞

−∞
I(ζ)dζ. (3.34)
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According to R0 < 1 we see that

ρφ < (µ+ η1 + φ)(ρ+ µ+ η2 + ω)− β(ρ+ µ+ η2 + ω) = A−B.

Combining (3.33) with (3.34) yield∫ +∞

−∞
I(ζ)dζ ≤

[
β

µ+ η1 + φ
+

ρ

µ+ η1 + φ
· φ

ρ+ µ+ η2 + ω

] ∫ +∞

−∞
I(ζ)dζ

=
B + ρφ

A

∫ +∞

−∞
I(ζ)dζ

<
B +A−B

A

∫ +∞

−∞
I(ζ)dζ

=

∫ +∞

−∞
I(ζ)dζ,

which is a contradiction.
Hence, we obtain the non-existence of traveling wave solutions when R0 < 1.

4. Numerical simulation

In this section, some numerical simulation of the traveling wave solutions of system
(2.1) are presented to support the analytic results obtained above. As we know,
traveling wave solution is a global concept, but we have no way to give the simulated
images at the infinity. Hence, we can only give a simulation diagram on the local
area. Our data are partially taken from [19].

First, we give the data in Table 2.

Table 2. The parameters description of quit drinking model.

Parameter Data estimated Data sources
Λ 136 References [19]

β 0.4day−1 References [19]

ρ 0.805day−1 References [19]

φ 0.03521day−1 References [19]

ω 0.0783day−1 Estimate

µ 0.0000351day−1 References [19]

η1 0.04227day−1 Estimate

η2 0.02558day−1 Estimate

According to the survey, the number of population over 15 years old is about 5.5
billion. Therefore, we will consider 5.22 billion, 1.1 billion, 0.45 billion, 0.13 billion
as the initial value of the four compartments.

Next, we will give the relevant numerical simulation about the existence of trav-
eling wave solutions of system (2.1). From the last equation of system (2.1), we can
see that Q is only related to R and there is no diffusion in the last equation. Hence,
we simulate traveling waves of system (3.2).

In order to be able to clearly see the shape of the wave, we give an image from
two different angles. Although we can’t prove that the existence of traveling waves



168 C. Zhu, W. Li & F. Yang

under the case of d1 6= d2 6= d3, however, we can simulate this situation. We use
the data from Table 2 and choose d1 = 2, d2 = 1.2, d3 = 1.5, we find that traveling
wave solutions persist (Figure 2-Figure 4).

Figure 2. Traveling waves of compartment S when d1 = 2, d2 = 1.2, d3 = 1.5.

Figure 3. Traveling waves of compartment I when d1 = 2, d2 = 1.2, d3 = 1.5.

Figure 4. Traveling waves of compartment R when d1 = 2, d2 = 1.2, d3 = 1.5.

Although only in the partial simulation image, however, we can still see the
images of the solution have the obvious trend of shock.
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5. Discussion

We have formulated a reaction-diffusion SIRQ model with relapse. We investigated
that the critical wave speed c∗ is also an important threshold value to determine
whether the infectious disease can diffuse or not. In our work, we used sophisticated
analytical skills to obtain the global existence and boundedness of the solution of the
wave system by the integral expression. As mentioned earlier, the traveling waves of
system (2.1) have been never studied, the main reason is that the boundary behavior
at +∞ is difficult to be obtained. In the present paper, we overcome this difficulty by
the Lyapunov functional method. Then we proved the traveling waves connect the
disease-free equilibrium and the endemic equilibrium as the susceptible, the infective
and the removed individuals have the same diffusion rates. However, we also give the
waveform simulation diagram of the existence of traveling wave solutions under the
case of the diffusion coefficient unequally in numerical simulation, which implies
that the traveling waves exist even if the diffusion rates of the susceptible, the
infective and the removed individuals are distinct. Moreover, we obtain that the
basic reproductive number and wave speed determine the spread of the disease.
More precisely, when R0 < 1, the epidemic has no transmission capacity. At this
case no matter how the wave speed change, the disease will not spread. When
R0 > 1, the epidemic has the transmission capacity. However, when wave speed
does not reach the minimal wave speed c∗, the disease still does not transmit. On
the other hand, if R0 > 1 and the wave speed c > c∗, then the disease will prevail
and diffusive. In addition, the difference between this paper and other documents
is that our model considers the impact of the rate of relapse in the course of disease
transmission. The relapse rate mainly affects the basic reproductive number R0.
That is, the stronger the relapse rate, the harder for the disease to be controlled
and R0 will increase. In this case, the ability of disease infection become stronger.
In fact, we know

R0 =
β(ρ+ µ+ η2 + ω)

ρ(µ+ η1) + (µ+ η1 + φ)(µ+ η2 + ω)
,

then
∂R0

∂ρ
=

βφµ+ βφη2 + βφω

[ρ(µ+ η1) + (µ+ η1 + φ)(µ+ η2 + ω)]
2 > 0,

which shows that R0 is an increasing function about ρ. This is consistent with
the descriptions in the front. The increasing of relapse rate directly leads to the
enhancement of the disease diffusive ability.
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[18] M. Qiao, A. Liu and U. Foryś, Qualitative analysis for a reaction-diffusion
predator-prey model with disease in the prey species, J. Appl. Math., (2014),
DOI:236208.

[19] G. P. Sahu and J. Dhara, Dynamics of an SEQIHRS epidemic model with media
coverage, quarantine and isolation in a community with pre-existing immunity,
J. Math. Anal. Appl., 421(2015), 1651–1672.

[20] H. Smith and X. Q. Zhao, Global asymptotic stability of traveling waves in
delayed reaction-diffusion equations, SIAM J. Math. Anal., 31(2000), 514–534.

[21] H. R. Thieme and X. Q. Zhao, Asymptotic speeds of spread and traveling waves
for integral equations and delayed reaction-diffusion models, J. Differential E-
quations, 195(2003), 430–470.



Traveling waves of a reaction-diffusion SIRQ model 171

[22] P. van den Driessche and J. Watmough, Reproduction numbers and sub-
threshold endemic equilibra for compartmental models of disease transmission,
Math. Biosci., 180(2002), 29–48.

[23] W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epi-
demic models, SIAM J. Appl. Dyn. Syst., 11(2012), 1652–1673.

[24] Z. C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick
epidemic model with non-local delayed transmission, Proc. R. Soc. Lond. Ser.
A, 466(2010), 237–261.

[25] Z. C. Wang and J. Wu, Traveling waves of the spread of avian influenza, J.
Math. Anal. Appl., 385(2012), 683–692.

[26] Z. C. Wang, J. Wu and R. Liu, Traveling waves in a bio-reactor model with
stage-structure, Proc. Amer. Math. Soc., 140(2012), 3931–3946.

[27] Z. Xie, Cross-diffusion induced Turing instability for a three species food chain
model, J. Math. Anal. Appl., 388(2012), 539–547.

[28] S. Xu, Dynamics of a general prey–predator model with prey-stage structure
and diffusive effects, Comput. Math. Appl., 68(2014), 405–423.

[29] Z. Xu and Y. Zhao, A reaction-diffusion model of dengue transmission, Discrete
Contin. Dyn. Syst. Ser. B, 19(2014), 2993–3018.

[30] C. Zhang and Z. Li, Dynamics in a diffusive plant–herbivore model with toxin-
determined functional response, Comput. Math. Appl., 66(2013), 1488–1497.

[31] Y. Zhang and X.Q. Zhao, A reaction-diffusion Lyme disease model with sea-
sonality, SIAM J. Appl. Math., 73(2013), 2077–2099.

[32] Y. Zhang and Z. Xu, Dynamics of a diffusive HBV model with delayed Bedding-
ton-DeAngelis response, Nonlinear Anal. Real World Appl., 15(2014), 118–139.

[33] X. Q. Zhao, Global dynamics of a reaction and diffusion model for Lyme dis-
ease, J. Math. Biol., 65(2012), 787–808.


	Introduction
	The model formulation
	Traveling waves
	Existence of traveling waves
	Non-existence of traveling wave solutions when R0>1  and 0<c<c
	Non-existence of traveling wave solutions when R0<1 

	Numerical simulation
	Discussion

