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Abstract It is proved that every (Q,T )-affine-periodic differential equation
has a (Q,T )-affine-periodic solution if the corresponding homogeneous linear
equation admits exponential dichotomy or exponential trichotomy. This kind
of “periodic” solutions might be usual periodic or quasi-periodic ones if Q is
an identity matrix or orthogonal matrix. Hence solutions also possess certain
symmetry in geometry. The result is also extended to the case of pseudo
affine-periodic solutions.
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1. Introduction

Exponential dichotomy was first studied by Lyapunov and Poincaré in the late
nineteenth century. It is an important tool to study non-autonomous dynamical
systems. Perron ( [15]) developed the exponential dichotomy of linear differential
equations and studied the problem of conditional stability of linear systems. Since
then, exponential dichotomy has been widely studied and applied in the field of
differential equations; for some literature, see [6,7,16] and references therein. Under
the condition of exponential dichotomy of linear equations, Ait Dads and Arino
( [1]) studied the existence of pseudo almost-periodic solutions of homogeneous
differential equations; Akhmet ( [2]) studied the existence and stability of almost-
periodic solutions of quasi-linear differential equations. We also refer to [8,13,14,17]
for some relative results.

The exponential trichotomy is a generalization of the concept of exponential
dichotomy. Sacker and Sell ( [18]) established a fundamental theory of trichotomy.
Elaydi and Hajek ( [10]) introduced and studied the exponential trichotomy of
differential systems.
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Differential systems often exhibit certain symmetry rather than periodicity. This
initiates us into considering the following system:

x′ = f(t, x), (1.1)

where f(t, x) : R1 × Rn → Rn satisfies the affine symmetry

f(t+ T, x) = Qf(t, Q−1x), (1.2)

where Q ∈ GL(Rn), T > 0 is a constant. We introduce (Q,T )-affine-periodicity
and (Q,T )-affine-periodic solutions in the following definitions:

Definition 1.1. If f(t, x) satisfies the affine symmetry (1.2), then the system (1.1)
is said to be a (Q,T )-affine-periodic system.

Definition 1.2. The solution x(t) of the system (1.1) is said to be a (Q,T )-affine-
periodic solution, if x(t) satisfies

x(t+ T ) = Qx(t) for all t ∈ R1. (1.3)

Notice that when Q = I (identity matrix), Q = −I, QN = I, Q ∈ SO(n), a
(Q,T )-affine-periodic solution x(t) is just T -periodic, anti-periodic, harmonic and
quasi-periodic respectively. For some relative studies, we refer to [4, 5, 9]. For
more general Q, a (Q,T )-affine-periodic solution no longer has the characteristics
of periodicity, anti-periodicity or quasi-periodicity, even it has the form of e−at,
where Q ∈ GL(n)\SO(n). Recently there have been some papers in studing the
existence of (Q,T )-affine-periodic solutions, see, for example, [3, 11,20,21].

In this paper, we are concerned with the existence of (Q,T )-affine-periodic so-
lutions for the affine-periodic systems (1.1). In section 2, we introduce some basic
concepts and results about exponential dichotomy and exponential trichotomy. In
section 3, we prove the existence of (Q,T )-affine-periodic solutions of nonhomoge-
neous linear differential equations and semi-linear differential equations provided
the corresponding homogeneous linear equations have exponential dichotomy. We
also give some applications in higher order differential equations. In section 4, we
prove the existence of (Q,T )-affine-periodic solutions when the corresponding ho-
mogeneous linear equations have exponential trichotomy. We also obtain a result
on the existence of pseudo affine-periodic solutions.

2. Preliminaries

Let Φ(t) be a fundamental matrix solution of the homogeneous linear differential
equation

x′ = A(t)x, (2.1)

with initial value Φ(0) = I, where A(t) : R1 → Rn×n is continuous and ensures
the uniqueness of solutions of equation (2.1) with respect to initial values, I is the
identity matrix.

Definition 2.1. It is said that there exists an exponential dichotomy of equation
(2.1), if there exist a projection P and constants K,L, α, β > 0 such that

|Φ(t)PΦ−1(s)| ≤ Ke−α(t−s), t ≥ s,
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|Φ(t)(I − P )Φ−1(s)| ≤ Le−β(s−t), s ≥ t,
where | · | is the Euclidean norm.

Definition 2.2. It is said that there exists an exponential trichotomy of equation
(2.1), if there exist linear projections P1, P2 such that

P1P2 = P2P1, P1 + P2 − P1P2 = I,

and constants K ≥ 1, α > 0 such that

|Φ(t)P1Φ−1(s)| ≤ Ke−α(t−s), 0 ≤ s ≤ t,
|Φ(t)(I − P1)Φ−1(s)| ≤ Ke−α(s−t), t ≤ s, s ≥ 0,

|Φ(t)P2Φ−1(s)| ≤ Ke−α(s−t), t ≤ s ≤ 0,

|Φ(t)(I − P2)Φ−1(s)| ≤ Ke−α(t−s), s ≤ t, s ≤ 0.

We introduce a sufficient condition for the existence of exponential dichotomy
(see Section 6 in [7]).

Proposition 2.1. Assume that

(i) There are positive constants α0, β0 such that A(t) has k eigenvalues with real
part Re(λm) ≤ −α0 < 0 (m = 1, · · ·, k) and n − k eigenvalues with real part
Re(λm) ≥ β0 > 0 (m = k + 1, · · ·, n) for all t ∈ R1.

(ii) |A(t)| ≤ B for all t ∈ R1, where B > 0 is a constant.

(iii) For any positive constant ε < min(α0, β0), there exists a positive constant
δ = δ(B,α0 + β0, ε) such that

|A(t2)−A(t1)| ≤ δ for all |t2 − t1| ≤ h,

where h > 0 is a fixed bounded constant.

Then there exists an exponential dichotomy of equation (2.1):

|Φ(t)PΦ−1(s)| ≤ Ke−(α0−ε)(t−s), t ≥ s,
|Φ(t)(I − P )Φ−1(s)| ≤ Le−(β0−ε)(s−t), s ≥ t,

where K,L are positive constants depending only on B,α0 + β0, ε and

P =

 Ik 0

0 0

 .

Consider the nonhomogeneous linear differential equation

x′ = A(t)x+ f(t), (2.2)

where f(t) : R1 → Rn is a bounded and continuous function. We have the following
results on the existence of bounded solutions of equation (2.2) (see Section 3 in [7]).

Proposition 2.2. Under the assumptions of Proposition 2.1, homogeneous linear
differential equation (2.1) has an exponential dichotomy with projection P . Then
nonhomogeneous linear differential equation (2.2) has the following bounded solu-
tion:

x(t) =

∫ t

−∞
Φ(t)PΦ−1(s)f(s)ds−

∫ +∞

t

Φ(t)(I − P )Φ−1(s)f(s)ds. (2.3)
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Proposition 2.3. If homogeneous linear differential equation (2.1) has an exponen-
tial trichotomy with projections P1 and P2. Then nonhomogeneous linear differential
equation (2.2) has the following bounded solution:

x(t) =

∫ +∞

−∞
U(t, s)f(s)ds, (2.4)

where

U(t, s) =



Φ(t)P1Φ−1(s), 0 < s ≤ max(t, 0),

−Φ(t)(I − P1)Φ−1(s), max(t, 0) < s,

Φ(t)(I − P2)Φ−1(s), s ≤ min(t, 0),

−Φ(t)P2Φ−1(s), min(t, 0) < s ≤ 0.

3. Exponential dichotomy and (Q, T )-affine-periodic
solutions

We have the following result on the existence of (Q,T )-affine-periodic solutions of
nonhomogeneous linear differential equation (2.2).

Lemma 3.1. Under the assumptions of Proposition 2.1, linear differential equation
(2.1) has an exponential dichotomy with projection P . If A(t), f(t) in equation (2.2)
are (Q,T )-affine-periodic, i.e.

A(t+ T ) = QA(t)Q−1 and f(t+ T ) = Qf(t),

then nonhomogeneous linear differential equation (2.2) admits a (Q,T )-affine-periodic
solution.

Proof. By Proposition 2.2, we have

x(t+ T )

=

∫ t+T

−∞
Φ(t+ T )PΦ−1(s)f(s)ds−

∫ +∞

t+T

Φ(t+ T )(I − P )Φ−1(s)f(s)ds.

We only need to verify that x(t + T ) = Qx(t). Let Ψ(t) = Q−1Φ(t + T )Φ−1(T )Q.
From the (Q,T )-affine-periodicity of A(t), we have

dΨ(t)

dt
= Q−1

dΦ(t+ T )

d(t+ T )
Φ−1(T )Q

= Q−1A(t+ T )Φ(t+ T )Φ−1(T )Q

= Q−1QA(t)Q−1Φ(t+ T )Φ−1(T )Q

= A(t)Ψ(t).

Then Ψ(t) solves equation (2.1) with the initial value Ψ(0) = I. By the uniqueness
of solutions of equation (2.1), we get Ψ(t) = Φ(t). Thus

Φ(t+ T ) = QΦ(t)Q−1Φ(T ). (3.1)
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By variable substitution and (3.1), we get

x(t+ T )

=

∫ t

−∞
Φ(t+ T )PΦ−1(s+ T )f(s+ T )ds

−
∫ +∞

t

Φ(t+ T )(I − P )Φ−1(s+ T )f(s+ T )ds

=

∫ t

−∞
QΦ(t)Q−1Φ(T )PΦ−1(T )QΦ−1(s)Q−1Qf(s))ds

−
∫ +∞

t

QΦ(t)Q−1Φ(T )(I − P )Φ−1(T )QΦ−1(s)Q−1Qf(s)ds

= Q

(∫ t

−∞
Φ(t)PΦ−1(s)f(s)ds−

∫ +∞

t

Φ(t)(I − P )Φ−1(s)f(s)ds

)
.

The last equality holds due to the fact that Q−1Φ(T ) and P are comcommutative
under matrix multiplication, i.e.

Q−1Φ(T )P = PQ−1Φ(T )

and
Q−1Φ(T )(I − P ) = (I − P )Q−1Φ(T ).

We have confirmed that x(t+ T ) = Qx(t).
We give the following lemma, which is useful to our main results.

Lemma 3.2. Let Q ∈ GL(n) and

CT = {y(·) ∈ C(R1,Rn) : y(t+ T ) = Qy(t), for all t ∈ R1}.

Then {CT , || · ||} is a Banach space with the norm ||y|| = sup
t∈[0,T ]

|y(t)|.

Proof. Note that the norm is well defined. We only need to verify the following
property: if ||y|| = 0, then y(t) is the zero vector for all t ∈ R1. In fact, if y ∈ CT
such that

||y|| = sup
t∈[0,T ]

|y(t)| = 0,

then we get that y(t) is the zero vector for all t ∈ [0, T ]. For any k ∈ Z, if
t ∈ [kT, (k + 1)T ], then we have

y(t) = Qky(t− kT ),

which means that y(t) is the zero vector for all t ∈ R1.
Let {yn} be a Cauchy sequence in CT . For all n, denote by yn the restriction

of yn on the interval [0, T ]. Then {yn} is a Cauchy sequence in C([0, T ]), which is
a Banach space, and there exists a y∗ ∈ C([0, T ]) such that lim

n→+∞
||yn − y∗|| = 0.

Define a continuous (Q,T )-affine-periodic function

y∗(t) =

 y∗(t), t ∈ [0, T ],

Qky∗(t− kT ), t ∈ [kT, (k + 1)T ], k ∈ Z\{0}.
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Then we have lim
n→+∞

||yn−y∗|| = lim
n→+∞

||yn−y∗|| = 0, which means that {CT , || · ||}
is a Banach space.

Consider the following semi-linear differential equation

x′ = A(t)x+ g(t, x(t)), (3.2)

where g : R1 × Rn → Rn is continuous, A(t) and g(t, x) are (Q,T )-affine-periodic,
i.e.

A(t+ T ) = QA(t)Q−1 and g(t+ T, x) = Qg(t, Q−1x).

We have the following result on the existence of (Q,T )-affine-periodic solutions
of semi-linear differential equation (3.2).

Theorem 3.1. Under the assumptions of Proposition 2.1, linear differential equa-
tion (2.1) has an exponential dichotomy with projection P and constants K,L, α, β >
0. Moreover, assume that A(t), g(t, x) are (Q,T )-affine-periodic, g(t, x) is bounded
and satisfies that

|g(t, x)− g(t, y)| ≤ N |x− y| for all t, x and y,

where Q ∈ GL(n), N > 0 is a constant such that

Λ1 = N(
K

α
+
L

β
) +N sup

t∈[0,T ]

{
K

α

(
−e−αt + e−αt(eαT − 1)

−∞∑
k=−1

|Qk|eαkT
)

+
L

β

(
−eβ(t−T ) + eβt(1− e−βT )

+∞∑
k=1

|Qk|e−βkT
)}

< 1. (3.3)

Then equation (3.2) admits a unique (Q,T )-affine-periodic solution.

Proof. We first consider the nonhomogeneous linear equation

x′ = A(t)x+ g(t, y(t)), (3.4)

where y(t) is a continuous function. From Proposition 2.1, there exists an exponen-
tial dichotomy of the equation (2.1):

|Φ(t)PΦ−1(s)| ≤ Ke−α(t−s), t ≥ s,
|Φ(t)(I − P )Φ−1(s)| ≤ Le−β(s−t), s ≥ t,

where

P =

 Ik 0

0 0

 .

By Proposition 2.2, equation (3.4) has the following bounded solution:

x(t) =

∫ t

−∞
Φ(t)PΦ−1(s)g(s, y(s))ds−

∫ +∞

t

Φ(t)(I − P )Φ−1(s)g(s, y(s))ds.
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We show that x(t) is (Q,T )-affine-periodic if y is (Q,T )-affine-periodic.

x(t+ T ) =

∫ t+T

−∞
Φ(t+ T )PΦ−1(s)g(s, y(s))ds

−
∫ +∞

t+T

Φ(t+ T )(I − P )Φ−1(s)g(s, y(s))ds. (3.5)

Let s = r + T in (3.5), by the (Q,T )-affine-periodicity of g(t, y), y(t) and (3.1), we
get

x(t+ T )

=

∫ t

−∞
Φ(t+ T )PΦ−1(r + T )g(r + T, y(r + T ))dr

−
∫ +∞

t

Φ(t+ T )(I − P )Φ−1(r + T )g(r + T, y(r + T ))dr

=

∫ t

−∞
QΦ(t)Q−1Φ(T )P (QΦ(r)Q−1Φ(T ))−1Qg(r, y(r))dr

−
∫ +∞

t

QΦ(t)Q−1Φ(T )(I − P )(QΦ(r)Q−1Φ(T ))−1Qg(r, y(r))dr

=

∫ t

−∞
QΦ(t)PΦ−1(r)g(r, y(r))dr −

∫ +∞

t

QΦ(t)(I − P )Φ−1(r)g(r, y(r))dr.

Thus we have x(t+ T ) = Qx(t), which means that x(t) is (Q,T )-affine-periodic.
Define a map H : CT → CT by

H(y)(t) =

∫ t

−∞
Φ(t)PΦ−1(s)g(s, y(s))ds−

∫ +∞

t

Φ(t)(I − P )Φ−1(s)g(s, y(s))ds.

From the above discussion, H is obviously well-defined.
In order to prove the existence of (Q,T )-affine-periodic solutions of equation

(3.2), we only need to prove that there exists a fixed point of H in CT . For any
y, ŷ ∈ CT and t ∈ R1, there holds

||H(y)(·)−H(ŷ)(·)||

≤ sup
t∈[0,T ]

{∫ t

−∞
|Φ(t)PΦ−1(s)| · |g(s, y(s))− g(s, ŷ(s))|ds

+

∫ +∞

t

|Φ(t)(I − P )Φ−1(s)| · |g(s, y(s))− g(s, ŷ(s))|ds
}

≤ N sup
t∈[0,T ]

{
K

∫ t

−∞
e−α(t−s)|y(s)− ŷ(s)|ds+ L

∫ +∞

t

eβ(t−s)|y(s)− ŷ(s)|ds
}
.

Note that t ∈ [0, T ]. For the first integral, we have∫ t

−∞
e−α(t−s)|y(s)− ŷ(s)|ds

=

−∞∑
k=−1

∫ (k+1)T

kT

e−α(t−s)|y(s)− ŷ(s)|ds+

∫ t

0

e−α(t−s)|y(s)− ŷ(s)|ds
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≤

( −∞∑
k=−1

|Qk|
∫ T

0

e−α(t−s−kT )ds+

∫ t

0

e−α(t−s)ds

)
||y(s)− ŷ(s)||

=
1

α

(
1− e−αt +

−∞∑
k=−1

|Qk|eαkT−αt(eαT − 1)

)
||y(s)− ŷ(s)||.

For the second integral, we have∫ +∞

t

eβ(t−s)|y(s)− ŷ(s)|ds

=

+∞∑
k=1

∫ (k+1)T

kT

eβ(t−s)|y(s)− ŷ(s)|ds+

∫ T

t

eβ(t−s)|y(s)− ŷ(s)|ds

≤

(
+∞∑
k=1

|Qk|
∫ T

0

eβ(t−s−kT )ds+

∫ T

t

eβ(t−s)ds

)
||y(s)− ŷ(s)||

=
1

β

(
1− eβ(t−T ) +

+∞∑
k=1

|Qk|e−βkT+βt(1− e−βT )

)
||y(s)− ŷ(s)||.

Then we get

||H(y)(·)−H(ŷ)(·)|| ≤ Λ1||y(s)− ŷ(s)||.

Thus H(y)(·) is a contraction mapping on CT . From Banach Fixed Point Theorem,
it follows that H admits a unique fixed point x∗(t) ∈ CT , which is the unique
(Q,T )-affine-periodic solution of equation (3.2).

Remark 3.1. When Q is an n-dimensional orthogonal matrix (denoted by Q ∈
O(n)), then |Qk| = 1 for all k ∈ Z. Thus condition (3.3) reduces to Λ1 = N(Kα +
L
β ) < 1.

The conditions of g(t, x(t)) in Theorem 3.1 can be replaced by the following
condition:

(C1) g(t, x) is uniformly continuous with respect to x for all t ∈ R1 and satisfies
that

|g(t, x)| ≤ a|x|+ b for all t and x,

where a, b > 0 are constants such that a(Kα + L
β ) < 1 (Q ∈ O(n)).

Then we can also obtain the existence of (Q,T )-affine-periodic solutions of e-
quation (3.2). We make the following restatement of Theorem 3.1.

Theorem 3.3’. Under the assumptions of Proposition 2.1, linear differential equa-
tion (2.1) has an exponential dichotomy with projection P and constants K,L, α, β >
0. Moreover, assume that A(t), g(t, x) are (Q,T )-affine-periodic, where Q ∈ O(n).
If g(t, x) satisfies condition (C1), then equation (3.2) admits a (Q,T )-affine-periodic
solution.

Proof. Let D1 = {y ∈ CT : ||y||∞ ≤ M1}, where ||y||∞ = sup
t∈R1

|y(t)|, M1 =

(Kα +L
β )b

1−(Kα +L
β )a

. Obviously, D1 is a convex and closed subset of Banach space BC(R1).
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For any y ∈ D1, we have

||H(y)(t)||∞ ≤ sup
t∈R1,y∈D1

∫ t

−∞
|Φ(t)PΦ−1(s)| · |g(s, y(s))|ds

+ sup
t∈R1,y∈D1

∫ +∞

t

|Φ(t)(I − P )Φ−1(s)| · |g(s, y(s))|ds

≤ (aM1 + b)(K sup
t∈R1

∫ t

−∞
e−α(t−s)ds+ L sup

t∈R1

∫ +∞

t

eβ(t−s)ds)

≤ (aM1 + b)(
K

α
+
L

β
)

= M1.

Thus H(y)(t) is uniformly bounded for all y ∈ D1. According to the proof of
Theorem 3.1, we get that H(y)(t) is (Q,T )-affine-periodic and maps D1 to itself.

Similar to the proof of Theorem 3.1 in [19], by the uniform continuity of g(t, x),
for every ε > 0 there exists a δ > 0 such that for any y1, y2 ∈ D1 with ||y1−y2||∞ ≤
δ, there holds

||g(t, y1)− g(t, y2)||∞ ≤ ε, for all t ∈ R1.

Then we have

||H(y1)(t)−H(y2)(t)||∞

≤ sup
t∈R1

∫ t

−∞
|Φ(t)PΦ−1(s)| · |g(s, y1(s))− g(s, y2(s))|ds

+ sup
t∈R1

∫ +∞

t

|Φ(t)(I − P )Φ−1(s)| · |g(s, y2(s))− g(s, y2(s))|ds

≤ sup
t∈R1

(
K

∫ t

−∞
e−α(t−s)ds+ L

∫ +∞

t

eβ(t−s)ds

)
ε

≤
(
K

α
+
L

β

)
ε.

Thus H(y)(t) is continuous with respect to y. Since H(y)(t) satisfies equation (3.4)
for any y ∈ D1, by the boundedness of A(t), H(y)(t) and y(t), we get

||H ′(y)(t)||∞ ≤ sup
t∈R1

|A(t)| · sup
t∈R1,y∈D1

|H(y)(t)|+ sup
t∈R1,y∈D1

|g(t, y(t))|

≤ M1(a+ sup
t∈R1

|A(t)|) + b.

H ′(y)(t) is uniformly bounded, thus H(y)(t) is equicontinuous for all y(t) ∈ D1.
By Arzelà-Ascoli’s Theorem, for any sequence {yn(t)} ⊆ D1, {H(yn)(t)} has a
subsequence which converges uniformly on [0, T ]. We still denote the subsequence
by {H(yn)(t)}, then lim

n→∞
||H(yn)(t) − y0(t)||∞ = 0, where y0(t) ∈ D1. For any

k ∈ Z, we conclude that {H(yn)(t)} is uniformly convergent on [kT, (k + 1)T ]. In
fact, we have

lim
n→∞

||H(yn)(t)− y0(t)||∞

≤ lim
n→∞

|Qk| · ||H(yn)(s)− y0(s)||∞
= 0,
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where t ∈ [kT, (k+1)T ] and s ∈ [0, T ]. Thus H : D1 → D1 is completely continuous
on R1. It follows from Schauder Fixed Point Theorem that there exists a fixed point
x(·) of H in D1, which is the (Q,T )-affine-periodic solution of equation (3.2).

In the following, we give some applications in higher order differential equations.
We consider the following n-dimensional second order differential equation:

x′′ + p(t)x′ + q(t)x = e(t), (3.6)

where p(t), q(t) : R1 → Rn×n and e(t) : R1 → Rn are continuous and (Q,T )-affine-
periodic, i.e.

p(t+ T ) = Qp(t)Q−1, q(t+ T ) = Qq(t)Q−1, e(t+ T ) = Qe(t),

Q ∈ GL(Rn), T > 0 is a constant. Let x′ = y, F (t) =

On×n In×n

−q(t) −p(t)

 and

G(t) =

On×1

e(t)

. We obtain the following equivalent 2n-dimensional differential

equation: x

y

′ = F (t)

x

y

+G(t). (3.7)

Obviously, there hold

F (t+ T ) =

 Q On×n

On×n Q

F (t)

 Q On×n

On×n Q

−1

and

G(t+ T ) =

 Q On×n

On×n Q

G(t).

Then F (t) and G(t) are (Q̃, T )-affine-periodic, where Q̃ =

 Q On×n

On×n Q

.

We have the following result on the existence of (Q,T )-affine-periodic solutions
for equation (3.6):

Theorem 3.2. Assume that p(t), q(t) and e(t) are continuous (Q,T )-affine-periodic
functions, F (t) satisfies (ii) and (iii) in Proposition 2.1 and G(t) is bounded for all
t ∈ R1. If p(t) and q(t) satisfy one of the following:

1) p(t) and q(t) are positive definite or negative definite for all t ∈ R1,

2) ξT p(t)ξ is bounded for all n-dimensional unit vector ξ and all t ∈ R1, q(t) is
negative definite for all t ∈ R1.

Then equation (3.6) admits a (Q,T )-affine-periodic solution.
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Proof. We only need to verify the condition (i) in Proposition 2.1. We consider
the homogeneous linear differential equationx

y

′ = F (t)

x

y

 . (3.8)

For a fixed t, let V =

V1

V2

 be the eigenvector with unit length of F (t) and

λ = λr + iλi be the eigenvalue associated with the eigenvector V , where V1, V2 are
n-dimensional vectors, λr is the real part and λi is the imaginary part of λ. Then
we have

λV = F (t)V.

Substituting λ, V and F (t), we get

(λr + iλi)V1 − V2 = 0,

(λr + iλi)V2 + q(t)V1 + p(t)V2 = 0.

Then we have

(λ2r − λ2i )V1 + q(t)V1 + λrp(t)V1 + i(λip(t)V1 + 2λrλiV1) = 0,

which means

λip(t)V1 + 2λrλiV1 = 0, (3.9)

(λ2r − λ2i )V1 + q(t)V1 + λrp(t)V1 = 0. (3.10)

We claim that λr 6= 0. Suppose to the contrary that λr = 0.

1) Because p(t) and q(t) are positive definite or negative definite, we have λi = 0
from (3.9). Then we get q(t)V1 = 0 from (3.10), which is a contradiction.

2) Let λr = 0 in (3.10), then we have −λ2iV1 + q(t)V1 = 0. Because of the
conditions in ii), it is a contradiction.

By the continuity of p(t) and q(t), we obtain that there is a non-negative integer
k ≤ 2n such that F (t) has k eigenvalues with real part Re(λm) ≤ −α < 0 (m =
1, · · ·, k) and 2n− k eigenvalues with real part Re(λm) ≥ β > 0 (m = k+ 1, · · ·, 2n)
for all t ∈ R1, where α, β are positive constants. Then it follows from Proposition

2.1 and Lemma 3.1 that (3.7) has a (Q̃, T )-affine-periodic solution

x(t)

y(t)

, i.e.

x(t+ T )

y(t+ T )

 =

 Q On×n

On×n Q

x(t)

y(t)

 .

Obviously, x(t) is a (Q,T )-affine-periodic solution of equation (3.6) and satisfies
that

x(t+ T ) = Qx(t).
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Remark 3.2. Consider the following semi-linear second order differential equation:

x′′ + p(t)x′ + q(t)x = g(t, x(t)), (3.11)

where p(t), q(t) and g(t, x(t)) are (Q,T )-affine-periodic functions, Q ∈ GL(n). If
p(t), q(t) satisfy the conditions in Lemma 3.2 and g(t, x(t)) satisfies the conditions
in Theorem 3.1, then it follows from Proposition 2.1, Theorem 3.1 and Lemma 3.2
that (3.11) has a unique (Q,T )-affine-periodic solution.

Lemma 3.3. We consider the following n-dimensional higher order differential
equation

x(m) = a(t)x+ e(t), (3.12)

where a(t) : R1 → Rn×n, e(t) : R1 → Rn are continuous and (Q,T )-affine-periodic,
i.e.

a(t+ T ) = Qa(t)Q−1, e(t+ T ) = Qe(t), Q ∈ GL(Rn), T > 0,

a(t) satisfies (ii), (iii) in Proposition 2.1 and e(t) is bounded for all t ∈ R1. If

1) when m = 4k, k ∈ Z, a(t) is negative definite for all t ∈ R1,

2) when m = 4k + 2, k ∈ Z, a(t) is positive definite for all t ∈ R1,

3) when m = 4k+ 1 or 4k+ 3, k ∈ Z, a(t) is positive definite or negative definite
for all t ∈ R1.

Then equation (3.12) admits a (Q,T )-affine-periodic solution.

Proof. Let x′ = x1, x
′
1 = x2, · · ·, x′m−1 = xm and

X(t) = (x(t), x1(t), · · ·, xm−1(t))T ,

A(t) =

On(m−1)×n In(m−1)×n(m−1)

a(t) On×n(m−1)

 , G(t) =

On(m−1)×1

h(t)

 .

We consider the following equivalent mn-dimensional differential equation:

X ′ = A(t)X +G(t). (3.13)

For a fixed t, let U = (U1, · · ·, Um)T be the eigenvector with unit length of the
mn×mn matrix in (3.13) and µ = µr + iµi be the eigenvalue associated with the
eigenvector U , where µr is the real part and µi is the imaginary part of µ. There
holds

µU = A(t)U

and

(µr + iµi)
mU1 = a(t)U1.

Similar to the proof of Lemma 3.2. We claim that µr 6= 0. Suppose to the contrary
that µr = 0. Then we have

imµmi U1 = a(t)U1,
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however, this is not true under the conditions 1), 2) or 3). Then it follows from
Proposition 2.1 and Lemma 3.1 that (3.13) has (Q,T )-affine-periodic solution X(t),
where Q is an mn×mn matrix,

Q =



Q 0 · · 0

0 · · ·

· · · · ·

· · · 0

0 · · 0 Q


.

Obviously, x(t) is a (Q,T )-affine-periodic solution of equation (3.12) and satisfies
that

x(t+ T ) = Qx(t).

Remark 3.3. Consider the following semi-linear higher order differential equation:

x(m) = a(t)x+ g(t, x(t)), (3.14)

where a(t) and g(t, x(t)) are (Q,T )-affine-periodic functions, Q ∈ GL(n). If a(t)
satisfies the conditions in Lemma 3.3 and g(t, x(t)) satisfies the conditions in The-
orem 3.1, then it follows from Proposition 2.1, Theorem 3.1 and Lemma 3.3 that
(3.14) has a unique (Q,T )-affine-periodic solution.

4. Exponential trichotomy and pseudo affine-periodic
solutions

We have the following result on the existence of (Q,T )-affine-periodic solutions.

Theorem 4.1. Assume that equation (2.1) has an exponential trichotomy with
projections P1, P2 and constants K,α. Moreover, assume that A(t), g(t, x) are
(Q,T )-affine-periodic, g(t, x) is bounded and satisfies that

|g(t, x)− g(t, y)| ≤ N |x− y|, for all t, x and y,

where Q ∈ GL(n), N > 0 is a constant such that

Λ2 =
NK

α
sup
t∈[0,T ]

{
2− e−αt − eα(t−T ) + e−αt(eαT − 1)

−∞∑
k=−1

|Qk|eαkT

+ eαt(1− e−αT )

+∞∑
k=1

|Qk|e−αkT
}
< 1. (4.1)

Then equation (3.2) admits a unique (Q,T )-affine-periodic solution.

Proof. We consider the following equation

x′ = A(t)x+ g(t, y(t)),
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where y(t) is a continuous function. By Proposition 2.3, it has the following bounded
solution:

x(t) =

∫ +∞

−∞
U(t, s)g(s, y(s))ds.

Define a map

H(y)(t) =

∫ +∞

−∞
U(t, s)g(s, y(s))ds.

Similarly to the proof of Theorem 3.1, we will prove that there exists a fixed point
x(·) of H in CT . Then x(·) is a (Q,T )-affine-periodic solution of equation (3.2).

We show that H(y)(t) is (Q,T )-affine-periodic for any y ∈ CT . Note that U(t, t)
is (Q,T )-affine-periodic. Specifically, according to the definition of U(t, s), we only
need to show that Φ(t)PiΦ

−1(t) and Φ(t)(I − Pi)Φ−1(t), i = 1, 2, are (Q,T )-affine-
periodic. By (3.1) and the fact that

Q−1Φ(T )PiΦ
−1(T )Q = Pi,

and
Q−1Φ(T )(I − Pi)Φ−1(T )Q = I − Pi, i = 1, 2,

there holds

Φ(t+ T )PiΦ
−1(t+ T )

= QΦ(t)Q−1Φ(T )PiΦ
−1(T )QΦ−1(t)Q−1

= QΦ(t)PiΦ
−1(t)Q−1, i = 1, 2.

In the same way, we get

Φ(t+ T )(I − Pi)Φ−1(t+ T ) = QΦ(t)(I − Pi)Φ−1(t)Q−1, i = 1, 2.

Thus U(t, t) is (Q,T )-affine-periodic.
For any y ∈ CT ,

H(y)(t+ T )

=

∫ +∞

−∞
U(t+ T, s)g(s, y(s))ds

=

∫ +∞

−∞
U(t+ T, t+ T )Φ(t+ T )Φ−1(s+ T )g(s+ T, y(s+ T ))ds

=

∫ +∞

−∞
QU(t, t)Q−1QΦ(t)Q−1Φ(T )Φ−1(T )QΦ−1(s)Q−1Qg(s,Q−1Qy(s))ds

= Q

∫ +∞

−∞
U(t, s)g(s, y(s))ds.

Thus we have H(y)(t+T ) = QH(y)(t), which means that H(y) ∈ CT for all y ∈ CT .
From Definition 2.2, we have

|U(t, s)| ≤ Ke−α|t−s|.
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For any y, ŷ ∈ CT and t ∈ R1, we have

||H(y)(t)−H(ŷ)(t)||

≤ KN sup
t∈[0,T ]

{∫ t

−∞
e−α(t−s)|y(s)− ŷ(s)|ds+

∫ +∞

t

e−α(s−t)|y(s)− ŷ(s)|ds
}

≤ Λ2||y − ŷ||.

Thus H(y)(·) is a contraction mapping on CT . It follows from Banach Fixed Point
Theorem that H admits a unique fixed point x∗(t) ∈ CT , which is the unique
(Q,T )-affine-periodic solution of equation (3.2).

Remark 4.1. When Q ∈ O(n), then condition (4.1) reduces to Λ2 = 2NK
α < 1.

Now let us consider the existence of pseudo affine periodic solutions. We first
introduce the definition of pseudo affine-periodic solutions. Let C0 be the set of all
bounded continuous functions satisfying that

lim
T→+∞

1

2T

∫ T

−T
|f(s)|ds = 0.

Definition 4.1. A function f(t, x) is called pseudo (Q,T )-affine-periodic, if it can
be decomposed as

f(t, x) = f1(t, x) + f2(t, x),

where f1(t, x) ∈ CT and f2(t, x) ∈ C0. Denote by CP the set of all pseudo (Q,T )-
affine-periodic functions.

We have the following result on the existence of pseudo (Q,T )-affine-periodic
solutions.

Theorem 4.2. Assume that A(t) is (Q,T )-affine-periodic and g(t, x) is pseudo
(Q,T )-affine-periodic with decomposition g(t, x) = g1(t, x) + g2(t, x), where Q ∈
GL(n), T > 0 is a constant, g1(t, x) ∈ CT and g2(t, x) ∈ C0. Moreover, g(t, x) and
g1(t, x) are uniformly continuous in any bounded subset of Rn uniformly for t ∈ R1,
g(t, x) is bounded and satisfies that

|g(t, x)− g(t, y)| ≤ N |x− y|, for all t, x and y,

where N > 0 is a constant. If equation (2.1) has an exponential trichotomy with
projections P1, P2 and constants K,α such that condition (4.1) holds, then equation
(3.2) admits a unique pseudo (Q,T )-affine-periodic solution.

Proof. We consider the following equation

x′ = A(t)x+ g(t, y(t)),

where y(t) is a continuous function. By Proposition 2.3, it has the following bounded
solution:

x(t) =

∫ +∞

−∞
U(t, s)g(s, y(s))ds.
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For any y ∈ CP , we have y(t) = y1(t) + y2(t), where y1(t) ∈ CT and y2(t) ∈ C0.
Then we have the decomposition

g(t, y(t)) = g1(t, y1(t)) + g(t, y(t))− g(t, y1(t)) + g2(t, y1(t)).

Let g̃(t, y(t), y1(t)) = g(t, y(t))− g(t, y1(t)) + g2(t, y1(t)). Define a map

H(y)(t) =

∫ +∞

−∞
U(t, s)g(s, y(s))ds.

Then we get

H(y)(t) =

∫ +∞

−∞
U(t, s)g1(s, y1(s))ds+

∫ +∞

−∞
U(t, s)g̃(s, y(s), y1(s))ds. (4.2)

Similar to the proof of Theorem 4.1, we get that the first part of (4.2) is (Q,T )-affine-
periodic. According to Theorem 2.4 in [12], if y(t) ∈ CP , then g̃(t, y(t), y1(t)) ∈ C0

and g(t, y(t)) ∈ CP . For the second part of (4.2), we have

0 ≤ lim
T→+∞

1

2T

∫ T

−T
|
∫ +∞

−∞
U(t, s)g̃(s, y(s), y1(s))ds|dt

≤ lim
T→+∞

K

2T
(

∫ T

−T

∫ t

−∞
e−α(t−s) · |g̃(s, y(s), y1(s))|dsdt

+

∫ T

−T

∫ +∞

t

eα(t−s) · |g̃(s, y(s), y1(s))|dsdt)

≤ lim
T→+∞

K

2T
(

∫ T

−T

∫ −T
−∞

e−α(t−s) · |g̃(s, y(s), y1(s))|dsdt

+

∫ T

−T

∫ +∞

T

eα(t−s) · |g̃(s, y(s), y1(s))|dsdt

+

∫ T

−T

∫ T

t

eα(t−s) · |g̃(s, y(s), y1(s))|dsdt

+

∫ T

−T

∫ t

−T
e−α(t−s) · |g̃(s, y(s), y1(s))|dsdt)

≤ lim
T→+∞

K||g̃||∞
Tα2

+ lim
T→+∞

K

Tα

∫ T

−T
|g̃(s, y(s), y1(s))|ds

= 0.

Then H(y)(t) ∈ CP . We have proved that H maps CP to itself.
Similar to the proofs of Theorem 3.1 and Theorem 4.1, we get that H(y)(t) is a

contraction mapping on CP . By Banach Fixed Point Theorem, H admits a unique
fixed point x∗(t) ∈ CP , which is the unique pseudo (Q,T )-affine-periodic solution
of equation (3.2).

In Theorem 4.1 and Theorem 4.2, assume in addition that g(t, x(t)) satisfies the
following conditions:

(C2) g(t, x) is uniformly continuous with respect to x for all t ∈ R1 and satisfies
that

|g(t, x)| ≤ a|x|+ b for all t and x,
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where a, b > 0 are constants such that 2Ka
α < 1 (Q ∈ O(n)).

Then we can also obtain the existence of (pseudo) (Q,T )-affine-periodic solutions
of equation (3.2). The proofs are similar to Theorem 3.3’. We will not repeat them.
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