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DEGREE SEQUENCES BEYOND POWER
LAWS IN COMPLEX NETWORKS∗

Zhanying Zhang1, Wenjun Xiao2,† and Guanrong Chen3

Abstract Many complex networks possess vertex-degree distributions in a
power-law form of ck−γ , where k is the degree variable and c and γ are con-
stants. To better understand the mechanism of power-law formation in real-
world networks, it is effective to analyze their degree variable sequences. We
had shown before that, for a scale-free network of size N ,if its vertex-degree
sequence is k1 < k2 < . . . < kl , where {k1, k2, . . . , kl} is the set of all unequal
vertex degrees in the network, and if its power exponent satisfies γ > 1 , then
the length l of the vertex-degree sequence is of order logN . In the present
paper, we further study complex networks with more general distributions and
prove that the same conclusion holds even for non-network type of complex
systems. In addition, we support the conclusion by verifying many real-world
network and system examples. We finally discuss some potential applications
of the new finding in various fields of science, technology and society.

Keywords Network, degree variable sequence, power-law distribution, gen-
eral distribution.
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1. Introduction

Surrounding us are various complex networks, such as the Internet, wireless commu-
nication networks, software networks, social networks, and biological networks etc.
Recently, studies on mathematical theory and modelling of complex networks have
received a renewal of interest, with many generic and realistic graph-theoretic mod-
els developed, especially the small-world network model [16] and scale-free network
model [2]. Scale-free networks, in particular, have a heterogeneous connectivity,
where a small fraction of vertices are highly connected while the spare vertices
have small numbers of connections. The scale-free network model of Barabsi and
Albert [2] revealed an essential power-law distribution of vertex degrees in many
complex networks, in the form of P (k) ∝ k−γ where k is the degree variable and
γ is a constant determined by the network. This power-law distribution is a di-
rect consequence of two general mechanisms that generate the network topology:
(i) network expansion over time through addition of new vertices; (ii) preferential
attachment of new vertex to those existing ones in the network.
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In many real-world scale-free networks, the power-law exponent satisfies γ ≥ 2
[1, 11, 14, 15, 18, 19], but there are also many others with γ < 2 [3, 6, 8, 9, 12, 17]. In
our previous work [17–19], we presented some necessary conditions for the scale-free
property of networks, based on the assumption of γ > 1 . In this paper, we further
show that the same conclusion holds also for complex networks with a more general
type of vertex-degree distributions. We furthermore verify that the same results
hold also for complex systems that may not be networks, and finally demonstrate
that the new finding has many potential applications in science and technology,
including economy, finance, society, and so on.

2. Scale-free networks and existing results

A complex network can be represented by an undirected or a directed graph,
G(V,E), where V is the set of vertices and E the set of edges. A graph has a num-
ber of local and global parameters that characterize its structure (e.g., regularity,
modularity), connectivity (e.g., density, diffusion) and robustness (e.g., resilience
to random attacks or malicious faults). The following list summarizes the main
parameters to be used in this paper.

• M : Number of edges; M = |E|
• N : Number of vertices; N = |V |
• ki:Degree of vertex,i ∈ V
• d:Average vertex degree of the network

• nki : Number of degree-ki vertices;
∑l
i=1 nki = N and

∑l
i=1 nkiki = 2M

• l: Length of an unequal vertex-degree sequence {k1, k2, . . . , kl},1 ≤ k1 < k2 <
. . . < kl

• K: Set of all unequal vertex degrees in a network

• P (k): Degree distribution, or fraction of vertices of degree k;P (k) = nk/N

For scale-free networks, one has

P (k) = ck−γ , γ > 1.

Here, the requirement of γ > 1 ensures that P (k) can be normalized and, in this
case, the constant c can be used for normalization, c = (

∑
k∈K k

−γ)−1.
In our earlier works [18, 19], we proved that for a scale-free network of size

N , having a power-law distribution with exponent γ ≥ 2, the number of degree-1
vertices, if not zero, tends to be of order N ; and we also proved that the average
degree is of order lower than logN . Our method provides an analytical tool that
helps one to check if a given network is scale-free, which relies on static conditions
that can be easily verified. Furthermore, we showed that the number of degree-1
vertices is divisible by the least common multiples of kγ1 , k

γ
2 , . . . , k

γ
l , if they are all

integers, where k1 < k2 < . . . < kl is the vertex-degree sequence of the network.
This remodeling method equips a scale-free network with some small-world features.
Based on our earlier results [18,19], lately we further showed [17] that for scale-free
networks with γ > 1, the length l of the vertex-degree sequence is of order logN .
Here, it should be emphasized that this result is very important, which demonstrates
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that the length of the degree sequence is an essence of a general scale-free network.
In fact, all scale-free networks have very small numbers of degree sequences in
comparison with the network sizes. Thus, by utilizing this characteristic, one can
reconstruct a scale-free network with prominent small-world features [19] and can
also improve some commonly-used maximal-degree search algorithms.

It must also be stressed that the above conclusion holds based on the precondi-
tion that the network obeys a precise power-law degree distribution. Actually, many
real-world scale-free networks are not exactly so, but have approximate scale-free
features; therefore, there exist subtle differences between such real networks and
our theoretical results.

Furthermore, it must be pointed out that for many real-world networks, the
lengths of their vertex-degree sequences are of order (logN)ε, at the most, namely
l ≤ O((logN)ε), where ε is a very small constant in the sense that l is very small in
comparing with the network size value. Finally in this paper, the above conclusion
will be verified by some real-world networks existing in different fields.

3. A characteristic of scale-free networks

In this section, we present a useful property of scale-free networks and its mathe-
matical derivation.

Suppose that the vertex-degree sequence of network is 1 ≤ k1 < k2 < . . . < kl.
For scale-free networks, one has [1]

P (ki) =
nki
N

= ck−γi . (3.1)

Here, nki is the number of vertices with degree ki , satisfying

N =

l∑
i=1

nki , (3.2)

and c is a normalizing constant: when i = 1,

P (k1) =
nk1
N

= ck−γ1 . (3.3)

Thus,

c =
nk1k

−γ
1

N
. (3.4)

By substituting (3.4) into (3.1), one obtains

nki = nk1(
k1
ki

)γ . (3.5)

4. General structure of vertex-degree sequnces in
networks with general topologies

4.1. Vertex-Degree Sequences in General Networks

In this subsection, we study some conditions for the vertex degrees of a complex
network to have a general distribution. Assume that the networks are connected,
but similar arguments also apply to disconnected networks.
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Recall that P (K) is the probability distribution of the number of degree-k ver-
tices, d represents the average vertex degree, and nk denotes the number of vertices

of degree k. Thus, M = Nd
2 and nk = NP (k), where N and M are the numbers of

vertices and edges, respectively.

For constants γ ≥ 0,q > 1, consider a network with a general vertex-degree
distribution:

P (ki) =
nki
N

= ck−γi q1−ki . (4.1)

It follows that

nki = nk1(
ki
k1

)−γqk1−ki . (4.2)

Therefore,

logN ≥ log nk1 ≥ log nkl + γ log(
kl
k1

) + (kl − k1) log q ≥ (l − 1) log q.

That is, l is of order logN for γ ≥ 0, q > 1.

Example 4.1. Let P (k) = ck−γe−
k
κ , where c and κ are constants. Many real small-

world networks are of this type, including the World Wide Web and collaboration
graphs of scientists as well as Fortune 1000 company directors [13].

Based on the preceding definitions, one has

N−1∑
k=1

nk = N, (4.3a)

N−1∑
k=1

knk = 2M. (4.3b)

Assuming that n1 6= 0, a condition that is satisfied by most networks with a large
size N , one has nk = n1P (k)/P (1) and

N−1∑
k=1

[P (k)/P (1)] = N/n1, (4.4a)

N−1∑
k=1

[kP (k)/P (1)] = 2M/n1. (4.4b)

For networks with a general distribution, one has P (k) = P (1)k−γq1−k, which leads
to

N−1∑
k=1

k−γq1−k =
N

n1
. (4.5)

Therefore, based on the assumption of q > 1, a condition which holds for many real
networks [13], one obtains

N

n1
≤
∞∑
k=1

k−γq1−k ≤ q2

q − 1
. (4.6)
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This leads to the result of N ≈ n1 for some constant q > 1. Generally, for any
network, one has

N =
∑
i

nki ≤ nk1qk1
∑
i

q−ki ≤ nk1q
k1+1

(q − 1)
, (4.7)

2M =
∑
i

kinki ≤ nk1qk1
∑
i

kiq
−ki ≤ nk1q

k1+1

(q − 1)2
. (4.8)

All these together implies

d ≤ nk1q
k1+1

N(q − 1)2
≤ qk1+1

(q − 1)2
. (4.9)

It implies that the average vertex degree d is related to q and k1. Thus, d is small
because q and k1 are generally small, in real networks (see Table 1).

Table 1. LENGTHS OF VARIABLE(VERTEX-DEGREE) SEQUENCES IN SOME REAL-WORLD
SYSTEMS (NETWORKS)

System(Network) Type N M d l logN ε

TG City TPa 18263 23797 2.606 7 14.157 1

OL City TP 6105 7029 2.303 5 12.576 1

US Air TP 332 2126 12.807 58 8.375 2

Linux SWb 5285 11352 4.296 51 12.368 2

Mysql2 SW 1480 4190 5.662 43 10.531 2

AbiWord SW 1035 1719 3.322 29 10.015 2

Helico Bioc 710 1396 3.932 31 9.472 2

Elegans Bio 314 363 2.312 17 8.295 2

Wiki-Vote SCd 7066 100736 28.519 308 12.787 2.3

Twitter SCe 81306 2420766 59.547 1245 16.311 2.6

2004 Internet TNf 18408 33963 3.690 121 14.168 2

2009 Internet TN 31164 63226 4.058 172 14.928 2

Web-Google Webg 855802 5066842 11.841 748 19.707 2.2

Web-Stanford Webh 255265 2234572 17.508 730 17.962 2.3

Ncstrlwg2 CNi 6396 15872 4.963 42 12.643 2

CA-HepPh CNj 11204 117634 20.999 288 13.452 2.2

a. For data on transportation networks (TP), see www.cs.fsu.edu/ lifeifei/SpatialDataset.htm.

b. For software networks (SW), see www.tc.cornell.edu/ myers/Data/SoftwareGraphs/index.html.

c. For biological networks (Bio), see www.cosin.org/extra/data.

d. For Wiki-Vote(SC), see http://snap.stanford.edu/data/Wiki-Vote.html.
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e. For twitter(SC), see http://snap.stanford.edu/data/egonets-Twitter.html.

f. For Internet (TN), see www.caida.org.

g. For Web-Google (Web), see http://snap.stanford.edu/data/web-google.html.

h. For Web-Stanford(Web), see http://snap.stanford.edu/data/web-Stanford.html.

i. The data of Ncstrlwg2 (CN) are provided by M E J Newman [10].

j. For CA-HepPh(CN), see http://snap.stanford.edu/data/ca-HepPh.html.

In general, let f(x) be a monotonously decreasing function, satisfying nki =
nk1f(ki). One can obtain networks of various vertex-degree distributions. For
example, when f(ki) = (k1ki )γ , one has a scale-free network, and when f(ki) =

qk1−ki , one gets a network with an exponential distribution. On the other hand,
one has

N =
∑
i

nki = nkl
∑
i

nki
nkl

= nkl
∑
i

f(ki)

f(kl)
.

If l is of order log(
∑
i
f(ki)
f(kl)

), then l is of order logN . For instance, letting f(ki) =

( kik1 )−γqk1−ki gives

N = nkl
∑
i

f(ki)

f(kl)
= nklk

γ
l q
kl−k1

∑
i

qk1−ki

kγi
≥ qkl−k1 ≥ ql−1,

which shows that l is of order logN for constant q > 1.
It can be seen from Table 1 that l < (logN)3 for many real-world networks.

It must be stressed that the above conclusion holds based on the precondition
that the network obeys precise vertex-degree distributions. However, many real-
world networks are not exactly so, which only have some approximate vertex-degree
distributions, so there are small differences between such real networks and our
theoretical results.

4.2. General System Structure and Potemtial Applications

In this subsection, the above results are generalized to general systems, not neces-
sarily networks. Some typical examples are given to demonstrate the universality
of the theoretical results.

Here, the network G is replaced by the system G, the vertex is replaced by some
system quantity, the degree of vertex is replaced by the corresponding discrete
variable, the number of degree-k vertices is replaced by the number of variable-k
quantities, and so on. Although there may not have edge in such a general system,
one can still define a quantity or index by

2M =
∑
i

kinki .

Thus, the results in Subsection 4.1 above hold for such systems.

Example 4.2. It follows from (3.5) that nki = nk1(k1ki )γ . There are many systems

of this type. Let, for instance, i = 1, 2, . . . , l, and assume that γ = logq p, ki = qi,

where p is a positive constant. Then, one has nki = nklp
l−i. The familiar recursive

clique trees belong to this type, with p = 3, q = 2 ( [5]). It is known that the
vertex-degree sequence of the network is 2, 22, . . . , 2l, 2l+1. The corresponding vertex
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numbers are 3l, 3l−1, . . . , 3, 3, respectively. It is not an exact scale-free network,
however, if the final number 2l+1 of the sequence is ignored, then the new sequence
is 2, 22, . . . , 2l, with the corresponding vertex numbers 3l, 3l−1, . . . , 3, respectively.
Hence, in this case, ki = 2i,nki = 3l+1−i,i = 1, 2, . . . , l. Let p = 3,q = 2. Thus,
γ = log2 3 and so (3.5) holds.

Example 4.3. Let P (k) = ce−λk, where λ is an adjustable parameter of the under-
lying system, which may not be a network. Two mechanisms, growing and random
adjacent attachment, introduce a new type of systems. The simulation results [4]
indicate that this type of systems indeed have exponential variable (may not be
degree) distributions, which matches the empirical data very well, showing that the
length of discrete variable sequences in the system is of order logN as described by
(4.2).

Example 4.4. Let P (k) = ck−γ , where 1 ≤ γ ≤ 3 for large N . Systems with
variables obeying this type of distributions are common in economy, finance and
society [4]. It possesses a hierarchical structure and the length of its discrete variable
sequences is small, also described by (4.2).

Example 4.5. Let

P (ki) =
nki
N

= ck−γi q1−ki , i = 1, 2, . . . , l,

where 0 ≤ γ ≤ 3, 1 ≤ q ≤ 3 for large N . Systems with this type of variable
distributions are also common in economy, science, technology and society [20].
The length l of their discrete variable sequences, denoted also by {k1, k2, . . . , kl},
which may not be degrees but also described by (4.2), is small when q > 1. Hence,
by (4.2), one can write

nkl = nk1(
kl
k1

)−γqk1−kl . (4.10)

Finally, one can let a =
nk1
nkl

, b = kl
k1

, so as to obtain

a = bγq(b−1)k1 . (4.11)

Example 4.6. Let the variable ki denote income in finance. Then, nki is the num-
ber of some quantity associated with the income ki. Let also a =(number of quantity
of minimum income)/(number of quantity of maximum income) and b =(maximum
income)/(minimum income). If a = 108, b = 104, which are reasonable assumptions
on the total income of the world population, then by (4.11) one has

108 = 104γq(10
4−1)k1 .

One may assume without loss of generality that k1 = 1, so q is close to 1. If q = 1,
then the distribution is a power law, with γ = 2. If γ = 0, then the distribution
is exponential, q > 1 and is close to 1.For the lower class of income [20], one may
assume that a = 104, b = 10 , so that by (4.11) one has

104 = 10γq(10−1)k1 .

Example 4.7. Let the variable ki denote the size of a city, i, and rank all cities
according to their sizes. Then, nki is the rank of the city size ki in the ranked
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sequence. Clearly, nk1 is the rank of the minimum size k1,nkl is the rank of the
maximum size kl. Furthermore, let a =(rank of minimum size)/(rank of maximum
size), and b =(maximum size)/(minimum size). If a = 103, b = 103, which are
reasonable assumptions on the size of the city population [4], then it follows from
(4.11) that

103 = 103γq(10
3−1)k1 .

Thus, q is close to 1. If q = 1, then the distribution is a power law with γ = 1.

The above examples, to some extent, have demonstrated the universality of the
general formula (4.2).

5. Verification by real-world system examples

We have tested and verified a large number of real datasets available on the Internet,
and observed that the lengths of the variable (e.g., vertex-degree) sequences in the
studied systems (networks) are all less than (logN)3, that is, ε < 3 in formula (4.2).
It means that l is very small as compared with the network size N . In fact it is easy
to see that (logN)ε/N → 0 for any ε < 3 as N → +∞. Table I shows some typical
examples, which are scale-free (with power-laws), exponential, or more general types
of systems (networks) in various areas, including scientific collaboration networks
(CN), transportation networks (TP), software package networks (SW), biological
networks (Bio), social networks (SC), and so on.

According to the City Population Statistics of the Sixth National Survey con-
ducted by the Census of China [7], the city of largest is Chongqing, with population
28846200, which ranked 1; the city of minimum size is Ngari, with population
95500, which ranked 339. For this system, a = 339, b = 302.05, so that by (4.11)
the distribution is a power law with q ≈ 1 and γ ≈ 1.02.

6. Conclusion

We have shown earlier that when the vertex-degree sequence of a scale-free network
of large size N follows a power-law distribution with exponent γ > 1, the length
l of the vertex-degree sequence k1 < k2 < . . . < kl is of order logN . In this
paper, we furthermore show that for many real-world systems(networks), the lengths
of their variable(vertex-degree) sequences are at most of order (logN)ε, where ε
is a very small constant as compared to the system (network) size N . We also
extend the results to more general distributions and verify that the same conclusion
holds for many real-world systems(networks). Our results may find new and useful
applications in various fields in the future.
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