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Abstract By introducing a sequence-block transformation and vector-block
transformation, we explore the dynamical properties of hybrid cellular au-
tomation (HCA) and hybrid cellular automation with memory (HCAM) in the
framework of symbolic dynamics. As the local evolution rules of HCA and H-
CAM are not-uniform, the new uniform cellular automata (CAs) with multiple
states are constructed by specifical the block transformations. Furthermore,
because the new CA rules are topologically conjugate with the originals, the
complex dynamics of the HCA and HCAM rules can be investigated via the
new CA rules.
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1. Introduction

Cellular automata (CAs) are spatially and temporally discrete dynamical systems
characterized by local interactions [23]. With a significant renewal of interest, Wol-
fram demonstrated the spatiotemporal representation of one-dimensional CAs and
introduced the first qualitative taxonomy using dynamical concepts—periodicity,
stability, chaos and complex [24–27]. Meanwhile, he proposed a scheme of elemen-
tary CAs (ECAs) concerning simple local rules by exhaustive numerical simula-
tions, which has drawn a great deal of attentions from various scientific communi-
ties [6, 12, 13, 17, 18]. Based on previous works, Chua et al. provided a nonlinear
dynamics perspective to Wolfram’s empirical observations, and grouped ECAs into
six classes hinging on the quantitative analysis of the orbits. These six classes are
established as period-1, period-2, period-3, Bernoulli-shift, complex Bernoulli-shift
and hyper Bernoulli-shift rules [7–11]. It is worth mentioning that some of their
works are consistent with existing related studies.

For an one-dimensional CA, when the evolution of all its cells depends only on
the unique global function, it is called uniform; otherwise, it is called hybrid, e.g.
hybrid cellular automata (HCAs) [4, 5], denoted by HCA(N ,M). The HCA rule,
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composed of ECA rule N and ECA rule M , is specified to obey the rule of ECA N
at odd sites of the cell array and obey the rule M at even sites of the cell array. A
growing number of research results on HCAs have been applied in the realm of secure
communications, see [20–22] and references therein. Furthermore, when the HCA is
composed of t ECA rules, the local rule is denoted as HCA(N1, N2, · · · , Nt). Though
HCAs possess simple hybrid rules and act on the same square tile structures, the
evolution of HCAs may exhibit rich dynamical behaviors through local interactions.

In order to extend the ECA rules, Alonso-Sanz originally proposed ECA with
memory, with each output cell beng allowed to remember its previous states dur-
ing a specific fixed period of evolution [1–3]. In this way, memory functions help
to “discover” hidden information in dynamical systems from simple functions (or
rules), and “transform” simple and chaotic rules to complex rules, or vice versa.
For instance, under particular majority memory functions, the ECA rule 30 and
rule 126 are endowed with gliders phenomena. Their morphological complexity and
glider dynamics are analyzed in [16,19]. Meanwhile, a classification of ECAs based
on memory functions is proposed in [15] as strong, moderate and weak rules.

In the present paper, we explore a particular evolution rule that is composed
of the minority memory function and the HCA rule—denoted by HCAM. With
respect to the memory function, the number of the cells that perform memory is
three; that is, the memory values are determined by the last three states of each
instantaneous cell. More precisely, minority memory function implies the ability of
recording the values that have the minimum number of the corresponding last three
states of each cell. In particular, if all the last three-state values are identical, the
recorded value is taken as minus one. For the instantaneous cells, a line of memory
values can be calculated. Then, a row of cell states at the next moment are obtained
via implementing the original HCA rules.

The rest of this article is organized as follows: Section 2 presents the definitions
of chaos and topological entropy. By introducing the sequence-block transformation
and vector-block transformation, Section 3 and Section 4 carry out the investigations
of symbolic dynamics of HCA and HCAM, respectively. Finally, Section 5 highlights
the main results.

2. The Preliminaries

First and foremost, following [14, 28], several terminology and notations are the
necessary prerequisite to the rigorous consideration of this subject. Let X be a
metric space and ψ : X → X be a continuous map. The distance d is defined on X.

Definition 2.1. ψ is chaotic on X in the sense of Li-Yorke if (1) lim
n→∞

sup d(ψn(x),

ψn(y)) > 0, ∀x, y ∈ X, x 6= y; (2) lim
n→∞

inf d(ψn(x), ψn(y)) = 0, ∀x, y ∈ X.

x ∈ X is an n-period point of ψ if there exists the integer n > 0 such that
ψn(x) = x. Let P (ψ) stands for the set of all n-period points, that is, P (ψ) = {x ∈
X| ∃n > 0, ψn(x) = x}. In particular, if ψ(x) = x for several x ∈ X , x is fixed
point. Then, ψ is topologically transitive if for any non-empty open subsets U and
V of X there exists a natural number n such that ψn(U)

⋂
V 6= ∅. P (ψ) is called a

dense subset of X if, for any x ∈ X and any constant ε > 0, there exists a y ∈ P (ψ)
such that d(x, y) < ε. ψ is sensitive to initial conditions if there exists a δ > 0 such
that, for x ∈ X and for any neighborhood B(x) of x, there exists a y ∈ B(x) and a
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natural number n such that d(ψn(x), ψn(y)) > δ , where d is a distance defined on
X.

Definition 2.2. ψ is chaotic on X in the sense of Devaney if (1) ψ is transitive;
(2) P (ψ) is a dense subset of X; (3) ψ is sensitive to initial conditions.

Let R ⊂ X is called a (n, ε)-spanning set iff for any x ∈ X and any con-
stant n > 0, ε > 0, there exists a y ∈ R such that d(ψi(x), ψi(y)) ≤ ε, i =
0, 1, · · · , n − 1. Thus, rn(ε,X, ψ) stands for the infimum of cardinal number of
(n, ε)-spanning set with ψ. The Bowen’s topological entropy is defined as follow:
ent(ψ) = lim

ε→∞
lim
n→∞

sup 1
n log rn(ε,X, ψ). In addition, ψ is topologically mixing if

there exists a natural number N such that ψn(U)
⋂
V 6= ∅ for the entire n ≥ N .

Theorem 2.1.
(1) ψ is both chaos in the sense of Li-Yorke can be deduced from positive topological
entropy.
(2) ψ is both chaos in the sense of Devaney and Li-Yorke can be deduced from
topologically mixing.

Proof. (1) The proof involves some knowledges of self mappings on an interval,
which is proven in [29] strictly.
(2) The proof is systematically introduced in [28], and here is presented the proof of
sensitive to initial conditions. Let the diameter of X be dia(X) = supy,z∈X{d(y, z)}
= δ > 0. There exists y, z ∈ X and ε > 0, one has dia(V (y, ε), V (z, ε)) > δ/2. As
ψ is topologically mixing, ∃x ∈ X and ∃N > 0, s.t. ψn(V (x, ε))

⋂
V (y, ε) 6= ∅,

ψn(V (x, ε))
⋂
V (z, ε) 6= ∅, ∀n ≥ N . It implies that dia(ψn(V (x, ε))) ≥ dia(V (y, ε),

V (z, ε)) ≥ δ/2. Then, for each n > N , there exists y ∈ V (x, ε), s.t. d(ψn(x), ψn(y))
> δ/2.

3. Block transformation in HCA

The set of bi-infinite configurations is SZ = · · ·S×S×S · · · , where S = {0, 1, · · · , k−
1}. A metric d on SZ is defined as d(x, x) =

∑+∞
i=−∞

d̃(xi,xi)
2|i|

, x, x ∈ SZ and d̃(·, ·)
is the metric on S defined as d̃(xi, xi) = 0, if xi = xi; otherwise, d̃(xi, xi) = 1. A
word over S is finite sequence a = α0, · · · , αn of elements of S. In SZ , the cylinder
set of a word a ∈ SZ is [a]k = {x ∈ SZ |x[k,k+n] = a}, where k ∈ Z. Such a set
is manifestly both open and closed (called clopen). The cylinder sets generate a
topology on SZ and form a countable basis for this topology. Therefore, every open
set is a countable union of cylinder sets. In addition, SZ is a Cantor space.

A set Λ ⊆ SZ is f -invariant if f(Λ) ⊆ X and strongly f -invariant if f(Λ) = Λ.
If Λ is closed and f -invariant, (Λ, f) or simply Λ is called a subsystem of f . For
instance, let A denote a set of some finite words over S, and ΛA is the set which
consists of the bi-infinite configurations made up of all the words inA. Subsequently,
ΛA is a subsystem of (SZ , σ), where A is said to be the determinative block system
of Λ. For a closed invariant subset Λ ⊆ SZ , the subsystem (Λ, σ) or simply Λ is
called a subshift of σ.

The classical left-shift map σL : SZ → SZ is defined by [σL(x)]i = xi+1; the
classical right-shift map σR : SZ → SZ is defined by [σR(x)]i = xi−1. A map
f : SZ → SZ is a CA if and only if it is continuous and commutes with σ, i.e.,
σ ◦ f = f ◦ σ, where σ is a left-shift or right-shift. For any CA, there exists a
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radius r ≥ 0 and a local rule N : S2r+1 → S such that [f(x)]i = N(x[i−r,i+r]).
Moreover, (SZ , f) is a compact dynamical system. ECA rules in Wolfram’s system
of identification has captured special attention ever since its publication, and each
local rule fECA rule : S3 → S, S = {0, 1} can be represented by a boolean function.
For instance, the Boolean function of ECA rule 9 is expressed as N9(x[i−1,i+1]) =
xi−1xixi+1 ⊕ xi−1xixi+1,∀i ∈ Z, where xi ∈ S, “·”, “⊕” and “−” denote “AND”,
“XOR” and “NOT” logical operations, respectively. Then, the Boolean functions
of HCA rules are represented as

[f(x)]i =



[fECA rule 1(x)]i, (i mod t)≡ 1,

[fECA rule 2(x)]i, (i mod t)≡ 2,

· · · ,
[fECA rule t−1(x)]i, (i mod t)≡ t-1,

[fECA rule t(x)]i, (i mod t)≡ 0.

When the t ECA rules are identical, it is simplified as a concrete ECA rule.
Whilst we pay close attention on particular subsystems, many topological prop-

erties are decidable, such as topological entropy, sensitivity and topologically mixing
of the compact systems. In particular, under several certain conditions, the com-
pact systems may be only related to subshift σ in the subset X ⊆ SZ . Thus, we
could seek out the finite type subshift σ to analyze the asymptotic behavior of the
system by the directed graph representation and transition matrix. Because the
local rules of HCAs are non-uniform, we can not construct graph and matrix of the
HCA rules. As the coarse-grained preprocessing, we treat n adjacent cells as a new
smallest unit. The HCA can be transformed to a new uniform CA by sequence-block
transformation B〈n〉, which is defined as

yi = [B〈n〉(x)]i =
∑n
v=1 xn(i−1)+v · 2−v, xn(i−1)+v ∈ S.

Let Ŝ = {yi} be a new symbolic set. ŜZ is introduced as the space of bi-infinite

configurations over Ŝ. The metric d∗ on ŜZ is d∗(y, y) =
∑+∞
i=−∞

d̂(yi,yi)

2|in|
, where

y, y ∈ ŜZ and d̂(·, ·) is the metric on Ŝ defined as d̂(yi, yi) = |yi − yi|. Obviously,
the new uniform CA has 2n-states and 3-neighbors. Let T stands for the new
evolution function. it can be verified that the sequence-block transformation B is
a homeomorphism and the evolution function T is topologically conjugate with f .
Moreover, following the form of Boolean truth table touching upon ECA rules, when
the input string is the 3-bit sequences (yi−1, yi, yi+1) of the whole different values
respectively, 23n evolution results [T (y)]i can be obtained to identify the particular
evolution rule tout court.

Notably, a real CA can be obtained as follow: In bi-infinite symbolic space, let
t → +∞, then Ŝ = [0, 1] and each yi = [B〈t〉(x)]i ∈ Ŝ. There are an infinitely
number of states in the real CA, and the state of each cell is a real number in
Ŝ. Roughly speaking, a corresponding binary CA can be constructed for each real
CA, and they are mutually topologically conjugate. What is more, the dynamics of
the real CA can be investigated through its corresponding binary CA equivalently.
In this article, we try to provide a concise way which is only at an early stage of
feasibility exploration for the real CA.

Cite a concrete case, the symbolic dynamics of HCA(45,5,232,138,166,138) is
analyzed in the following. Then, ECA rule 232 belongs to the period-1 rules, ECA
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rule 5 belongs to the period-2 rules, ECA rule 138 belongs to the Bernoulli-shift
rules, and ECA rule 45 and rule 166 belong to the hyper Bernoulli-shift rules. The
Boolean function of HCA(45,5,232,138,166,138) is induced as

[f(x)]i =



N45(x[i−1,i+1]), (i mod 6)≡ 1,

N5(x[i−1,i+1]), (i mod 6)≡ 2,

N232(x[i−1,i+1]), (i mod 6)≡ 3,

N138(x[i−1,i+1]), (i mod 6)≡ 4,

N166(x[i−1,i+1]), (i mod 6)≡ 5,

N138(x[i−1,i+1]), (i mod 6)≡ 0.

The sequence-block transformation B〈6〉 can be defined as

yi = [B〈6〉(x)]i =
∑6
v=1 x6(i−1)+v · 2−v, xv ∈ S.

Let Ŝ = {yi} be a new symbolic set, and ŜZ is the space of bi-infinite configu-

rations over Ŝ. The new uniform CA have 26-states and 3-neighbors. Therefore,
218 evolution results [T (y)]i can be obtained as the input string (yi−1, yi, yi+1) of
the whole different values respectively. To name only a few, [T ( 1

2 ,
1
4 ,

17
64 )]i = 1

4 ,
[T ( 27

32 ,
9
16 ,

11
16 )]i = 33

64 , and [T ( 9
64 ,

35
64 ,

3
64 )]i = 1

64 . Crucially, sequence-block transfor-
mation B〈6〉 is a homeomorphism and T is topologically conjugate with f .

For illustration, a special subset
∑

(I) ⊂ SZ is introduced to account for the
periodic boundary conditions, where

∑
(I) , {x ∈ SZ |x[kI,(k+1)I−1] = x[0,I−1],∀k ∈

Z}. Let I = 100, the spatio-temporal patterns of HCA(45,5,232,138,166,138) and
the new CA are illustrated in Fig.1.

Figure 1. (a) Spatio-temporal pattern of HCA(45,5,232,138,166,138), where white pixels are cells with
state 0, and black pixels are cells with state 1. (b) Spatio-temporal pattern of the new uniform CA,
26-states are displayed by different grey levels.

The spatio-temporal patterns presented in Fig.1 imply that two rules in their
subsystems, aka attractors, are endowed with Bernoulli-shift dynamical behaviours.
In the following, we present an analytical characterization of complex asymptotic
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dynamics of T .

Proposition 3.1. For T , there exists a subset ΛA of ŜZ , such that T 6(y)|ΛA =
σL(y)|ΛA , where ΛA = {y ∈ SZ |y[i,i+2] ∈ A,∀i ∈ Z} and A = {( 1

4 ,
3
8 ,

1
4 ), ( 3

8 ,
1
4 ,

1
4 ),

( 1
4 ,

1
4 ,

1
4 ), ( 1

4 ,
1
4 ,

1
2 ), ( 1

4 ,
1
2 ,

3
8 ), ( 1

2 ,
3
8 ,

1
4 ), ( 3

8 ,
1
4 ,

19
64 ), ( 1

4 ,
19
64 , 0), ( 19

64 , 0,
1
4 ), (0, 1

4 ,
1
2 ), ( 1

4 ,
1
2 ,

1
4 ), ( 1

2 ,
1
4 ,

1
4 ), ( 1

4 ,
1
4 ,

5
16 ), ( 1

4 ,
5
16 ,

17
64 ), ( 1

4 ,
1
8 ,

1
4 ), ( 1

8 ,
1
4 ,

1
4 ), ( 1

4 ,
1
4 ,

17
64 ), ( 1

4 ,
17
64 ,

1
2 ), ( 17

64 ,
1
2 ,

1
8

), ( 1
2 ,

1
8 ,

1
4 ), ( 1

8 ,
1
4 ,

5
16 ), ( 1

4 ,
5
16 ,

1
4 ), ( 5

16 ,
1
4 ,

17
64 ), ( 17

64 ,
1
2 ,

1
4 ), ( 1

4 ,
1
4 ,

3
8 ), ( 1

4 ,
3
8 ,

19
64 ), ( 1

4 ,
1
4 ,

19
64 ),

( 19
64 , 0,

1
2 ), (0, 1

2 ,
1
4 ), ( 1

2 ,
1
4 ,

3
8 ), (0, 1

4 ,
1
4 ), ( 1

4 ,
1
4 ,

1
8 ), ( 1

4 ,
1
8 ,

5
16 ), ( 5

16 ,
17
64 ,

1
2 ), ( 1

2 ,
1
4 ,

1
8 ), ( 5

16 ,
1
4 ,

1
4 ), ( 3

8 ,
19
64 , 0), ( 1

8 ,
5
16 ,

1
4 ), ( 19

64 , 0,
17
64 ), ( 5

16 ,
1
4 ,

19
64 ), ( 3

8 ,
1
4 ,

5
16 ), ( 1

8 ,
1
4 ,

3
8 ), ( 1

2 ,
1
4 ,

1
2 ), (0, 17

64 ,
1
2 )}. Moreover, ΛA is a subshift of finite type of (ŜZ , σL).

Remark 3.1. The y[i,i+2] stands for a 3-bit sequence (yi, yi+1, yi+2) over Ŝ. Each
yi stands for a 6-bit sequence (x6i, x6i+1, ..., x6i+5) over S = {0, 1}. For instance,
(1/4, 3/8, 1/4) refers to the 18-bit sequence (010000, 011000, 010000). A is called

the determinative system of ΛA, which is a 3-sequence set in ŜZ . In addition, we
can obtain the determinative system A′ and the subsystem ΛA′ of f .
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Figure 2. Graph representation for the subsystem ΛA.

In a nutshell, directed graph theory provides a powerful tool for studying the
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infinite strings. A fundamental method for constructing finite shifts starts with a
finite, directed graph and produces the collection of all bi-infinite walks (i.e., strings
of edges) on the graph. A graph G(V,E) consists of a finite set V of vertices (or
states) together with a finite set E of edges. A finite path P = V1 → V2 → · · · → Vm
on a graph G(V,G) is a finite string of vertices Vi from G. The length of P is
|P | = m. A cycle is a path that starts and terminates at the same vertex. It
is addressed that ΛA can be described by a finite directed graph GA = G(A, E),
where each vertex is a string in A. Each edge e ∈ E starts at a string denoted by
a = (a0, a1, a2) ∈ A and terminates at the string b = (b0, b1, b2) ∈ A if and only if
ak = bk−1, k = 1, 2. One can represent each element of ΛA as a certain path on the
graph GA. Figure 2 displays the finite directed graph GA where each vertex stands
for the element of A by order, i.e., V1 = ( 1

4 ,
3
8 ,

1
4 ), V2 = ( 3

8 ,
1
4 ,

1
4 ), V3 = ( 1

4 ,
1
4 ,

1
4 ), · · · ,

V43 = ( 1
2 ,

1
4 ,

1
2 ), V44 = (0, 17

64 ,
1
2 ). The entire bi-infinite walks on the graph constitute

the closed invariant subsystem ΛA.

Proposition 3.2. (· · · , 1
4

1
4

1
4 , · · · ) is a string of period-1 point (fixed point) on ΛA.

Proof. In the GA, the vertex a = ( 1
4 ,

1
4 ,

1
4 ) has a self-cycle. Then, T 6(· · · , 1

4
1
4

1
4 ,

· · · ) = (· · · , 1
4

1
4

1
4 , · · · ). However, according to the spatio-temporal patterns, we can

gain T (· · · , 1
4

1
4

1
4 , · · · ) = (· · · , 1

4
1
4

1
4 , · · · ).

Proposition 3.3. The diversiform strings of period-6t points are enumerated by
the irreducible cycles on GA, where 2 ≤ t ≤ 27 and t = 29.

Proof. When one cycle has repeating vertices, it is called the reducible cycle;
otherwise, it is called the irreducible cycle. By and large, as any cycle can be com-
pounded by irreducible cycle, we seek out the irreducible cycles in the finite directed
graph GA. For instance, x = (· · · , 1

4
5
16

17
64

1
2

1
4 , · · · ) is a string of 30-period point,

which is the irreducible closed cycle ( 1
4

5
16

17
64 ) → ( 5

16
17
64

1
2 ) → ( 17

64
1
2

1
4 ) → ( 1

2
1
4

1
4 ) →

( 1
2

1
4

5
16 ) → ( 1

4
5
16

17
64 ) in GA. x = (· · · , 19

640 1
4

1
2

1
4

1
8

1
4

1
4

3
8 , · · · ) is one string of 54-period

point, which is the irreducible closed cycle ( 19
640 1

4 ) → (0 1
4

1
2 ) → ( 1

4
1
2

1
4 ) → ( 1

2
1
4

1
8 ) →

( 1
4

1
8

1
4 )→ ( 1

8
1
4

1
4 )→ ( 1

4
1
4

3
8 )→ ( 1

4
3
8

19
64 )→ ( 3

8
19
640)→ ( 19

640 1
4 ) in GA.

Proposition 3.4. The periodic points set of T is dense on ΛA.

Proof. For any x ∈ ΛA and ε > 0, there exists a positive integer M > 1 such that
Σ∞i=M+1( 1

2 )i < ε
2 , and for any (a−M , · · · , aM ) ∈ A, it is clear that (a−M , · · · aM ) =

x[−M,M ] ≺ x ∈ ΛA. As σL is topologically transitive on ΛA, there exists a closed cy-
cle in the finite directed graph GA: c = (a−M , · · · , aM , c0, c1, · · · , ck, a−M , · · · , aM ),
where each 2M + 1-length string in c is belong to A. Thus, let b = (a−M , · · · , aM ,
c0, c1, · · · , ck) and y = (· · · , b, b, b, · · · ). Obviously, for any y ∈ ΛA, σk+2M+1

L (y) =

y, where k + 2M + 1 = |b| is the length of b. T 4(k+2M+1)(y) = σ
2(k+2M+1)
L (y) = y

is meaning that y is a periodic point of T and x[−M,M ] = y[−M,M ], so d(x, y) ≤
2Σ∞i=M+1( 1

2 )i < ε.

Let S = {r0, r1, · · · , r42, r43} be a new symbolic set, where ri, i = 0, · · · , 43,
stand for elements of A respectively. Then, one can construct a new symbolic s-

pace S
Z

on S. Denote by A = {(rr′)|r = (b0b1b2), r′ = (b′0b
′
1b
′
2) ∈ S,∀1 ≤ j ≤

2 s.t bj = b′j−1}. Further, the two-order subshift ΛA of σL is defined by ΛA =

{r = (· · · , r−1, r
∗
0 , r1, · · · ) ∈ S

Z |ri ∈ S, (ri, ri+1) ≺ A,∀i ∈ Z}. Define a map from
ΛA to ΛA as follows: π : ΛA → ΛA, x = (..., x−1, x

∗
0, x1, ...) 7→ (..., r−1, r

∗
0 , r1, ...),

where ri = (x[i,i+2]),∀i ∈ Z. Then, it follows from the definition of ΛA that for any
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x ∈ ΛA, one has π(x) ∈ ΛA; namely, π(ΛA) ⊆ ΛA. One can easily check that π
is a homeomorphism and π ◦ σL = σL ◦ π. Therefore, the topologically conjugate
relationship between (ΛA, σL) and a two-order subshift of finite type (ΛA, σL) is es-
tablished [25,26]. Therefore, it is relatively trivial to calculate the transition matrix
D of the subshift ΛA, i.e.,



0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



The matrix D is positive if all of its entries are non-negative, irreducible if ∀i, j,
there exist n such that Dnij > 0, aperiodic if there exists N , such that Dnij > 0, n >
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N, ∀i, j. If ΛA is a two-order subshift of finite type, then it is topologically mixing
if and only if D is irreducible and aperiodic. Then, the topological dynamics of f
on ΛA is largely determined by the properties of D.

Proposition 3.5. T is topologically transitive on ΛA.

Proof. σL is topologically transitive on ΛA if the transition matrix D is irre-
ducible. Further, D is irreducible if D + I is aperiodic, where I is the 44 × 44
identity matrix. Meanwhile, it is easy to verify that (D + I)n is positive for n ≥ 7.
The matrix is positive if all elements in this matrix are positive. Hence, T is topo-
logically transitive on ΛA.

Proposition 3.6. The topological entropy of T |ΛA is log(ρ(D)) = log(2.55282) =
0.937198 as ρ(D) is the spectral radius of D.

Proof. ρ(D) is the maximum positive real root λ∗ of characteristic equation in
transition matrix. The characteristic equation is 2λ28−6λ29 + 3λ31 + 5λ32 + 7λ33−
15λ34 − 14λ35 − 31λ36 − 22λ37 − 15λ38 − 8λ39 − 4λ40 − 3λ41 − λ42 − λ43 + λ44 = 0.

Proposition 3.7. T is topologically mixing on ΛA.

Proof. As a matter of fact, Dnij > 0, n ≥ 7 for 1 ≤ i, j ≤ 44, D is aperiodic

accordingly. Thus, the subshift of finite type (ΛA, σL) is mixing, and T 6(y)|ΛA also
is mixing. Then, it is easy to prove T (y)|ΛA also is mixing.

In conclusion, the mathematical analysis presented above provides the rigorous
foundation for the following theorem.

Theorem 3.1. T is chaotic in the sense of both Li-Yorke and Devaney on the
subsystem ΛA.

Proof. T is topologically mixing on ΛA. The topological entropy of T |ΛA is
positive. The chaos in the sense of Li-York can be deduced from positive topological
entropy. Suffice it to say that the chaos in the sense of Devaney and Li-Yorke can
be deduced from topologically mixing.

Remark 3.2. According to the same way, we can easily get the same dynamical
properties of f on its subsystem ΛA′ . Meanwhile, f is chaotic in the sense of both
Li-Yorke and Devaney on its corresponding subsystem ΛA′ .

For HCA(45,5,232,138,166,138), if we treat 6n(n ∈ N) adjacent cells as a new
smallest unit, and the sequence-block transformation B〈6n〉 can be defined as

yi = [B〈6n〉(x)]i =
∑6n
v=1 x6n(i−1)+v · 2−v, x6n(i−1)+v ∈ S.

Furthermore, a myriad of new uniform CA of 26n-states and 3-neighbors can be
constructed, which are topologically conjugate with each other. According to the
different B〈6n〉, we denote the new evolution function as T〈6n〉 ad infinitum, and the
corresponding bi-infinite space as SZ〈6n〉. In particular, T〈6〉 is remarked as T and

SZ〈6〉 = ŜZ .

In order to identify the particular evolution rule, 218n evolution results of T〈6n〉
can be obtained for the input string (yi−1, yi, yi+1) of the whole different values
respectively. The all T〈6n〉 are endowed with Bernoulli-shift dynamics. On their
corresponding subsystems Λ, T 6n

〈6n〉(y)|Λ = σL(y)|Λ; that is, T〈6n〉 is chaotic in the
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sense of both Li-Yorke and Devaney. More importantly though, let n → ∞, one
can capture a concrete CA with real states, whose dynamics is identical with H-
CA(45,5,232,138,166,138). For clarity, the following diagram commutes:

SZ

f

��

B〈6n〉 // SZ〈6n〉

T〈6n〉

��

B〈∞〉 // SZ〈∞〉

T〈∞〉

��
SZ

B〈6n〉

// SZ〈6n〉
B〈∞〉 // SZ〈∞〉

4. Block transformation in HCAM

According to the description in [2, 15], the memory function φ is implemented as
sti = φi(x

t−τ+1
i , · · · , xt−1

i , xti)
T , where t ∈ Z is the instantaneous time step. Here,

1 ≤ τ ≤ t determines the degree of memory and φi denotes the i-th symbol of
global memory function φ. Thus, τ = 1 means conventional evolution of HCA
rules, whereas τ = t means unlimited trailing memory. Each cell trait sti ∈ S is
a state function of the states of cell i with memory backward up to the value τ .
The memory implementation begins to act as soon as t reaches the τ time-step.
Initially, i.e. t < τ , the automata evolves in the conventional way. Furthermore,
the original rule is applied on the cell states s to get an evolution with memory
as: f(· · · , sti−1, s

t
i, s

t
i+1, · · · ) = xt+1

i . In particular, the simplified expression of f

is f ◦ φ(xt−τ+1, · · · , xt−1, xt)T = xt+1, where xt+k = (· · · , xt+ki−1 , x
t+k
i , xt+ki+1 , · · · ),

k=-τ+1,. . . ,-1,0,1. In this paper, we consider the new evolution rule of HCAM are
composed of the memory function and the HCA rule.

Assume that the initial configurations of original stipulation should be applica-
ble, mutatis mutandis, to the mathematical definition of HCAM. The first τ lines of
cell array of HCAM rule are all regarded as the random initial configurations; that
is, the lines of cell array from second to τ − th are not regarded as the evolution re-
sults according to the original HCA rule. When t > τ , it evolves following the above
way. Consequently, the symbolic vector map of HCAM rule F will be conformed
to the mathematical definition of the function. Here, we introduce the symbolic
vector space and exploit the mathematical definition of HCAM. Firstly, symbol-

ic vector space is introduced as SZm = {X = (x(1)T , x(2)T , · · · , x(m)T )T |x(j)T ∈
SZ , j = 1, 2, · · · ,m}, where T refers to the transposed operation. Thus, the metric

d∗ on SZm is defined as d∗(X,X) = (
∑n
j=1 d(x(j), x(j)))

1
n . Consequently, the defi-

nition of symbolic vector map F : SZm → SZm is F


x(1)

x(2)

· · ·

x(m)

 =


f(x(1))

f(x(2))

· · ·

f(x(m))

 , where

f : SZ → SZ is the symbolic sequence map.
Then the vector-block transformation B〈m×n〉 can be defined as

Yi = [B〈m×n〉(X)]i =
∑m
j=1

∑n
v=1 x

(j)
n(i−1)+v · 2

−(j−1)n−v.

By introducing the extended space S̃Z and distance d̃, it is demonstrated that
the new uniform CA has 2mn-states and 3-neighbors. Let U be the new symbolic
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sequence map. It could be easily proved that B〈m×n〉 is a homeomorphism and the
evolution function U is topologically conjugate with F . Moreover, following the form
of Boolean truth table, when the input string is the 3-bit sequences (Yi−1, Yi, Yi+1)
of the whole different values respectively, 23mn evolution results [U(Y )]i can be
obtained to identify the particular evolution rule.

In this paper, the memory function φ is set as the minority memory and τ = 3;

that is, φ(xt−2
i , xt−1

i , xti) = (xt−2
i ⊕ xt−1

i ) · (xt−1
i ⊕ xti) · (xti ⊕ x

t−2
i ). ECA rule 105

belongs to the complex Bernoulli-shift rules, and ECA rule 60 belongs to the hyper
Bernoulli-shift rules. The Boolean function of HCAM(105,60) is induced as

f(x[i−1,i+1]) =

{
N105(x[i−1,i+1]), (i mod 2)≡ 1,

N60(x[i−1,i+1]), (i mod 2)≡ 0.

Let S̃ = {Yi} be a new symbolic set. S̃Z is introduced as the space of bi-infinite

configurations over S̃. Then we define vector-block transformation B〈4×2〉 as

Yi = [B〈4×2〉(X)]i =
∑4
j=1

∑2
v=1 x

(j)
2(i−1)+v · 2

−(j−1)2−v.

It is demonstrated that the new uniform CA has 28-states and 3-neighbors. The
224 evolution results [U(Y )]i can be obtained for the input string (Yi−1, Yi, Yi+1)
of the whole different values respectively. For instance, [U( 11

32 ,
141
256 ,

1
16 )]i = 5

16 ,
[U( 51

128 ,
125
256 ,

157
256 )]i = 93

128 , and [U( 85
128 ,

255
256 ,

5
8 )]i = 85

128 . Vector-block transforma-
tion B〈4×2〉 is a homeomorphism and the evolution function U of the new uniform
CA is topologically conjugate with F . An example of spatio-temporal pattern of
HCAM(105,60) and the new CA with random initial configurations is illustrated in
Fig. 3.

Figure 3. (a) Spatio-temporal pattern of HCAM(105,60), where white pixels are cells with state 0, and

black pixels are cells with state 1. (b) Spatio-temporal pattern of the new uniform CA, 28-states are
displayed by different grey levels.

Proposition 4.1. For U , there exists a subset ΛB of S̆Z , such that U(Y )|ΛB =
σR(Y )|ΛB , where ΛB = {Y ∈ S̆Z |Y[i,i+2] ∈ B,∀i ∈ Z} and B = {( 5

8 ,
85
128 ,

175
256 ), ( 85

128 ,
175
256 ,

5
16 ), ( 175

256 ,
5
16 ,

165
256 ), ( 5

16 ,
165
256 , 0), ( 165

256 , 0, 0), (0, 0, 21
64 ), (0, 21

64 ,
41
256 ), ( 21

64 ,
41
256 , 0), ( 41

256 ,
0, 0), (0, 0, 5

256 ), (0, 5
256 ,

125
128 ), ( 5

256 ,
125
128 ,

95
256 ), ( 125

128 ,
95
256 ,

95
256 ), ( 95

256 ,
95
256 ,

15
256 ), ( 95

256 ,
15
256 ,

125
128 ), ( 15

256 ,
125
128 ,

5
128 ), ( 125

128 ,
5

128 ,
5
16 ), ( 5

128 ,
5
16 ,

15
16 ), ( 5

16 ,
15
16 ,

45
128 ), ( 15

16 ,
45
128 ,

15
16 ), ( 45

128 ,
15
16 ,

37
128 ), ( 15

16 ,
37
128 ,

129
256 ), ( 37

128 ,
129
256 ,

127
128 ), ( 129

256 ,
127
128 ,

131
256 ), ( 127

128 ,
131
256 ,

85
128 ), ( 131

256 ,
85
128 ,

125
128 ), ( 85

128 ,
125
128 ,

5
128 ), ( 125

128 ,
5

128 , 0), ( 5
128 , 0, 0), ( 21

64 ,
41
256 ,

5
16 ), ( 41

256 ,
5
16 ,

5
8 ), ( 5

16 ,
5
8 ,

117
128 ), ( 5

8 ,
117
128 ,

43
256 ),

( 117
128 ,

43
256 , 0), ( 43

256 , 0,
5
16 ), (0, 5

16 ,
15
16 ), ( 5

16 ,
15
16 ,

15
256 ), ( 15

16 ,
15
256 ,

85
128 ), ( 15

256 ,
85
128 ,

85
128 ), ( 85

128 ,
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85
128 ,

175
256 ), ( 85

128 ,
175
256 ,

21
64 ), ( 175

256 ,
21
64 ,

61
256 ), ( 21

64 ,
61
256 ,

31
32 ), ( 61

256 ,
31
32 ,

45
128 ), ( 31

32 ,
45
128 ,

5
8 ), ( 45

128 ,
5
8 ,

127
128 ), ( 5

8 ,
127
128 ,

151
256 ), ( 127

128 ,
151
256 ,

1
128 ), ( 151

256 ,
1

128 ,
5
16 ), ( 1

128 ,
5
16 ,

15
16 ), ( 15

16 ,
45
128 ,

5
8 ), ( 45

128 ,
5
8 ,

85
128 ), ( 5

8 ,
85
128 ,

127
128 ), ( 85

128 ,
127
128 ,

131
256 ), ( 127

128 ,
131
256 ,

125
128 ), ( 131

256 ,
125
128 ,

95
256 ), ( 125

128 ,
95
256 ,

5
128 ), ( 95

256 ,
5

128 ,
1
4 ), ( 5

128 ,
1
4 ,

213
256 ), ( 1

4 ,
213
256 ,

151
256 ), ( 213

256 ,
151
256 ,

1
128 ), ( 151

256 ,
1

128 , 0), ( 1
128 , 0,

21
64 ), ( 41

256 , 0,
17
64

), (0, 17
64 ,

55
64 ), ( 17

64 ,
55
64 ,

131
256 ), ( 55

64 ,
131
256 ,

85
128 ), ( 131

256 ,
85
128 ,

85
128 ), ( 85

128 ,
85
128 ,

127
128 ), ( 85

128 ,
127
128 ,

151
256

), ( 127
128 ,

151
256 ,

35
128 ), ( 151

256 ,
35
128 ,

51
64 ), ( 35

128 ,
51
64 ,

51
128 ), ( 51

64 ,
51
128 ,

55
64 ), ( 51

128 ,
55
64 ,

131
256 ), ( 55

64 ,
131
256 ,

125
128 ), ( 131

256 ,
125
128 ,

15
256 ), ( 125

128 ,
15
256 ,

125
128 ), ( 15

256 ,
125
128 ,

45
128 ), ( 125

128 ,
45
128 ,

245
256 ), ( 45

128 ,
245
256 ,

7
8 ), ( 245

256 ,
7
8 ,

63
256 ), ( 7

8 ,
63
256 ,

31
32 ), ( 63

256 ,
31
32 ,

5
128 ), ( 31

32 ,
5

128 ,
1
16 ), ( 5

128 ,
1
16 ,

113
256 ), ( 1

16 ,
113
256 ,

45
128 ), ( 113

256 ,
45
128 ,

5
8 )}. Moreover, ΛB is a subshift of finite type of (S̃Z , σR).

Remark 4.1. Each Y[i,i+2] stands for a 3-bits sequence (Yi, Yi+1, Yi+2) over S̃. Each

Yi stands for a 4×2 configuration


x

(1)
2i−1 x

(1)
2i

x
(2)
2i−1 x

(2)
2i

x
(3)
2i−1 x

(3)
2i

x
(4)
2i−1 x

(4)
2i

 over S = {0, 1}. For instance, (5/8,

85/128, 175/256) refers to the 4× 6 configuration


1 0 1 0 1 0

1 0 1 0 1 0

0 0 1 0 1 1

0 0 1 0 1 1

.

B is the determinative system of ΛB, which is a 4×6 configuration set. Thus, for
F , the determinative system B′ and the subsystem ΛB′ also can be easily obtained.

Following the similar method presented above, if we calculate the finite directed
graph GB and the transition matrix E , the problem becomes more tractable. In
addition, the transition matrices E is relatively large. Therefore, we only list the
indices (i, j) of nonzero elements.
E = {(1, 2), (1, 41), (2, 3), (3, 4), (4, 5), (5, 6), (5, 10), (6, 7), (7, 8), (7, 30), (8, 9),
(8, 64), (9, 6), (9, 10), (10, 11), (11, 12), (12, 13), (12, 57), (13, 14), (14, 15), (15, 16),
(15, 79), (16, 17), (16, 28), (17, 18), (18, 19), (18, 37), (19, 20), (19, 51), (20, 21),
(21, 22), (22, 23), (23, 24), (24, 25), (24, 55), (25, 26), (25, 68), (26, 27), (27, 17),
(27, 28), (28, 29), (29, 6), (29, 10), (30, 31), (31, 32), (32, 33), (33, 34), (34, 35), (35, 36),
(36, 19), (36, 37), (37, 38), (38, 39), (39, 40), (39, 69), (40, 2), (40, 41), (41, 42), (42, 43),
(43, 44), (44, 45), (45, 46), (45, 52), (46, 47), (47, 48), (47, 71), (48, 49), (48, 62),
(49, 50), (50, 19), (50, 37), (51, 46), (51, 52), (52, 1), (52, 53), (53, 54), (53, 70), (54, 25),
(54, 55), (55, 56), (55, 77), (56, 13), (56, 57), (57, 58), (58, 59), (59, 60), (60, 61),
(61, 49), (61, 62), (62, 63), (63, 7), (64, 65), (65, 66), (66, 67), (66, 76), (67, 26), (67, 68),
(68, 40), (68, 69), (69, 54), (69, 70), (70, 48), (70, 71), (71, 72), (72, 73), (73, 74),
(74, 75), (75, 67), (75, 76), (76, 56), (76, 77), (77, 78), (78, 16), (78, 79), (79, 80),
(80, 81), (81, 82), (82, 83), (83, 84), (84, 85), (85, 86), (86, 87), (87, 88), (88, 46),
(88, 52)}.

Then, the diversiform strings of period-t points are enumerated by the irreducible
cycles on GB, where 7 ≤ t ≤ 52 and t ∈ {4, 54, 55, 56, 59}. In addition, the periodic
points set of U is dense on ΛB. As a matter of fact, (E + I)nij > 0, n ≥ 24 for
1 ≤ i, j ≤ 88, so E is irreducible. U(Y )|ΛB is topologically transitive on ΛB. And
Enij > 0, n ≥ 30 for 1 ≤ i, j ≤ 88, so E is aperiodic. Thus, U(Y )|ΛB also is
mixing. Furthermore, the topological entropy ent(U(Y )|ΛB) = ent(σR(Y )|ΛB), and
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ent(σR(Y )|ΛB) = log λ∗
.
= log(1.42351) = 0.353125, where λ∗ is the maximum

positive real root of the characteristic equation of E. In particular, the chaos in the
sense of Li-York can be deduced from positive topological entropy. Both the chaos
in the sense of Devaney and Li-York can be deduced from topologically mixing.
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Figure 4. Graph representation for the subsystem ΛB.

Theorem 4.1. U is chaotic in the sense of both Li-Yorke and Devaney on the
subsystem ΛB.

Remark 4.2. According to the same way, we can easily get the same dynamical
properties of F on its subsystem ΛB′ . Meanwhile, F is chaotic in the sense of both
Li-Yorke and Devaney on its corresponding subsystem ΛB′ .

For HCAM(105,60), we treat 4n × 2n(n ∈ N) adjacent cells as a new smallest
unit, and define vector-block transformation B〈4n×2n〉 as

Yi = [B〈4n×2n〉(X)]i =

4n∑
j=1

2n∑
v=1

x
(j)
2n(i−1)+v · 2

−(j−1)2n−v.

Then a series of new uniform CA of 28n2

-states and 3-neighbors can be construct-
ed, which are topologically conjugate with each other. According to the different
B〈4n×2n〉, we denote the new evolution function as U〈4n×2n〉, and the corresponding

bi-infinite space as S̃Z〈4n×2n〉. In this article, U〈4×2〉 is remarked as U and S̃Z〈4×2〉

refers to S̃Z .
In order to identify the particular evolution rule, 224n2

evolution results of
U〈4n×2n〉 can be obtained for the input string (Yi−1, Yi, Yi+1) assigning differen-
t values in order. All U〈4n×2n〉 are endowed with Bernoulli shift dynamics. On
their corresponding subsystems Λ′, U〈4n×2n〉(Y )|Λ′ = σR(Y )|Λ′ ; that is, U〈4n×2n〉 is
chaotic in the sense of both Li-Yorke and Devaney. As n → ∞, it is conceivable
that a real CA can be obtained, and its dynamics is identical with HCAM(105,60).
For clarity, the following diagram commutes:
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SZ4n

F

��

B〈4n×2n〉// S̃Z〈4n×2n〉

U〈4n×2n〉

��

B〈∞〉 // S̃Z〈∞〉

U〈∞〉

��
SZ4n B〈4n×2n〉

// S̃Z〈4n×2n〉
B〈∞〉 // S̃Z〈∞〉

5. Conclusion and discussion

In this paper, the chaotic dynamics of HCA and HCAM rules are examined under
the framework of symbolic dynamics. By the special block transformations, HCAs
and HCAMs can be transformed to the new uniform and topologically conjugate
CAs. Therefore, their dynamical properties on their subsystems can be decided by
the directed graph representation and transition matrix of the uniform CAs. As
examples, HCA(45,5,232,138,166,138) and HCAM(105,60) here are topologically
mixing and possess the positive topological entropy on the concrete subsystems.
Therefore, it is concluded that they are chaotic in the sense of both Li-Yorke and
Devaney.

The block transforms build the potential bridge between the CAs of real states
and the CA with states of 0 and 1 by topological conjugation. It implies that the
dynamics of each real CA can be detailedly explored via the corresponding binary
CAs. Hence, the investigation of the relationship between real CAs and binary CAs
is of great interest in the future work.
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