CONVERGENCE TO EQUILIBRIUM FOR A TIME SEMI-DISCRETE DAMPED WAVE EQUATION

Morgan $Pierre^{1,\dagger}$ and $Philippe Rogeon^1$

Abstract We prove that the solution of the backward Euler scheme applied to a damped wave equation with analytic nonlinearity converges to a stationary solution as time goes to infinity. The proof is based on the Lojasiewciz-Simon inequality. It is much simpler than in the continuous case, thanks to the dissipativity of the scheme. The framework includes the modified Allen-Cahn equation and the sine-Gordon equation.

Keywords Lojasiewicz-Simon inequality, gradient-like equation, backward Euler scheme.

MSC(2010) 65M12, 65P05.

1. Introduction

In this paper, we are concerned with convergence to equilibrium for a time semidiscretization of the damped wave equation

$$\beta u_{tt} + u_t - \Delta u + f(u) = 0 \quad \text{in } \Omega \times (0, +\infty), \tag{1.1}$$

where Ω denotes a bounded domain of \mathbb{R}^d with smooth boundary, $\beta > 0$ and $f: \mathbb{R} \to \mathbb{R}$ is an analytic function. Equation (1.1) is endowed with homogeneous Dirichlet boundary conditions and initial data. Typical examples are given by the function $f(s) = s^3 - s$ ($1 \le d \le 3$) or by the function $f(s) = \sin(s)$ (no restriction on d). In the second case, (1.1) is known as the sine-Gordon equation and in the first case, it can be seen as a modified Allen-Cahn equation.

The theoretical picture for (1.1) is well-known. Existence and uniqueness of a solution and existence of global attractors have been proved with various growth assumptions on the nonlinearity (see, e.g., [21-23] and references therein). Convergence to equilibrium has been proved under several assumptions on the nonlinearity f or the domain Ω (see, e.g., [6,12] and references therein). Since convergence may fail if f is C^{∞} [18], a prominent assumption is the analycity of f: it allows the use of a Lojasiewicz-Simon inequality [20]. The first convergence results for (1.1) based on such an inequality are due to Jendoubi and Haraux [14, 17]. The nonautonomous case was considered in [6], where an abstract version was also proposed (see also [5, 15]). Rates of convergence and their optimality were discussed in [2, 13].

In this paper, we consider the time semi-discretization of (1.1) by the backward Euler scheme with a fixed time step, and we prove convergence to equilibrium

[†]the corresponding author. Email address: pierre@math.univ-poitiers.fr (M. Pierre)

¹Laboratoire de Mathématiques et Applications UMR CNRS 7348, Université de Poitiers, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil, France

for a function f which is real analytic, semi-convex (cf. (2.2)), satisfies a subcritical growth (cf. (2.1)) and a coercivity condition (cf. (2.3)). Similar results were proved in [1,9] for various fully discrete versions of (1.1). Our proof is based on the Lojasiewicz-Simon inequality. It is analogous to the case $\beta = 0$ which was considered in [19], and it is much simpler than in the continuous setting, thanks to the dissipativity of the scheme and to the fixed time step. Indeed, the natural energy is a Lyapunov functional which has strong properties, so that the use of a modified energy can be avoided. Moreover, compactness is a straightforward consequence of elliptic regularity. It is an open question to extend our convergence result to a second-order time semi-discrete scheme. The case of a time and space discrete version which has second order accuracy in time has been established in [10] for a related equation, but the proof uses that all norms are equivalent in finite dimension. Convergence to equilibrium based on the Lojasiewicz-Simon inequality has been proved for some descent methods in [3,7]. In these works, a semi-convexity assumption is also used.

The paper is organized as follows. In Section 2, we introduce the scheme, we show its well-posedness and its Lyapunov stability. In Section 3, we prove the convergence result.

2. The time semi-discrete scheme

2.1. Notations and assumptions

Let $H = L^2(\Omega)$ be equipped with the $L^2(\Omega)$ norm $|\cdot|_0$ and the $L^2(\Omega)$ scalar product (\cdot, \cdot) . We denote $V = H_0^1(\Omega)$ the standard Sobolev space based on the $L^2(\Omega)$ space. We use the hilbertian norm $|\cdot|_1 = |\nabla \cdot|_0$ in V, which is equivalent to the usual H^1 -norm. We denote $-\Delta : V \to V'$ the isomorphism associated to the inner product on V through

$$-\Delta u, v\rangle_{V',V} = (\nabla u, \nabla v), \quad \forall u, v \in V.$$

We assume that the nonlinearity $f : \mathbb{R} \to \mathbb{R}$ is analytic and if $d \ge 2$, we assume in addition that there exist a constant C > 0 and a real number $p \ge 0$ such that

$$(d-2)p < 4 \text{ and } |f'(s)| \le C(1+|s|^p), \quad \forall s \in \mathbb{R}.$$
 (2.1)

No growth assumption is needed if d = 1. We also assume that

$$f'(s) \ge -c_f, \quad \forall s \in \mathbb{R},$$

$$(2.2)$$

for some (optimal) nonnegative constant c_f , and that

$$\liminf_{|s| \to +\infty} \frac{f(s)}{s} > -\lambda_1, \tag{2.3}$$

where $\lambda_1 > 0$ is the first eigenvalue of $-\Delta$, i.e.

$$\lambda_1 = \inf_{|v|_0 = 1} |v|_1^2. \tag{2.4}$$

We define the functional

$$E(u) = \frac{1}{2}|u|_1^2 + (F(u), 1),$$

where $F(s) := \int_0^s f(\sigma) d\sigma$. The growth assumption (2.1) ensures that $E(u) < +\infty$ for all $u \in V$, thanks to the Sobolev injection $V \subset L^{p+2}(\Omega)$. Notice that (2.1) is weaker than the growth assumption usually required for the study of the continuous problem (1.1), namely (d-2)p < 2 (see, for instance, [6,16]). The energy associated to problem (1.1) is the functional

$$\mathcal{E}(u,v) := \frac{\beta}{2} |v|_0^2 + E(u).$$
(2.5)

Indeed, let (u, u_t) be a regular solution of (1.1). On taking the scalar product of (1.1) with u_t , we see that

$$\frac{d}{dt}\mathcal{E}(u(t), u_t(t)) + |u_t(t)|_0^2 = 0, \quad \forall t \ge 0.$$
(2.6)

Our scheme is the implicit Euler scheme for (1.1). First, we formally rewrite (1.1) as a first-order system:

$$\begin{cases} u_t = v, \\ \beta v_t = -v + \Delta u - f(u) \end{cases}$$

Let $\tau > 0$ denote the time step. The time semi-discrete scheme reads: let $(u^0, v^0) \in V \times H$ and for $n = 0, 1, \ldots$, let $(u^{n+1}, v^{n+1}) \in V \times H$ solve

$$\frac{u^{n+1} - u^n}{\tau} = v^{n+1},\tag{2.7}$$

$$\beta\left(\frac{v^{n+1} - v^n}{\tau}\right) = -v^{n+1} + \Delta u^{n+1} - f(u^{n+1}).$$
(2.8)

2.2. Existence, uniqueness and stability

Proposition 2.1 (Existence). For any $(u^0, v^0) \in V \times H$, there exists at least one sequence $(u^n, v^n)_n$ in $V \times H$ which complies with (2.7)-(2.8).

Proof. Let $(u^n, v^n) \in V \times H$. Eliminating v^{n+1} thanks to (2.7), we see by (2.8) that u^{n+1} solves

$$\frac{\beta}{\tau} \left(\frac{u^{n+1} - u^n}{\tau} - v^n \right) + \left(\frac{u^{n+1} - u^n}{\tau} \right) - \Delta u^{n+1} + f(u^{n+1}) = 0.$$
(2.9)

Then u^{n+1} can be obtained as a minimizer. More precisely, define

$$\mathcal{G}_n(u) = \left(\frac{\beta}{2\tau^2} + \frac{1}{2\tau}\right) |u - u^n|_0^2 - \frac{\beta}{\tau}(u, v^n) + \frac{1}{2}|u|_1^2 + (F(u), 1).$$

By (2.3), F satisfies

$$F(s) \ge -\frac{\kappa_1}{2}s^2 - \kappa_2, \quad \forall s \in \mathbb{R},$$
(2.10)

for some $\kappa_1 < \lambda_1$ and some $\kappa_2 \ge 0$. Thus, for all $u \in V$,

$$(F(u),1) \ge -\frac{\kappa_1}{2}|u|_0^2 - \kappa_2|\Omega| \ge -\frac{1}{2}\frac{\kappa_1}{\lambda_1}|u|_1^2 - \kappa_2|\Omega|.$$
(2.11)

Thus, there exist positive constants C, C' and C'' such that

$$\mathcal{G}_n(u) \ge C|u|_1^2 + C'|u|_0^2 - C, \quad \forall u \in V.$$

By considering a minimizing sequence, we obtain a minimizer \bar{u} of \mathcal{G}_n in V. In particular, \bar{u} solves the Euler-Lagrange equation associated to \mathcal{G}_n , so that we can choose $u^{n+1} = \bar{u}$ in (2.9). The function v^{n+1} is recovered through (2.7).

Proposition 2.2 (Uniqueness). Assume that $\beta/\tau^2 + 1/\tau + \lambda_1 > c_f$. Then for every $(u^n, v^n) \in V \times H$, there exists at most one $(u^{n+1}, v^{n+1}) \in V \times H$ which solves (2.7)-(2.8).

In particular, for $\tau \leq 1/c_f$, uniqueness is ensured.

Proof. Let (u^n, v^n) be fixed in $V \times H$, and (u^{n+1}, v^{n+1}) , $(\tilde{u}^{n+1}, \tilde{v}^{n+1})$ be two solutions of (2.7)-(2.8). Denote $\delta u = u^{n+1} - \tilde{u}^{n+1}$ and $\delta v = v^{n+1} - \tilde{v}^{n+1}$. Subtracting the two systems (2.8), we obtain that

$$\beta \frac{\delta v}{\tau} + \delta v - \Delta \delta u + [f(u^{n+1}) - f(\tilde{u}^{n+1})] = 0.$$

On multiplying by $\delta u = \tau \delta v$, we get

$$\beta |\delta v|_0^2 + \tau |\delta v|_0^2 + |\delta u|_1^2 + (f(u^{n+1}) - f(\tilde{u}^{n+1}), \delta u) = 0.$$

Using (2.2) and the mean value theorem, we obtain

$$\beta |\delta v|_0^2 + \tau |\delta v|_0^2 + |\delta u|_1^2 \le c_f |\delta u|_0^2.$$

Using $\delta u = \tau \delta v$ again, together with (2.4) yields

$$(\beta + \tau + \lambda_1 \tau^2) |\delta v|_0^2 \le c_f \tau^2 |\delta v|_0^2.$$

Thus, the smallness assumption on τ implies $\delta v = 0$ and $\delta u = 0$. The proof is complete.

The following energy estimate shows that the scheme has dissipative effects which are stronger than what happens in the continuous case (compare with (2.6)).

Proposition 2.3 (Lyapunov stability). Assume that $1/\tau \ge c_f/2$ and let $(u^n, v^n)_n$ be a sequence which complies with (2.7)-(2.8). Then for all $n \ge 0$,

$$\mathcal{E}^{n+1} + \tau \left(1 - \frac{\tau c_f}{2}\right) |v^{n+1}|_0^2 + \frac{\beta}{2} |v^{n+1} - v^n|_0^2 + \frac{1}{2} |u^{n+1} - u^n|_1^2 \le \mathcal{E}^n, \qquad (2.12)$$

where $\mathcal{E}^n = \mathcal{E}(u^n, v^n)$ and \mathcal{E} is defined by (2.5).

Proof. By the Taylor-Lagrange theorem, from (2.2) we deduce that for all $a, b \in \mathbb{R}$,

$$F(b) - F(a) \ge (b - a)f(a) - \frac{c_f}{2}(b - a)^2.$$
(2.13)

Multiplying (2.8) by $\tau v^{n+1} = u^{n+1} - u^n$ yields

$$\begin{split} &\beta(v^{n+1}-v^n,v^{n+1})+\tau|v^{n+1}|_0^2+(\nabla u^{n+1},\nabla(u^{n+1}-u^n))\\ &=-(f(u^{n+1}),(u^{n+1}-u^n)). \end{split}$$

Using twice the well-known identity

$$(A - B, A) = \frac{1}{2}(A, A) - \frac{1}{2}(B, B) + \frac{1}{2}(A - B, A - B),$$

together with (2.13), we obtain

$$\begin{aligned} &\frac{\beta}{2}|v^{n+1}|_0^2 - \frac{\beta}{2}|v^n|_0^2 + \frac{\beta}{2}|v^{n+1} - v^n|_0^2 + \tau|v^{n+1}|_0^2 + \frac{1}{2}|\nabla u^{n+1}|_0^2 - \frac{1}{2}|\nabla u^n|_0^2 \\ &+ \frac{1}{2}|\nabla (u^{n+1} - u^n)|_0^2 \le (F(u^n), 1) - (F(u^{n+1}, 1) + \frac{c_f}{2}|u^{n+1} - u^n|_0^2. \end{aligned}$$

This proves the claim.

3. Convergence to equilibrium

For a sequence $(u^n)_n$ in V, we define its omega-limit set by

$$\omega((u^n)_n) := \{ u^* \in V : \exists n_k \to \infty, \ u^{n_k} \to u^* \text{ (strongly) in } V \}.$$

Let

$$\mathcal{S} := \{ u^{\star} \in V : -\Delta u + f(u) = 0 \text{ in } V' \}$$

be the set of critical points of E. The set of stationary points for (2.7)-(2.8) is $S \times \{0\} \subset V \times H$. We have:

Proposition 3.1. Assume that $1/\tau \ge c_f/2$ and let (u^n, v^n) be a sequence in $V \times H$ which complies with (2.7)-(2.8). Then $v^n \to 0$ in V and $\omega((u^n)_n)$ is a non empty compact and connected subset of V which is included in S. Moreover, E is constant on $\omega((u^n)_n)$.

Proof. By (2.11), there exist positive constants C, C' such that for all $(u, v) \in V \times H$,

$$\mathcal{E}(u,v) \ge C|u|_1^2 + \frac{\beta}{2}|v|_0^2 - C'.$$
(3.1)

By (2.12), $(\mathcal{E}(u^n, v^n))_n$ is nonincreasing. Since $\mathcal{E}(u^0, v^0) < \infty$, from (3.1) we deduce that $(u^n, v^n)_n$ is bounded in $V \times H$ and that $\mathcal{E}(u^n, v^n)$ is bounded from below. Thus, $\mathcal{E}(u^n, v^n)$ converges to some \mathcal{E}^* in \mathbb{R} . By induction, from (2.12) we also deduce that

$$\sum_{n=0}^{\infty} |u^{n+1} - u^n|_1^2 = \sum_{n=0}^{\infty} \tau^2 |v^{n+1}|_1^2 \le 2(\mathcal{E}(u^0, v^0) + C') < \infty.$$
(3.2)

In particular, $v^n \to 0$ in V (and therefore in H). This implies that $E(u^n) \to \mathcal{E}^*$, and so E is equal to \mathcal{E}^* on $\omega((u^n)_n)$.

Next, we claim that the sequence (u^n) is precompact in V. Let us first assume $d \geq 3$. For every $n \geq 0$, we deduce from the Sobolev imbedding [8] that $u^n \in L^{2^*}(\Omega)$, where $2^* = 2d/(d-2)$. The growth condition (2.1) implies that there exists $2 \geq q > 2d/(d+2)$ such that $||f(u^{n+1})||_{L^q(\Omega)} \leq M_1$. By elliptic regularity [8], we deduce from (2.8) that (u^{n+1}) is bounded in $W^{2,q}(\Omega)$. Finally, from the Sobolev imbedding [8], $W^{2,q}(\Omega)$ is compactly imbedded in $H^1(\Omega)$, and the claim is proved.

In the case d = 2, we directly obtain from the Sobolev imbedding that $(f(u^{n+1}))$ is bounded in any $L^q(\Omega)$, $q < \infty$, and we conclude similarly. In the case d = 1, V is

compactly imbedded in $C^0(\overline{\Omega})$, so $(f(u^{n+1}))$ is uniformly bounded in $L^{\infty}(\Omega)$. We conclude as above, and this proves the claim.

As a consequence, $\omega((u^n)_n)$ is a non empty compact subset of V. By (3.2) $|u^{n+1}-u^n|_1 \to 0$. This implies that $\omega((u^n)_n)$ is connected and concludes the proof.

Proof of convergence to equilibrium is based on the following Lojasiewicz-Simon inequality.

Lemma 3.1. Let $\bar{u} \in S$. Then there exist constants $\theta \in (0, 1/2)$ and $\delta > 0$ depending on \bar{u} such that for any $u \in V$ satisfying $|u - \bar{u}|_1 < \delta$,

$$|E(u) - E(\bar{u})|^{1-\theta} \le || - \Delta u + f(u)||_{V'}.$$
(3.3)

Proof. This result is proved in [16, Proposition 10.4.1] (see also [4]). The authors actually assume (d-2)p < 2, but their proof also applies to our case (d-2)p < 4, cf. (2.1) (the stronger assumption in [16] is needed for the well-posedness of the continuous problem (1.1)).

Theorem 3.1. Assume that $1/\tau \ge c_f/2$ and let (u^n, v^n) be a sequence in $V \times H$ which complies with (2.7)-(2.8). Then the whole sequence (u^n, v^n) converges to a steady state $(u^{\infty}, 0)$ in $V \times H$, with $u^{\infty} \in S$.

We adapt the proof from [11] to a time semi-discrete case, using in addition the regularization property of the scheme.

Proof. For every $u^* \in \omega((u^n)_n)$, there exist $\theta \in (0, 1/2)$ and $\delta > 0$ which may depend on u^* such that the inequality (3.3) holds for every $u \in B_{\delta}(u^*) := \{u \in V, |u - u^*|_1 < \delta\}$. The union of balls $\{B_{\delta}(u^*) : u^* \in \omega((u^n)_n)\}$ forms an open covering of $\omega((u^n)_n)$. Due to the compactness of $\omega((u^n)_n)$ in V, we can find a finite subcovering $\{B_{\delta_i}(u^*_i)\}_{i=1,...,m}$ such that the constants δ_i , θ_i corresponding to u^*_i in Lemma 3.1 are indexed by i.

From the definition of $\omega((u^n)_n)$, we know that there exists a sufficiently large n_0 such that $u^n \in \mathcal{U} = \bigcup_{i=1}^m B_{\delta_i}(u_i^{\star})$ for all $n \ge n_0$. Taking $\theta = \min_{i=1}^n \{\theta_i\}$, we deduce from Lemma 3.1 and Proposition 3.1 that for all $n \ge n_0$,

$$|E(u^{n}) - E^{\infty}|^{1-\theta} \le || - \Delta u^{n} + f(u^{n})||_{V'},$$

where E^{∞} is the value of E on $\omega((u^n)_n)$.

Let $n \ge n_0$. We may assume (by taking a larger n_0 if necessary) that for all $n \ge n_0$, $|v^n|_0 \le 1$. Let $\Phi^n = \mathcal{E}(u^n, v^n) - E^{\infty}$, so that $\Phi^n \ge 0$ and Φ^n decreases to 0. Using the inequality $(a+b)^{1-\theta} \le (a^{1-\theta}+b^{1-\theta})$ valid for all $a, b \ge 0$, we obtain

$$(\Phi^{n+1})^{1-\theta} \leq |E(u^{n+1}) - E^{\infty}|^{1-\theta} + \left(\frac{\beta}{2}\right)^{1-\theta} |v^{n+1}|_{0}^{2(1-\theta)}$$

$$\leq || - \Delta u^{n+1} + f(u^{n+1})||_{V'} + \left(\frac{\beta}{2}\right)^{1-\theta} |v^{n+1}|_{0}$$

$$\leq C \left(\frac{\beta}{2} |v^{n+1} - v^{n}|_{0}^{2} + \frac{1}{2} |u^{n+1} - u^{n}|_{1}^{2}\right)^{1/2}, \qquad (3.4)$$

where here and in the following, C denotes a constant independent of n. For the last inequality, we have used Proposition 2.3 and (2.7)-(2.8). Assume now that

 $\Phi^{n+1} > \Phi^n/2$. Then

$$(\Phi^n)^{\theta} - (\Phi^{n+1})^{\theta} = \theta \int_{\Phi^{n+1}}^{\Phi^n} x^{\theta-1} dx \ge \theta \frac{\Phi^n - \Phi^{n+1}}{\Phi^n} \ge 2^{\theta-1} \theta \frac{\Phi^n - \Phi^{n+1}}{(\Phi^{n+1})^{1-\theta}}.$$

From Proposition 2.3 and (3.4), we deduce that

$$(\Phi^n)^{\theta} - (\Phi^{n+1})^{\theta} \ge C \left(\frac{\beta}{2} |v^{n+1} - v^n|_0^2 + \frac{1}{2} |u^{n+1} - u^n|_1^2\right)^{1/2}.$$

Now, if $\Phi^{n+1} \leq \Phi^n/2$, then by Proposition 2.3 again,

$$\begin{split} (\Phi^n)^{1/2} - (\Phi^{n+1})^{1/2} &\geq (1 - 1/\sqrt{2})(\Phi^n)^{1/2} \geq (1 - 1/\sqrt{2})(\Phi^n - \Phi^{n+1})^{1/2} \\ &\geq (1 - 1/\sqrt{2}) \left(\frac{\beta}{2} |v^{n+1} - v^n|_0^2 + \frac{1}{2} |u^{n+1} - u^n|_1^2\right)^{1/2}. \end{split}$$

Thus, for all $n \ge n_0$, we have

$$|u^{n+1} - u^n|_1 \le C\left((\Phi^n)^\theta - (\Phi^{n+1})^\theta\right) + C\left((\Phi^n)^{1/2} - (\Phi^{n+1})^{1/2}\right).$$

Summing on n, we find that

$$\sum_{k=n}^{\infty} |u^{k+1} - u^k|_1 \le C(\Phi^n)^{\theta} + C(\Phi^n)^{1/2} < \infty.$$

This proves that (u^n) converges to some u^{∞} in V, as n tends to ∞ . We have already seen that $v^n \to 0$ in V. Letting $n \to +\infty$ in (2.7)-(2.8), we see that $(u^{\infty}, 0)$ is a steady state. This concludes the proof.

References

- N. E. Alaa and M. Pierre, Convergence to equilibrium for discretized gradientlike systems with analytic features, IMA J. Numer. Anal., 33(2013)(4), 1291– 1321.
- [2] I. Ben Hassen, Decay estimates to equilibrium for some asymptotically autonomous semilinear evolution equations, Asymptot. Anal., 69(2010)(1-2), 31-44.
- [3] J. Bolte, A. Daniilidis, O. Ley, and L. Mazet, Characterizations of Lojasiewicz inequalities: subgradient flows, talweg, convexity, Trans. Amer. Math. Soc., 362(2010)(6), 3319–3363.
- [4] R. Chill, On the Lojasiewicz-Simon gradient inequality, J. Funct. Anal., 201(2003)(2), 572–601.
- [5] R. Chill and A. Haraux and M. A. Jendoubi, Applications of the Lojasiewicz-Simon gradient inequality to gradient-like evolution equations, Anal. Appl.(Singap.), 7(2009)(4), 351–372.
- [6] R. Chill and M. A. Jendoubi, Convergence to steady states in asymptotically autonomous semilinear evolution equations, Nonlinear Anal., 53(2003)(7-8), 1017–1039.

- [7] H. Gajewski and J. A. Griepentrog, A descent method for the free energy of multicomponent systems, Discrete Contin. Dyn. Syst., 15(2006)(2), 505–528.
- [8] D. Gilbarg and N. S. Trudinger, *Elliptic Partial Differential Equations of Sec*ond Order, Springer-Verlag, Berlin, 2001.
- [9] M. Grasselli and M. Pierre, Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradientlike systems, Commun. Pure Appl. Anal., 11(2012)(6), 2393–2416.
- [10] M. Grasselli and M. Pierre, Energy stable and convergent finite elements schemes for the modified phase field crystal equation, ESAIM Math. Model. Numer. Anal., to appear.
- [11] M. Grasselli and H. Wu, Well-posedness and longtime behavior for the modified phase-field crystal equation, Math. Models Methods Appl. Sci., 24(2014)(14), 2743–2783.
- [12] J. K. Hale and G. Raugel, Convergence in gradient-like systems with applications to PDE, Z. Angew. Math. Phys., 43(1992)(1), 63–124.
- [13] A. Haraux, Slow and fast decay of solutions to some second order evolution equations, J. Anal. Math., 95(2005), 297–321.
- [14] A. Haraux and M. A. Jendoubi, Convergence of bounded weak solutions of the wave equation with dissipation and analytic nonlinearity, Calc. Var. Partial Differential Equations, 9(1999)(2), 95–124.
- [15] A. Haraux and M. A. Jendoubi, On the convergence of global and bounded solutions of some evolution equations, J. Evol. Equ., 7(2007)(3), 449–470.
- [16] A. Haraux and M. A. Jendoubi, The Convergence Problem For Dissipative Autonomous Systems: Classical Methods And Recent Advances, SpringerBriefs in Mathematics, 2015.
- [17] M. A. Jendoubi, Convergence of global and bounded solutions of the wave equation with linear dissipation and analytic nonlinearity, J. Differential Equations, 144(1998)(2), 302–312.
- [18] M. A. Jendoubi and P. Poláčik, Non-stabilizing solutions of semilinear hyperbolic and elliptic equations with damping, Proc. Roy. Soc. Edinburgh Sect. A, 133(2003)(5), 1137–1153.
- [19] B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Commun. Pure Appl. Anal., 9(2010)(3), 685–702.
- [20] L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math.(2), 118(1983)(3), 525–571.
- [21] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, second edition, 1997.
- [22] S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3(2004)(4), 921–934.
- [23] S. Zelik, Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities, Discrete Contin. Dyn. Syst., 11(2004)(2-3), 351–392.