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CONVERGENCE TO EQUILIBRIUM FOR A
TIME SEMI-DISCRETE DAMPED WAVE

EQUATION

Morgan Pierre1,† and Philippe Rogeon1

Abstract We prove that the solution of the backward Euler scheme applied
to a damped wave equation with analytic nonlinearity converges to a stationary
solution as time goes to infinity. The proof is based on the  Lojasiewciz-Simon
inequality. It is much simpler than in the continuous case, thanks to the
dissipativity of the scheme. The framework includes the modified Allen-Cahn
equation and the sine-Gordon equation.
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1. Introduction

In this paper, we are concerned with convergence to equilibrium for a time semi-
discretization of the damped wave equation

βutt + ut −∆u+ f(u) = 0 in Ω× (0,+∞), (1.1)

where Ω denotes a bounded domain of Rd with smooth boundary, β > 0 and
f : R → R is an analytic function. Equation (1.1) is endowed with homogeneous
Dirichlet boundary conditions and initial data. Typical examples are given by the
function f(s) = s3 − s (1 ≤ d ≤ 3) or by the function f(s) = sin(s) (no restriction
on d). In the second case, (1.1) is known as the sine-Gordon equation and in the
first case, it can be seen as a modified Allen-Cahn equation.

The theoretical picture for (1.1) is well-known. Existence and uniqueness of a
solution and existence of global attractors have been proved with various growth
assumptions on the nonlinearity (see, e.g., [21–23] and references therein). Conver-
gence to equilibrium has been proved under several assumptions on the nonlinearity
f or the domain Ω (see, e.g., [6,12] and references therein). Since convergence may
fail if f is C∞ [18], a prominent assumption is the analycity of f : it allows the
use of a  Lojasiewicz-Simon inequality [20]. The first convergence results for (1.1)
based on such an inequality are due to Jendoubi and Haraux [14, 17]. The nonau-
tonomous case was considered in [6], where an abstract version was also proposed
(see also [5,15]). Rates of convergence and their optimality were discussed in [2,13].

In this paper, we consider the time semi-discretization of (1.1) by the back-
ward Euler scheme with a fixed time step, and we prove convergence to equilibrium
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for a function f which is real analytic, semi-convex (cf. (2.2)), satisfies a subcrit-
ical growth (cf. (2.1)) and a coercivity condition (cf. (2.3)). Similar results were
proved in [1,9] for various fully discrete versions of (1.1). Our proof is based on the
 Lojasiewicz-Simon inequality. It is analogous to the case β = 0 which was consid-
ered in [19], and it is much simpler than in the continuous setting, thanks to the
dissipativity of the scheme and to the fixed time step. Indeed, the natural energy
is a Lyapunov functional which has strong properties, so that the use of a modified
energy can be avoided. Moreover, compactness is a straightforward consequence
of elliptic regularity. It is an open question to extend our convergence result to
a second-order time semi-discrete scheme. The case of a time and space discrete
version which has second order accuracy in time has been established in [10] for a
related equation, but the proof uses that all norms are equivalent in finite dimen-
sion. Convergence to equilibrium based on the  Lojasiewicz-Simon inequality has
been proved for some descent methods in [3, 7]. In these works, a semi-convexity
assumption is also used.

The paper is organized as follows. In Section 2, we introduce the scheme, we
show its well-posedness and its Lyapunov stability. In Section 3, we prove the
convergence result.

2. The time semi-discrete scheme

2.1. Notations and assumptions

Let H = L2(Ω) be equipped with the L2(Ω) norm | · |0 and the L2(Ω) scalar product
(·, ·). We denote V = H1

0 (Ω) the standard Sobolev space based on the L2(Ω) space.
We use the hilbertian norm | · |1 = |∇ · |0 in V , which is equivalent to the usual H1-
norm. We denote −∆ : V → V ′ the isomorphism associated to the inner product
on V through

〈−∆u, v〉V ′,V = (∇u,∇v), ∀u, v ∈ V.

We assume that the nonlinearity f : R→ R is analytic and if d ≥ 2, we assume
in addition that there exist a constant C > 0 and a real number p ≥ 0 such that

(d− 2)p < 4 and |f ′(s)| ≤ C(1 + |s|p), ∀s ∈ R. (2.1)

No growth assumption is needed if d = 1. We also assume that

f ′(s) ≥ −cf , ∀s ∈ R, (2.2)

for some (optimal) nonnegative constant cf , and that

lim inf
|s|→+∞

f(s)

s
> −λ1, (2.3)

where λ1 > 0 is the first eigenvalue of −∆, i.e.

λ1 = inf
|v|0=1

|v|21. (2.4)

We define the functional

E(u) =
1

2
|u|21 + (F (u), 1),
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where F (s) :=
∫ s

0
f(σ)dσ. The growth assumption (2.1) ensures that E(u) < +∞

for all u ∈ V , thanks to the Sobolev injection V ⊂ Lp+2(Ω). Notice that (2.1) is
weaker than the growth assumption usually required for the study of the continuous
problem (1.1), namely (d−2)p < 2 (see, for instance, [6,16]). The energy associated
to problem (1.1) is the functional

E(u, v) :=
β

2
|v|20 + E(u). (2.5)

Indeed, let (u, ut) be a regular solution of (1.1). On taking the scalar product
of (1.1) with ut, we see that

d

dt
E(u(t), ut(t)) + |ut(t)|20 = 0, ∀t ≥ 0. (2.6)

Our scheme is the implicit Euler scheme for (1.1). First, we formally rewrite (1.1)
as a first-order system: {

ut = v,

βvt = −v + ∆u− f(u).

Let τ > 0 denote the time step. The time semi-discrete scheme reads: let (u0, v0) ∈
V ×H and for n = 0, 1, . . . , let (un+1, vn+1) ∈ V ×H solve

un+1 − un

τ
= vn+1, (2.7)

β

(
vn+1 − vn

τ

)
= −vn+1 + ∆un+1 − f(un+1). (2.8)

2.2. Existence, uniqueness and stability

Proposition 2.1 (Existence). For any (u0, v0) ∈ V ×H, there exists at least one
sequence (un, vn)n in V ×H which complies with (2.7)-(2.8).

Proof. Let (un, vn) ∈ V ×H. Eliminating vn+1 thanks to (2.7), we see by (2.8)
that un+1 solves

β

τ

(
un+1 − un

τ
− vn

)
+

(
un+1 − un

τ

)
−∆un+1 + f(un+1) = 0. (2.9)

Then un+1 can be obtained as a minimizer. More precisely, define

Gn(u) =

(
β

2τ2
+

1

2τ

)
|u− un|20 −

β

τ
(u, vn) +

1

2
|u|21 + (F (u), 1).

By (2.3), F satisfies

F (s) ≥ −κ1

2
s2 − κ2, ∀s ∈ R, (2.10)

for some κ1 < λ1 and some κ2 ≥ 0. Thus, for all u ∈ V ,

(F (u), 1) ≥ −κ1

2
|u|20 − κ2|Ω| ≥ −

1

2

κ1

λ1
|u|21 − κ2|Ω|. (2.11)
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Thus, there exist positive constants C, C ′ and C ′′ such that

Gn(u) ≥ C|u|21 + C ′|u|20 − C”, ∀u ∈ V.

By considering a minimizing sequence, we obtain a minimizer ū of Gn in V . In
particular, ū solves the Euler-Lagrange equation associated to Gn, so that we can
choose un+1 = ū in (2.9). The function vn+1 is recovered through (2.7).

Proposition 2.2 (Uniqueness). Assume that β/τ2 + 1/τ + λ1 > cf . Then for
every (un, vn) ∈ V × H, there exists at most one (un+1, vn+1) ∈ V × H which
solves (2.7)-(2.8).

In particular, for τ ≤ 1/cf , uniqueness is ensured.
Proof. Let (un, vn) be fixed in V ×H, and (un+1, vn+1), (ũn+1, ṽn+1) be two so-
lutions of (2.7)-(2.8). Denote δu = un+1− ũn+1 and δv = vn+1− ṽn+1. Subtracting
the two systems (2.8), we obtain that

β
δv

τ
+ δv −∆δu+ [f(un+1)− f(ũn+1)] = 0.

On multiplying by δu = τδv, we get

β|δv|20 + τ |δv|20 + |δu|21 + (f(un+1)− f(ũn+1), δu) = 0.

Using (2.2) and the mean value theorem, we obtain

β|δv|20 + τ |δv|20 + |δu|21 ≤ cf |δu|20.

Using δu = τδv again, together with (2.4) yields

(β + τ + λ1τ
2)|δv|20 ≤ cfτ2|δv|20.

Thus, the smallness assumption on τ implies δv = 0 and δu = 0. The proof is
complete.

The following energy estimate shows that the scheme has dissipative effects
which are stronger than what happens in the continuous case (compare with (2.6)).

Proposition 2.3 (Lyapunov stability). Assume that 1/τ ≥ cf/2 and let (un, vn)n
be a sequence which complies with (2.7)-(2.8). Then for all n ≥ 0,

En+1 + τ
(

1− τcf
2

)
|vn+1|20 +

β

2
|vn+1 − vn|20 +

1

2
|un+1 − un|21 ≤ En, (2.12)

where En = E(un, vn) and E is defined by (2.5).

Proof. By the Taylor-Lagrange theorem, from (2.2) we deduce that for all a, b ∈ R,

F (b)− F (a) ≥ (b− a)f(a)− cf
2

(b− a)2. (2.13)

Multiplying (2.8) by τvn+1 = un+1 − un yields

β(vn+1 − vn, vn+1) + τ |vn+1|20 + (∇un+1,∇(un+1 − un))

= −(f(un+1), (un+1 − un)).
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Using twice the well-known identity

(A−B,A) =
1

2
(A,A)− 1

2
(B,B) +

1

2
(A−B,A−B),

together with (2.13), we obtain

β

2
|vn+1|20 −

β

2
|vn|20 +

β

2
|vn+1 − vn|20 + τ |vn+1|20 +

1

2
|∇un+1|20 −

1

2
|∇un|20

+
1

2
|∇(un+1 − un)|20 ≤ (F (un), 1)− (F (un+1, 1) +

cf

2
|un+1 − un|20.

This proves the claim.

3. Convergence to equilibrium

For a sequence (un)n in V , we define its omega-limit set by

ω((un)n) := {u? ∈ V : ∃nk →∞, unk → u? (strongly) in V }.

Let
S := {u? ∈ V : −∆u+ f(u) = 0 in V ′}

be the set of critical points of E. The set of stationary points for (2.7)-(2.8) is
S × {0} ⊂ V ×H. We have:

Proposition 3.1. Assume that 1/τ ≥ cf/2 and let (un, vn) be a sequence in V ×H
which complies with (2.7)-(2.8). Then vn → 0 in V and ω((un)n) is a non empty
compact and connected subset of V which is included in S. Moreover, E is constant
on ω((un)n).

Proof. By (2.11), there exist positive constants C,C ′ such that for all (u, v) ∈
V ×H,

E(u, v) ≥ C|u|21 +
β

2
|v|20 − C ′. (3.1)

By (2.12), (E(un, vn))n is nonincreasing. Since E(u0, v0) <∞, from (3.1) we deduce
that (un, vn)n is bounded in V ×H and that E(un, vn) is bounded from below. Thus,
E(un, vn) converges to some E? in R. By induction, from (2.12) we also deduce that

∞∑
n=0

|un+1 − un|21 =

∞∑
n=0

τ2|vn+1|21 ≤ 2(E(u0, v0) + C ′) <∞. (3.2)

In particular, vn → 0 in V (and therefore in H). This implies that E(un) → E?,
and so E is equal to E? on ω((un)n).

Next, we claim that the sequence (un) is precompact in V . Let us first assume
d ≥ 3. For every n ≥ 0, we deduce from the Sobolev imbedding [8] that un ∈
L2?

(Ω), where 2? = 2d/(d−2). The growth condition (2.1) implies that there exists
2 ≥ q > 2d/(d + 2) such that ‖f(un+1)‖Lq(Ω) ≤ M1. By elliptic regularity [8], we
deduce from (2.8) that (un+1) is bounded in W 2,q(Ω). Finally, from the Sobolev
imbedding [8], W 2,q(Ω) is compactly imbedded in H1(Ω), and the claim is proved.

In the case d = 2, we directly obtain from the Sobolev imbedding that (f(un+1))
is bounded in any Lq(Ω), q <∞, and we conclude similarly. In the case d = 1, V is
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compactly imbedded in C0(Ω), so (f(un+1)) is uniformly bounded in L∞(Ω). We
conclude as above, and this proves the claim.

As a consequence, ω((un)n) is a non empty compact subset of V . By (3.2)
|un+1−un|1 → 0. This implies that ω((un)n) is connected and concludes the proof.

Proof of convergence to equilibrium is based on the following  Lojasiewicz-Simon
inequality.

Lemma 3.1. Let ū ∈ S. Then there exist constants θ ∈ (0, 1/2) and δ > 0 depend-
ing on ū such that for any u ∈ V satisfying |u− ū|1 < δ,

|E(u)− E(ū)|1−θ ≤ ‖ −∆u+ f(u)‖V ′ . (3.3)

Proof. This result is proved in [16, Proposition 10.4.1] (see also [4]). The authors
actually assume (d− 2)p < 2, but their proof also applies to our case (d− 2)p < 4,
cf. (2.1) (the stronger assumption in [16] is needed for the well-posedness of the
continuous problem (1.1)).

Theorem 3.1. Assume that 1/τ ≥ cf/2 and let (un, vn) be a sequence in V ×H
which complies with (2.7)-(2.8). Then the whole sequence (un, vn) converges to a
steady state (u∞, 0) in V ×H, with u∞ ∈ S.

We adapt the proof from [11] to a time semi-discrete case, using in addition the
regularization property of the scheme.
Proof. For every u? ∈ ω((un)n), there exist θ ∈ (0, 1/2) and δ > 0 which may
depend on u? such that the inequality (3.3) holds for every u ∈ Bδ(u

?) := {u ∈
V, |u − u?|1 < δ}. The union of balls {Bδ(u?) : u? ∈ ω((un)n)} forms an open
covering of ω((un)n). Due to the compactness of ω((un)n) in V , we can find a finite
subcovering {Bδi(u?i )}i=1,...,m such that the constants δi, θi corresponding to u?i in
Lemma 3.1 are indexed by i.

From the definition of ω((un)n), we know that there exists a sufficiently large n0

such that un ∈ U = ∪mi=1Bδi(u
?
i ) for all n ≥ n0. Taking θ = minni=1{θi}, we deduce

from Lemma 3.1 and Proposition 3.1 that for all n ≥ n0,

|E(un)− E∞|1−θ ≤ ‖ −∆un + f(un)‖V ′ ,

where E∞ is the value of E on ω((un)n).
Let n ≥ n0. We may assume (by taking a larger n0 if necessary) that for all

n ≥ n0, |vn|0 ≤ 1. Let Φn = E(un, vn)− E∞, so that Φn ≥ 0 and Φn decreases to
0. Using the inequality (a+ b)1−θ ≤ (a1−θ + b1−θ) valid for all a, b ≥ 0, we obtain

(Φn+1)1−θ ≤ |E(un+1)− E∞|1−θ +

(
β

2

)1−θ

|vn+1|2(1−θ)
0

≤ ‖ −∆un+1 + f(un+1)‖V ′ +

(
β

2

)1−θ

|vn+1|0

≤ C

(
β

2
|vn+1 − vn|20 +

1

2
|un+1 − un|21

)1/2

, (3.4)

where here and in the following, C denotes a constant independent of n. For the
last inequality, we have used Proposition 2.3 and (2.7)-(2.8). Assume now that
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Φn+1 > Φn/2. Then

(Φn)θ − (Φn+1)θ = θ

∫ Φn

Φn+1

xθ−1dx ≥ θΦn − Φn+1

Φn
≥ 2θ−1θ

Φn − Φn+1

(Φn+1)1−θ .

From Proposition 2.3 and (3.4), we deduce that

(Φn)θ − (Φn+1)θ ≥ C
(
β

2
|vn+1 − vn|20 +

1

2
|un+1 − un|21

)1/2

.

Now, if Φn+1 ≤ Φn/2, then by Proposition 2.3 again,

(Φn)1/2 − (Φn+1)1/2 ≥ (1− 1/
√

2)(Φn)1/2 ≥ (1− 1/
√

2)(Φn − Φn+1)1/2

≥ (1− 1/
√

2)

(
β

2
|vn+1 − vn|20 +

1

2
|un+1 − un|21

)1/2

.

Thus, for all n ≥ n0, we have

|un+1 − un|1 ≤ C
(
(Φn)θ − (Φn+1)θ

)
+ C

(
(Φn)1/2 − (Φn+1)1/2

)
.

Summing on n, we find that

∞∑
k=n

|uk+1 − uk|1 ≤ C(Φn)θ + C(Φn)1/2 <∞.

This proves that (un) converges to some u∞ in V , as n tends to∞. We have already
seen that vn → 0 in V . Letting n → +∞ in (2.7)-(2.8), we see that (u∞, 0) is a
steady state. This concludes the proof.
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