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Abstract This paper deals with the coupled Schrödinger-KdV equations by
making use of the method of dynamical systems. We obtain some exact explicit
parametric representations of the solitary wave and periodic wave solutions in
the given parameter regions, and study chaotic behavior of travelling wave
solutions.
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1. Introduction

We consider the following coupled Schrödinger-KdV system:

iφt + φxx = γφψ,

ψt + αψψx + βψxxx = |φ|2x,
(1.1)

where ψ is the real long-wave amplitude in the nonlinear dispersive medium, φ is the
complex short-wave amplitude, α, β and γ are parameters. This system arises in
various physical contexts as a model for the interaction of long and short nonlinear
waves.To our knowledge, the dynamical chaotic behavior of the travelling wave
solutions of the corresponding travelling system of (1.1) have not been considered
before.

By the following transformation

φ = u(ξ)exp[i(
c

2
x− c2

4
t− gt)], ψ = v(ξ), (1.2)

where ξ = x− ct, we have (1.3) from (1.1):

u′′ + gu = γuv,

− cv′ + αvv′ + βv′′′ = (u2)′,
(1.3)

where “′” is the derivative with respect to ξ.
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In this paper, by using the method of dynamical systems (see [2, 7–9, 11]), we
consider the dynamical chaotic behavior of the travelling wave solutions of the
corresponding travelling system of (1.1) and give possible exact explicit parametric
representations of the travelling wave solutions for (1.3).

Suppose that γ = 2
β , and let q1 = u, q2 = v, p1 = u′, p2 = v′. Then, we have

the following Hamiltonian system with two degrees of freedom:

d

dξ


q1

q2

p1

p2

 =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




−γq1q2 + gq1

−γ2 (q21 + cq2 − α
2 q

2
2)

p1

p2

 = J∇H, (1.4)

where the Hamiltonian H is given by

H(q1, q2, p1, p2) =
1

2
(p21 + gq21) +

1

2
(p22 −

cγq22
2

+
αγq32

6
)− γq21q2

2
. (1.5)

In the following, Based on the method of dynamical systems, we consider system
(1.3) and system (1.4), respectively, in next two sections.

2. The exact explicit solitary wave solution and pe-
riodic wave solutions determined by (1.3)

In this section, we consider dynamic behavior of system (1.3) in the subspace v =
bu+ d, where b and d are constants to be determined. Substituting v = bu+ d into
(1.3), it becomes two completely decoupled system (2.1)u′ = y,

y′ = bγu2 − (g − γd)u,
(2.1)

under the following conditions:
α(c− γ

2
g) + 4c = 0,

d =
2c

α
,

b2 =
2

α+ 4
.

(2.2)

System (2.1) has the Hamilton integral

H2(u, y) =
y2

2
+G(u) = h2, (2.3)

where G(u) = − bγ3 u
3+ g−γd

2 u2, and system (2.1) has two equilibrium points E0(0, 0)

and E1(u1, 0), where u1 = g−γd
bγ . It is easy to see that when g − γd > 0(< 0),

E0(0, 0) is a center (a saddle point); E1(u1, 0) is a saddle point (a center). Notice

that h0 = H2(0, 0) = 0; h1 = H2(u1, 0) = (g−γd)3
6b2γ2 .
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On the mechanics, y2

2 denotes kinetic energy; G(u) denotes the negative value
of force’s doing work, that is potential energy; h2 denotes the energy constant. By
(2.3), we know that the trajectories have the following features:

(1) The phase trajectory is symmetrical about the u axis, because if “y” is re-
placed by “−y” in Eq. (2.3), equation is the same;

(2) The u axis (y = 0) is the trajectory’s vertical isocline (except the singularity
on the u axis);

(3) For ui that makes G′(ui) = 0, the line u = ui is the trajectory’s level isocline.

If the graphics of potential energy G(u) is given, can use the following method
to draw trajectories of (2.1) on the phase plane. The method is as follows:

(1) In a Cartesian coordinate system with the axes u and y, draw the graphics
of potential energy z = G(u)(see Fig. 1). Because, for a given total energy
z = hi in the plane u − z, the kinetic energy is hi − G(u). Therefore, if
hi −G(u) < 0, there is no relative movement.

Figure 1. Energy curve of Eq. (2.3) for g − γd = 3, bγ = 3.

(2) Corresponding to the minimum z = G(u), the phase trajectory degrades into
the center-type singularity; corresponding to the maximum z = G(u), the
phase trajectory degrades into a saddle-point singularity.

(3) After draw the curve z = G(u), changing the value of z = hi, i = 0, 1, . . .
continuously in the plane u − z, we can get a series of phase trajectories(see
Fig. 2).

Thus, we obtain the following conclusion:

Theorem 2.1. Suppose that α(c− γ
2 g) + 4c = 0, d = 2c

α , b
2 = 2

α+4 .

(1) When g − γd > 0, bγ > 0, (2.3) can be written as y2 = 2h2 + 2bγ
3 u3 − (g −

γd)u2 = 2bγ
3 (u− δ11)(δ12 − u)(δ13 − u), h2 ∈ (h0, h1), and δ11 > δ12 > δ13.

(i) Corresponding to the family of periodic orbits of (2.1) defined by H2(u, y) =
h2 , h2 ∈ (h0, h1), Eq. (1.3) has a family of periodic wave solutions(see
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Figure 2. Phase portraits of Eq. (2.1) on the (u, uξ) plane for g − γd = 3, bγ = 3.

Fig. 2), which has the following parametric representation

u(ξ) = δ13 + (δ12 − δ13)sn2(Ω1ξ, k1), (2.4)

where Ω1 =
√

bγ(δ11−δ13)
6 , k1 =

√
δ12−δ13
δ11−δ13 and v(ξ) = bu(ξ) + d.

(ii) Corresponding to the homoclinic orbit of (2.1) defined by H2(u, y) = h1,
Eq. (1.3) has a solitary wave solutions of valley type(see Fig. 2), which
has the parametric representation

u(ξ) = −g − γd
2bγ

+
g − γd

2bγ
tanh2(

√
g − γd

12
ξ), v(ξ) = bu(ξ) + d. (2.5)

(2) When g − γd < 0, bγ > 0, (2.3) can be written as y2 = 2h2 + 2bγ
3 u3 − (g −

γd)u2 = 2bγ
3 (δ21 − u)(δ22 − u)(u− δ23), h2 ∈ (h1, h0), and δ21 > δ22 > δ23.

(i) Corresponding to the family of periodic orbits of (2.1) defined by H2(u, y) =
h2 , h2 ∈ (h1, h0), Eq. (1.3) has a family of periodic wave solutions(see
Fig. 3(3-1)), which has the following parametric representation

u(ξ) = δ23 + (δ22 − δ23)sn2(Ω2ξ, k2), (2.6)

where Ω2 =
√

bγ(δ21−δ23)
6 , k2 =

√
δ22−δ23
δ21−δ23 and v(ξ) = bu(ξ) + d.

(ii) Corresponding to the homoclinic orbit of (2.1) defined by H2(u, y) = h0,
Eq. (1.3) has a solitary wave solutions of valley type(see Fig. 3(3-1)),
which has the parametric representation

u(ξ) =
3(g − γd)

2bγ
− 3(g − γd)

2bγ
tanh2(

√
γd− g

2
ξ), v(ξ) = bu(ξ) + d.

(2.7)

For the cases g − γd > 0, bγ < 0(see Fig. 3(3-2)) and g − γd < 0, bγ < 0(see
Fig. 3(3-3)), the orbits defined by the vector field of (2.1) just are the refections
with respect to the y-axis in the cases g − γd > 0, bγ > 0 and g − γd < 0, bγ > 0,
respectively. Therefore, it is easy to obtain the parametric representations of solitary
wave solutions and periodic wave solutions of (1.3).
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(3-1) (3-2) (3-3)

Figure 3. Phase portraits of Eq. (2.1) on the (u, uξ) plane for (3-1) g − γd = −3, bγ = 3, (3-2)
g − γd = 3, bγ = −3, (3-3) g − γd = −3, bγ = −3.

3. The chaotic behavior of travelling wave solutions
defined by (1.4)

In this section, we assume that γc
2 > 0, c

α > 0 and the parameter γ is very small.
We denote it as ε. Namely, we see (1.4) as a perturbed Hamiltonian integrable
system of two degrees of freedom. The motion equations are given by

q′1 = p1,

p′1 = −gq1 + ε(q1q2),

q′2 = p2,

p′2 =
γc

2
q2 −

αγ

4
q22 + ε(

q21
2

),

(3.1)

with the Hamiltonian

H(q1, q2, p1, p2) =
1

2
(p21 + gq21) +

1

2
(p22 −

cγq22
2

+
αγq32

6
)− εq

2
1q2
2
. (3.2)

Our method for finding horseshoes involves the Melnikov function technique that
has been used in Melnikov [10], Arnold [1] and Holmes & Marsden [6] , to show the
existence of transverse intersections of stable and unstable manifolds and hence the
existence of horseshoes.

Let us notice that the second system can be put into action-angle variables by
the symplectic change of coordinates (q1, p1)→(I, θ)

p1 =
√

2Icosθ, q1 =

√
2I

g
sinθ. (3.3)

Then, the Hamiltonian (1.4) can be written as

H(q1, q2, p1, p2) = H1(I) +H2(q2, p2) + εH1(q1, q2, p1, p2)

= I +
1

2
(p22 −

cγq22
2

+
αγq32

6
) + ε(−I

g
q2sin2θ). (3.4)

On the (q2, p2)-phase plane, the system defined by the Hamiltonian level set of

H2(q2, p2) = h2, h2 ∈ (−c
3γ

3α2 , 0) has a family of closed orbits enclosing the center



1078 H. Li, L. Ma & K. Wang

( 2c
α , 0). When h = 0, there exists a homoclinic orbit connecting the hyperbolic

saddle point S(0, 0) which has the parametric representation

q2(ξ) =
3c

α
− 3c

α
tanh2(

1

2

√
cγ

2
ξ). (3.5)

On the (q1, p1)-phase plane, the system defined by the Hamiltonian level set of
H1(q1, p1) = H1(I) = I determines a family of periodic orbits.

Hence, in the full I − θ − q2 − p2 phase space, the unperturbed system

I ′ = 0, θ′ = 1, q′2 = p2, p′2 =
cγ

2
q2 −

αγ

4
q22 , (3.6)

has two-dimensional normally hyperbolic invariant manifolds with boundary

Π = {(I, θ, q2, p2)|I ∈ R+, θ ∈ (0, 2π), (q2, p2) = (0, 0)}.

It is worth notices that Π has three-dimensional stable and unstable manifolds
which coincide along the three-dimensional homoclinic orbit ΓS parameterized by

3c

α
− 3c

α
tanh2(

1

2

√
cγ

2
(x− x0)),−6c

α
tanh(

1

2

√
cγ

2
(x− x0)),

I, θ ∈ [−1, 1]×R×R+ × T 1|(x0, I0, θ0) ∈ R×R+ × T 1).

(3.7)

For the perturbed system of (3.1), Π persists as well as the collection of three-
dimensional energy manifolds given by the level set of (3.4), these energy manifolds
intersect Π in a periodic orbit parameterized by I.

We next compute the Melnikov integral introduced by Guckenheimer and Holmes
[3], Holmes and Marsdan [5], to determine if the two-dimensional stable and un-
stable manifolds of the periodic orbit intersect on the three-dimensional energy
surfaces. Firstly, we introduce a theorem.

Theorem 3.1 ( see [5]). Consider a two degrees of freedom Hamiltonian system of
the form

H(I, θ, q2, p2) = H1(I) +H2(q2, p2) + εH1(I, θ, q2, p2), (3.8)

and assume that H2(q2, p2) = h2 contains a homoclinic orbit (q02(x−x0), p02(x−x0))
connecting a hyperbolic saddle to itself (or to another hyperbolic saddle point). Sup-
pose Ω(I) = H ′1 > 0 for I > 0. Let h2 = H2(q02 , p

0
2) be the energy of the homoclinic

orbit and let h > h2 and l0 = H−11 (h−h2) be constants. Let {H2, H
1}(x−x0) denote

the Poisson bracket of H2(q2, p2) and H1(l0,Ω(l0)x, q2, p2) evaluated at q02(x− x0)
and p02(x− x0). Define

M(x0) =

∫ +∞

−∞
{H2, H

1}(x− x0) dx

and assume that M(x0) has simple zeros. Then for ε > 0 sufficiently small the
Hamiltonian system corresponding to (3.8) has a Smale horseshoe in its dynamics
on the energy surface H = h.
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By using Ref. [12], the Melnikov integral computed along the homoclinic loop is
given by

M(x0) =

∫ +∞

−∞
{H2, H

1}(x− x0) dx =
I

g

∫ +∞

−∞
p02(x− x0)sin2(x0 + x) dx. (3.9)

Further we see from (3.9) that

M(x0) = −3cI

αg
J sin(4x0), (3.10)

where J =
∫ +∞
−∞ cos(2x) cosh−2( 1

2

√
cγ
2 x) dx = 2

√
cγ
2

∫ +∞
−∞ cos(2

√
2cγt)sech2(t) dt,

and J can be calculated by using the residue theory [4].
In fact, let

f(z) =
4e(2+iω)z

(1 + e2z)2
,

where ω = 2
√

2cγ, then

J =
ω

2
Re(

∫ +∞

−∞
f(z) dz) =

ω

2
ReJ∗.

In the complex plane, find the area of the rectangular C with vertices ±R and
±R+ iπ, where R > 0. If y ∈ [0, π], f(R+ iy)→ 0 when R→∞, then

lim
R→∞

∮
C

f(z)dz = (1− e−πω)J∗.

Obviously, there is only one second-order pole z = π
2 i of f(z) in the area sur-

rounded by the rectangular C, and

f(z) =
4e(2+iω)z

(1 + e2z)2
=

4e(2+iω)z

(z − πi
2 )2[2 + 2(z − πi

2 ) + 23

3! (z −
πi
2 )2 + . . .]2

.

Hence,

Res[f(z),
πi

2
] = lim

z→πi
2

d

dz
[(z − πi

2
)2f(z)] = −iωe−π2 ω.

By the residue theorem, we get (1−e−πω)J∗ = 2πωe−
π
2 ω, and J = 16π

cγ csch(2
√

2
cγπ) 6=

0. Clearly, M(x0) is an oscillating function with respect to x0, i.e., there exist simple
zeros of M(x0) for all I > 0. It means that the stable and unstable manifolds of the
periodic orbits intersect transversely yielding Smale horseshoes on the appropriate
energy manifold. Thus, we have the following conclusion.

Theorem 3.2. For ε sufficiently small, the solutions of system (3.1) have chaotic
behavior in the sense that there are Smale horseshoes in its dynamics on the energy
surfaces H(q1, q2, p1, p2) = h.
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