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Abstract Using the method of dynamical systems for the the generalized
Radhakrishnan, Kundu, Lakshmanan equation, the existence of soliton solu-
tions, uncountably infinite many periodic wave solutions and unbounded wave
solution are obtained. Exact explicit parametric representations of the above
travelling solutions are given. To guarantee the existence of the above solu-
tions, all parameter conditions are determined.
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1. Introduction

In this paper, we consider the following generalized Radhakrishnan, Kundu, Lak-
shmanan (R-K-L) equation

iqt + aqxx + b|q|2mq = iλ(|q|2mq)x − iγqxxx, (1.1)

where a, b, λ and γ are constant parameters, m ≥ 1. This is the governing equation,
in dimensionless, for propagation of solitons through an optical fiber. In 2009,
A.Biswas [1] gave an 1-soliton solution by using wave ansatz method (see [1] and
its references).

There are some interesting problems: How do the travelling wave solutions de-
pend on the parameters of the system? Are there the dynamics of periodic solutions
for (1.1)? To our knowledge, these problems have not been considered before for
(1.1). In this paper, we consider the existence and dynamical behavior of the trav-
elling wave solutions of (1.1) in different regions of the parametric space, by using
the methods of dynamical systems (see [3–10]). We give possible exact explicit
parametric representations for some travelling wave solutions of (1.1). The results
of this paper more completely answer the above problems and improve the results
of [1].

To find travelling wave solutions of (1.1), we suppose that

q(x, t) = φ(ξ)ei(−κx+ωt), (1.2)
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where ξ = x − vt, v is the propagating wave velocity. Substituting (1.2) into (1.1)
and decomposing the real and imaginary parts, we have

(ω + aκ2 + γκ3)φ− (b− λκ)φ2m+1 − (a+ 3γκ)φ′′ = 0 (1.3)

and
−(v + 2aκ+ 3γκ2)φ− λφ2m+1 − γφ′′ = 0, (1.4)

where ”′” stand for the derivative with respect to ξ.
Clearly, to determine the same function φ(ξ), (1.3) and (1.4) must satisfy the

following parameter relationships:

κ =
γ − a

3γ
≡ b

λ
− 1, v = −ω − [3aκ+ (a+ 3γ)κ2 + γκ3]. (1.5)

Under the conditions of (1.5), (1.4) is equivalent to the system

dφ

dξ
= y,

dy

dξ
= −αφ− βφ2m+1, (1.6)

where α = v+2aκ+3γκ2

γ , β = λ
γ for γ 6= 0.

(1.6) has the first integral

H(φ, y) =
1

2
y2 +

α

2
φ2 +

β

2m+ 2
φ2m+2 = h. (1.7)

For m > 1, making the transformation φ = ϕ
1
m , we obtain a new system

dϕ

dξ
= y,

dy

dξ
=

(m− 1)y2 −m2ϕ2(α+ βϕ2)

mϕ
. (1.8)

This singular traveling wave system has the same invariant curve solutions as the
associated regular system (see Li and Dai [7])

dϕ

dζ
= myϕ,

dy

dζ
= (m− 1)y2 −m2ϕ2(α+ βϕ2) (1.9),

with the first integral

Hm(ϕ, y) = ϕ−
2(m−1)

m y2 +m2ϕ
2
m

(
α+

β

m+ 1
ϕ2

)
= h, (1.10)

where dξ = mϕdζ, for ϕ 6= 0. But, the phase orbits of systems (1.8) and (1.9) have
different parametric representations.

2. Bifurcations of the phase portraits of (1.6) and
(1.8)

We first discuss the bifurcations of phase portraits for the case of m = 1 of (1.6).
In this case, for αβ < 0, there exist thee equilibrium pointsO(0, 0) andB±(±φo, 0)

of (1.6), where φo =
(
−αβ
) 1

2

. When α < 0 (> 0), the origin O(0, 0) is a saddle point

( a center), while B±(±φo, 0) are centers (saddle points). Write that ho = H(φo, 0).
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Figure 1. The phase portraits of (1.6) when m = 1.

For αβ > 0, there exists only one equilibrium point O(0, 0) of (1.6). When
α < 0 (> 0), the origin O(0, 0) is a saddle point (a center) .

The following figure 1 shows the bifurcations of phase portraits of (1.6) for m = 1
in different regions of the (α, β)−parameter plane.

Second, we consider the case of m > 1 and m is a positive integer. It is easy to see

that when αβ < 0, system (1.9) has the equilibrium points E1

(
−
(
−αβ
) 1

2

, 0

)
, O(0, 0)

and E2

((
−αβ
) 1

2

, 0

)
on the ϕ−axis. Let h1 = Hm

(
±
(
−αβ
) 1

2

, 0

)
. When αβ > 0,

system (1.9) has only one equilibrium point O(0, 0).
By using the above fact to do qualitative analysis, we obtain the bifurcations of

phase portraits of (1.9) shown in Fig.2.
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Figure 2. The phase portraits of (1.8) when m > 1.

3. The parametric representations of the bounded
travelling wave solutions of (1.1) when m = 1

In this section, we use the results given by section 2 to determine the parametric
representations of the bounded phase orbits of (1.6) with m = 1 in its parameter
space. Then, we give the exact explicit travelling wave solutions of (1.1).

1. Suppose that α < 0, β > 0 (see Fig.1 (1-2)).
Corresponding to the two families of periodic orbits defined by H(φ, y) = h, h ∈

(ho, 0), we have from (1.7) that y2 = β
2 (a21(h) − φ2)(φ2 − b21(h)), where a21(h) =

1
β (|α| +

√
α2 + 4βh), b21(h) = 1

β (|α| −
√
α2 + 4βh). Thus, we have the following
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parametric representations of two families of periodic orbits (see [2]):

φ(ξ) = ±a1(h)dn(ω1ξ, k), (3.1)

where ω1 =
√

β
2 a1(h), k =

√
a21(h)−b21(h)

a21(h)
. We see from (3.1) that equation (1.1) has

the following periodic wave solutions:

q(x, t) = ±(a1dn(ω1ξ, k))ei(−κx+ωt). (3.2)

The two homoclinic orbits with ”figure eight” of (1.6) defined by H(φ, y) = 0
have the parametric representation

φ(ξ) = ±
(

2|α|
β

)
sech

(√
|α|ξ

)
. (3.3)

Hence, we obtain

q(x, t) = ±
(

2|α|
β

)
sech

(√
|α|ξ

)
ei(−κx+ωt). (3.4)

(3.4) give rise to two soliton solutions (1.1).
Corresponding to the family of periodic orbits defined by H(φ, y) = h, h ∈

(0,∞), we have from (1.7) that y2 = β
2 (a21(h) − φ2)(φ2 + (−b21(h))), b21(h) < 0.

Thus, we have the following parametric representation of the periodic family of
periodic orbits

φ(ξ) = a1(h)cn(ω2ξ, k1), (3.5)

where k1 = 1
k , k is given by (3.1), ω2 =

√
β(a21(h)−b21(h))

2 . Thus, we get the periodic

wave solutions of (1.1):

q(x, t) = a1(h)cn(ω2ξ, k1)ei(−κx+ωt). (3.6)

2. Suppose that α > 0, β > 0 (see Fig.1 (1-1)). Corresponding to the family of
periodic orbits defined by H(φ, y) = h, h ∈ (0,∞), we have the same parametric
representation of q(x, t) solutions of (1.1) as (3.6).

Specially, when α = 0, we see from (1.7) that y2 = β
2 ( 4h

β − φ
2)(φ2 + 4h

β ). In this

case,we have the parametric representation of q(x, t) as follows:

q(x, t) =

(√
4h

β

)
cn

(√
4hξ,

1√
2

)
ei(−κx+ωt). (3.7)

This gives rise to a family of periodic wave solutions of (1.1).

3. Suppose that α > 0, β < 0 (see Fig.1 (1-4)).
Corresponding to the the family of periodic orbits defined by H(φ, y) = h, h ∈

(0, ho), we have from (1.7) that y2 = |β|
2 (a22(h) − φ2)(b22(h) − φ2), where a22(h) =

1
|β| (α +

√
α2 + 4βh), b21(h) = 1

|β| (α −
√
α2 + 4βh). Thus, we have the following

parametric representation of the family of periodic orbits

φ(ξ) = b2(h)sn(
√
αξ, k2), (3.8)
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where k2 = a2(h)√
a22(h)+b

2
2(h)

. It follows the family of periodic solutions of (1.1) as

follows:
q(x, t) = b2(h)sn(

√
αξ, k2)ei(−κx+ωt). (3.9)

The two heteroclinic orbits of (1.6) defined by H(φ, y) = ho have the parametric
representations

φ(ξ) = ±
(√

α

|β|

)
tanh

(√
α

2
ξ

)
. (3.10)

Thus, we obtain

q(x, t) = ±
(√

α

|β|

)
tanh

(√
α

2
ξ

)
)ei(−κx+ωt). (3.11)

Clearly, (3.11) defines two bounded traveling wave solutions of (1.1) as ξ → ±∞.

4. The parametric representations of traveling wave
solutions of (1.1) when m ≥ 1

In this section, we consider the case m > 1. By using the results given by Fig.2
in section 2, we determine the parametric representations of some bounded phase
orbits of (1.8) in its parameter space. Then, we give the exact explicit travelling
wave solutions of (1.1).

1. Suppose that α < 0, β > 0 (see Fig.2 (2-2)).
Corresponding to the homoclinic orbit of (1.9) to the origin O(0, 0) in the right

phase plane defined byHm(ϕ, y) = 0, we see from (1.10) that y2 = m2ϕ2
(
|α| − β

m+1ϕ
2
)
.

By using the first equation of (1.8) to do integration, we obtain

ϕ(ξ) =

√
(m+ 1)|α|

β
sech

(
m
√
|α|ξ

)
. (4.1)

Therefore, we have the following soliton solution of (1.1):

q(x, t) =

(√
(m+ 1)|α|

β
sech

(
m
√
|α|ξ

)) 1
m

ei(−κx+ωt). (4.2)

We notice that for h ∈ (h1, 0), the level curves given by Hm(ϕ, y) = h define two
families of periodic orbits of (1.9). Unfortunately, we can not calculate the exact
parametric representations for these orbits.

2. Suppose that α > 0, β < 0 (see Fig.2 (2-4)).
Corresponding to the orbit of (1.8) in the right phase plane defined byHm(ϕ, y) =

0, which is an open curve in the right of the saddle point, we see from (1.10) that

y2 = m2ϕ2
(
−α+ |β|

m+1ϕ
2
)
. By using the first equation of (1.8) to do integration,

we obtain

ϕ(ξ) =

√
(m+ 1)α

|β|
csc
(
m
√
αξ
)
. (4.3)
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Therefore, we have the following unbounded wave solution of (1.1):

q(x, t) =

(√
(m+ 1)α

|β|
csc
(
m
√
αξ
)) 1

m

ei(−κx+ωt). (4.4)

5. Conclusion

To sum up, under the parameter conditions of (1.5), by using the method of dy-
namical systems, we obtain eight exact traveling wave solutions of R-K-L equation
given by (3.2),(3.4),(3.6), (3.7),(3.9),(3.11),(4.2) and (4.4), respectively, which in-
clude soliton solutions, periodic wave solutions and unbounded wave solutions. In
order to guarantee the existence of the above solutions, all parameter conditions
have been determined.
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