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Abstract The present paper studies and investigates a class of Mittag-Leffler
type multivariable functions. We derive the necessary convergence conditions
and establish several properties associated with this class and those related
with the corresponding class of fractional integral operators. New extensions
of the introduced definitions and special cases of some of the results are also
pointed out.
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1. Introduction and preliminaries

Throughout our present investigation, we use the following notations:
N:={1,2,---}, No:=NU{0}, 27 :={-1,-2,---} and Z; :=Z~ U{0},

where Z denotes the set of integers. The symbols R, R} and C denote the set of real,
positive real, and complex numbers, respectively. Boldface letters with subscript
m denote vectors of dimension m; for instances ky, = (k1, - ,kmn) € N and
Zpm = (21, , 2m) € C™. The inner product of two m-dimensional vectors u,, and
Vo, is defined by (W, Vi) i= u1v1 4+ - + U U, and (Ky,) := k1 4+ - - + Ky, denotes
the length of the vector k,,. For convenience sake, we shall use the simplified
notation:

o0 o0 o0
Z for the multiple series Z e Z .
k=0 k1=0  km=0

The one-parametric Mittag-Leffler function (named after the Swedish mathe-
matician Gosta Magnus Mittag-Leffler (1846-1927)) is an entire function defined

by ( [13])

Ea(z)zkzzom, (xeC, R(a) >0, z€C), (1.1)
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where T' (z) denotes the familiar Gamma function. A great deal of attention has
been paid to the various generalizations of the Mittag-Leffler function by many
researchers. The two-parametric Mittag-Leffler function was defined by (see [25,26];
see also [1], [5,6])

Zk

Eup(z) = kz:;) m, (0, 8€C; R(a) >0, R(B) >0), (1.2)

and the three-parametric Mittag-Leffler function introduced by Prabhaker [16, Eq.
(1.3)] (see also [10]) was defined by

k

Egﬁ(z)_];)ﬂo(]{%;, (0, B,7€C; R(a) >0, R(B)>0), (13)

where (A), (A € C) is the Pochhammer symbol defined as

e (k=0; A e C\{0}),
()‘)’C_{)\()\-l-l)"'()\‘f'k_l) (keN; xeO), (14)

and when k does not belong to N, we adopt the notation

(A +v)

[)\]V - Wa

\rveC; R(v)>0),
instead of the Pochhammer symbol defined by (1.4) (see [11]).

In fact, in Prabhakar’s paper, a convolution integral equation involving the
function EZ 5 (z) as its kernel was solved by considering a new fractional integral
operator. Kalla et al. [8] also introduced a generalized multiparameter function
of Mittag-Leffler type. For a comprehensive introduction to Mittag-Leffler type
functions of a single variable, one may refer to [4] and the newly published book [3].

Recently, Saxena et al. [19] introduced the following multivariable analogue of
the generalized Mittag-Leffler type function ( [19, p. 536, Eq. (1.14)]):

0 ky km,
EYm ) = (Yks = (V)b 21 Fm
PmsA (Z ) kz;[) F(A + <pm’km>) k‘1| km"
()‘7737[)]’2]6@7 R pJ)>0 (]:177m))? (15)

and studied the boundedness and composition properties of its related fractional
integral operator ( [19, p. 540, Eq. (4.1)]):

(EZ:,)\;(wm);a-Fw) (z)
[T B a0 -0 g )
(>a; \pj,v,w; €C; R(A) >0, R(p;j) >0 (j=1,---,m)), (1.6)

on the space L (a,b) of Lebesgue measurable functions:

b
waz{ﬂwm:/WﬂM&<w}. (L.7)
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Garg et al. [2] also introduced a Mittag-Leffler-type function of two variables which
is defined by ( [2, p. 936, Eq. (11)])

Y1, 1372, B1 T
Ey (z,y) = By

01, 0z, f2; 02, 33 03, B3| y

m n

Z Z 71 arm 72],(31n x Y
I 51 + aam + an) (52 + chm) T ((53 + 53’11)

m=0n=0

(717'72,51,52,5&33’96@3 min{al,ag,a3,61,ﬁ2,ﬁ3} >O)a (18)

and also studied its related fractional integral operator defined by ( [2, p. 942, Eq.

(38)])

py(o)
(Im) (B):(v >,<6>,<w>;a+<ﬁ) ()
= [ @ B e ) e - ™) e (O, (1.9)

where p, 1,72, 02, 03,01, 02, w1, wa € C, min {a, ag, as, f1, B2, 83,01} > 0.
A very distinctive approach mentioned in Raina [17] to generalizing the Mittag-
Leffler type function suggests the following function:

oo

:;%zk, (P, A€C; R(p) >0,R(N) >0; |2|<R), (1.10)

where o = o (k) (k € Np) is assumed to be an arbitrary bounded sequence. The
fractional integral operator containing (1.10) as its kernel is defined by

(Tnra?) () = [ Ca— M F (@@ ) o (1) dt,
(x>a; A\p,weC; R(A) >0, R(p)>0), (1.11)

and this fractional integral operator was very recently used in defining a certain
class of fractional kinetic equations by Luo and Raina [11].

In the present paper, we introduce and develop a theory of the multivariable
generalized Mittag-Lefler function defined by

m) k -
pm7 m z 1" pm,km>)211 T Zm s (112)

K =0
where A, p; € C (R (p;) >0), j =1,---,m. Here and throughout this paper,
oc=o(kn), (kmeN]),

is a suitably chosen (complex-valued) sequence such that the power series in several
complex variables converges absolutely in a polydisk determined by

Urp:={2, €C":|zj| < ReRLU{cx} (j=1,---,m)}. (1.13)

Evidently, the function (1.5) introduced by Saxena et al. in [19] and the function
(1.8) due to Garg et al. in [2] are special cases of (1.12). Furthermore, it reduces to
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Raina’s function (1.10) when m = 1. We shall present in Section 2 the conditions
of convergence of the function (1.14), especially, those which make it an entire
function.

With the help of (1.12), we define the following fractional integral operator:

(jgm%aﬁ(wmﬁ”) (z)

N / (@ =M FE (Wi (=) w (= 1)) @ (1) dt
(x>a; A\pjw; €C; R(A) >0, R(p;) >0 (j=1,---,m)). (1.14)

If we set
13 k1::km:0,
0) k1>17"'akm217

o (k) =0"(kn) = {

then the operator (1.14) reduces to the following familiar Riemann-Liouville frac-
tional integral operator (see [9, p. 69] and [18, p. 33])

" L[ A
(T2 o ®) (@) = (120) (@) = 555 [ @0 emar g > o).
(1.15)
and also the operator (1.14) obviously contains as its special cases the operators
(1.6) and (1.9).

2. Convergence of the function ffm, \ (Zm)

In this section, we first give a method to determine the radius of convergence of
the function F7, (2) defined above by (1.10). We then extend this method to
the multidimensional case in order to examine the radius of convergence of the
multivariable function defined by (1.12).

Let f(2) = > peparz’ and g (2) = Y72, biz" be two power series whose radii of
convergence are denoted by Ry and Ry, respectively. Then their Hadamard product
is the power series defined by

(f*9)(2) = axbpz*. (2.1)
k=0

The radius of convergence R of the Hadamard product series (f * g) (z) satisfies
Ry - Ry < R, which can be proved by using the root test and the submultiplicativity
of the upper limit. If one of the power series defines an entire function, then the
Hadamard product series also defines an entire function (see [7, p. 230]).

The function F7, (z) defined by (1.10) can be interpreted as the Hadamard
product of two power series given by

Zk
f(z):kzzom:Ep)\(z) (P, AEC; R(p) >0,R(\) >0; z€C), (2.2)

and

g(z)=Y o (k) (2l <), (2:3)
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that is,
o (2) = (fxg)(2) = (B, % g) (2). (2.4)

From the expression (2.4), we know that if the radius of convergence of g (z) is

determined by

JE— 1

lim |o (k)|* =71,

k—o0
then .7-";)’))\ (z) also defines an entire function on the complex plane C. It may be
pointed out that when the function ]—';’)\ is an entire function, then we need not
require that the sequence o (k) is a bounded sequence any more. If r = 0, then
Foa (z) may not be an entire function and its radius of convergence R can then be

P
found by using the relation that

=R

k—o0

— ‘ o (k)
I (pk+X)

To consider now the multidimensional case, we first recall the following result
in the theory of complex analysis of several variables.
Let

oo

Plzm)= Y okm)(z—a)™ - (2m — am)""

km=0

be a power series centered at a,, in C™. If P (z,,) is convergent in the polydisk
Az —aj| <rj,  (G=1--,m),
and is divergent in the product domain
55 —ajl >r5,  (G=1-,m),

then r,, is called an associated multiradius of convergence of P (2z,,).
An associated multiradius of convergence can be determined by the following
theorem.

Theorem 2.1. (see [14, p. 9] and [20, p. 32]) If r,, is an associated multiradius of
convergence of P (zm,), then

T T R (2.5)

We shall call this result the multidimensional analogue of the Cauchy-Hadamard
formula. If 1y = --- =1, = R, then (2.5) becomes

m o (k)| @ = R, (2.6)

(k) —00

which is more convenient to evaluate the radius of convergence for a given power
series in several complex variables.
Let

(oo}

f(zm) = Z a (km) Zfl e ZfrZ'U (zm S URf) (27)
k., =0
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and .
g(zm) = Y bkp) 2t -2k, (2zm € Ug,) (2.8)
k=0

be two power series in m complex variables, where Ug is a polydisk defined by
(1.13). The Hadamard product of f(z,,) and g (z,,) can be defined by

oo

(fx8) (2m) = > a(km)b&m) 2l - 257, (2m € Ur). (2.9)
k,,=0

We establish the following result which can be used to determine the radius of
convergence R for (fx g) (z,).

Lemma 2.1. The power series generated by Hadamard product (2.9) converges
absolutely in the polydisk Uy, where R satisfies

R> Ry R,,

where Ry and R, denote the radii of convergence of the series (2.7) and (2.8),
respectively.

Proof. Applying the formula (2.6) and using the submultiplicativity of the upper
limit, we have

1 _ 1
— = N k k (Km )
R (km1>nl |a (k) b (k)|

— 1 — 1 1
< T Kp)|® T b (k)| ®7 = .
< a0 T ) =
Hence, we get Ry R, < R. O
Lemma 2.2. For R(p;) >0 (j =1,---,m), we have
lim (P, k)| &7 = 1. (2.10)

(k) —00

Proof. It follows easily that
(Lmin R(p;) ) ™ (k) ® < (R (pm) K| =0 < (P, )| 0

1<j<m
- <k1 ) <k1 ) 1
< (1nslks) ™7 < (max 1oyl ) ™ o) .
j=1

1<j<m

By letting (k,,) — oo and noting the elementary formula that lim, nw =1, we
arrive at the desired result (2.10). O
In what follows, we write

. (1. — . — : )
T := 12%%\3(,0]), Uy 1§mjauéxmﬂ?(pj) and Wy : 1g}1gnm§R(p]). (2.11)

Theorem 2.2. Let o (k,,) be a complez-valued sequence such that

m o (kn)| ™0 = R; Y, (2.12)

(k) —00
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where R, € Ry U{oo}. Then, ]-' . (Zm) defines an entire function on C™.

In general, the associated multzmdws of convergence of F /\( Zm) can be de-
termined by using the formula that

_ o (k) Ty
lim
(k) —00 F(A+ <pm7k’m>)

Proof. In view of the Hadamard product given by (2.9), the multivariable gener-
alized Mittag-Leffler type function defined by (1.12) can be expressed as

=R (2.13)

Forx (#m) = (Ep, 2 1) (2n), (2.14)
where
o ghm -
Eppa Z F)\_|_ P K >)’ (ZmE(C ), (2.15)

is a special case of (1.5) and

h(zp):= > o(kn)2tt -2, (2m € Ug,). (2.16)
k,,=0

The function Ej,, » (zm) is an entire function and Saxena et al. used the con-
ditions stated by Srivastava and Daoust [22, p. 454] for the generalized Lauricella
series in several variables to guarantee the convergence of E, (z;). To prove
our result, we shall apply the multidimensional analogue of the Cauchy-Hadamard
formula given above by Theorem 2.1.

In fact, by using the Stirling’s formula ( [15, p. 141, Eq. (5.11.7)])

T (az 4 b) ~ V21~ (az)aHb*% (a>0,beC; |argz| <),
we have

POt (o o))~ VBRE 000) () )3

(pireC R(p)>0), j =1 mi |arg(pm k)| < 7).

which gives

1 (g
fim —— = Tm < o (217)
<k7n>—>00 |F (A + <pm7km>)| {em ) (km)—>00 <p,"”k ><p7n; nL>+>\ <km>

Since the denominator in the right-hand side of (2.17) can be expressed as
<pm km><p'm7km>+>‘7% — ‘<pm km>|<§R(pm)7km>+§R()‘)77

e <3(pwz)vk7n> arg(pm 7k7n>_cj(>‘) arg(pm Jm)
’

we have
=e Um R (o) k) RO) 1
km 77(. B —_
<pm,km><pm’ m)+A=3 ¢ em? |<pmvkm>| (Jem) ‘<pm7km>‘ {kem)

(2.18)
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Making use of the notations given in (2.11) and the condition |arg(pm,km)| < 7,
we can derive the following inequalities

(R(Pm).km) Uy

€ (em) S (& ) (219)

e% arg(pm km)+ 1t arg(pm K ) < Tt ) 5 (2.20)
and (R(pm ) km)
R(pm).km

[ e G > (o, k)72 (2.21)

Then, with the help of the inequalities (2.19)-(2.21), the left-hand side of (2.18) can
be estimated in the following manner:

(R(pm).Jem) 230
O< e (km) <e\p1+%T e?2 (km)
= 1 =

(P ) (P o) +A= | 0 (P ) (s e 7 (RO 72)

Py Ky ) (Pl 2 ms Km my Km

=0 (as (kpy) — 00).
Letting (k,,) — oo and using Lemma 2.2, we get
1

T :
)2 |0 (A + (pn, ko)) | )

which, in view of the multidimensional analogue of the Cauchy-Hadamard formula,
implies that the radius of convergence of E,  x (2z,) is equal to co.

Thus, by using Lemma 2.1, we conclude that fgm, 5 (zm) is an entire function
and this proves the first assertion of Theorem 2.2. The second assertion of Theorem
2.2 follows immediately from Theorem 2.1. O

Remark 2.1. If we put

o (k) = (Wkll)!’“ = (7];"73’,“ : (2.22)

then (2.16) becomes

h(zm):H Z (’Yj)k]. e
j=1k;=0 J°

Obviously, Ry = 1, which verifies that the function EZ: ) (2m) defined by (1.5) is
an entire function in several complex variables.

3. Basic Properties of the function Fgm,/\ (Zm)

In this section, we focus on a special case of (1.12), which could be obtained in the
following manner. Let

1
. . -1 FYowmY
zj = w2, (O <z< 1érjugnm (|wj| R) ®ei) s wi € C, R(py) > O) ,

in (1.12), where w; and p; (j =1,---,m) are parameters. The function ‘Fgm,k ()
which was originally defined on C™ now reduces to the function which is defined on
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an open interval, and we have

_ >0 0 (k) Wit .
}‘0' w Zp17"' ’wmzpm — m Z(F’m: m) 31
1 ! kzmzo T A+ (P Kon) )

The case when m = 1 reducing to the single series

o (W2’) = kZ:O lmwkzpk, (3.2)

is worthy of note. By setting w=A"" (A=3""_, \i;\; > 0), p= A and

o (k) = (=1)"T (A + pk)
T T (14 + Nk)’

n (3.2), and multiplying the resulting equation by ( ) (M =>""_, pis s € C),
we get

k
(X)M o (@) = ( ) ZH 1+uZ+Ak) (A)Ak_HEﬁiZ”:u;(Z),

which is the multiparameter function of Mittag-Lefller type defined by Kalla et al.
in [8, p. 901, Eq. (1)].

Theorem 3.1. Let A\, p;j,w; € C, R(p;) >0 (j =

1,---,m) and n € N. Then

d n
A—1 m A= 1 m
< [ FS (w2, w2’ )} ATTLES s (W12 wmT)

dz pms
(3.3)
and

/ / t>\ 1]:gm A wltpl’ e 7wmtpm) (dt)n

ATLE, Pm An (W12, wp2”™). (3.4)

Proof. The results (3.3) and (3.4) can easily be obtained by standard methods
(see, for example [19, p. 538]), and therefore, the details can well be omitted here.
O

Theorem 3.2. Let min{R (\),R(8)} >0 and R(p;) >0 (j=1,---,m). Then
B{Fg, a@iz e wnz) A By =T () Fo s @i ), (35)
where B{ - ; X, B} denotes the Euler-Beta transform defined by (see [21])
B{f(2);0,8} = /0 e () (36)
Proof. Using (3.6), we find from (3.1) that

B{fgm/\(wlzpl,--- W 2P™) )\[3}
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/1 A1 —2)! i o (k )(w’“)’“ o (wmztm)t (3.7)
0 " F<)‘ + <pm7km>) ' .

k,, =0

Upon interchanging the order of integration and summation in (3.7) which is per-
missible in view of the constraints stated with (3.5), we get

B{]_—& s (Wi2P1, - w2 )\,ﬁ}

Pm,
Wtk 1 M (o o) -1 51
_ m z Pm Km)— 1 — 2z - dZ
Z )‘+ (Pm;km)) </O ( ) )

o (k) kv K
ﬂ)k;mwwm,km»”l o

which in view of (1.12) gives the desired result (3.5). O
Theorem 3.3. Let min{R (\) ,R(s)} >0 and R(p;) >0 (j =1,---,m). Then

ﬁ{zk‘lf,‘:’m,A (W12P1, - w2 s} — i}\h (ﬂ wi) , (3.8)

S SP1 ’ ’ SPm

where h (z,,) is given by (2.16) and L{ - ;s} denotes the Laplace transform defined
by

L@ = [ e (3.9)
Proof. We have

E{z’\ 1.7-"’ )\(wlzpl Ce Wy 2™ s}

oo
)\ 1 e 5% o m
:/ Fooalwizf o wy2f™)
0

_ i 0 '~'wf,{” /OO A pm km)—1 =529,
F )\+ pm7 m>) 0
1 (k wlfl wlf’"
) m) gP1k1 ' gPmkm
K, =0
1 w1 Wm
= (G )

Remark 3.1. If we specialize o (k,,) as in (2.22), then (3.8) becomes

_ 1
E{z)‘ 1E;Y7’:7)\(wlz”1,--~ W 2™ } 7H< ) ,

which was established in [24].

We now consider the Riemann-Liouville fractional integrals and derivatives I,
and D, of the function f”  (zm) defined by (1.12).
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The Riemann-Liouville fractional integral I, 1 is given by (1.15), and the Riemann-
Liouville fractional derivative D, of order « € C, R («) > 0 is defined by (see [9, p.
70]; see also [18, Sections 2.3 and 2.4])

(D.9) @) = (3] ([25°9) (@), (@ €CR@) >0 n=[R(@]+1). (.10)

Theorem 3.4. Let a € (0,00), a, A, pj,7v;,w; € C such that N (a) >0, N (p;) >0,
RA)>0(=1,...,m). Then for x > a, there holds the relations:

(1 [t = F st =) e (= 0)™)]) @)

=(z—a)*! .7-'2,“)\+a (w1 (x—a)™ - wm (@ —a)’™) (3.11)

and
(D2 [(t— 0P s (= 0 o s - )P™)] ) (@)
=(z—a) "' F2 (w1 (z—a)™ - wm (z—a)’™). (3.12)

Pm A—a

Proof. Using (1.12) and (1.15) and applying the formula [9, p. 71, Property 2.1]:

(12 [t =" ]) (0 = gy = ™ (@B € T R (@) > 0. R(3) > 0),

we get (for z > a)

(2 [0 " FE A =) (- a)™)]) (@)

_ « - U(km)wllﬁ"'wﬁ:” A (pm km)—1
E <I“* [Z_ FO (ko) Y D o

=(@ - )M F e —a) e wn (@ —a)™™). (3.13)

Next, to establish (3.12), we have upon using (1.12) and (3.10):
(D(y |: A—1 s P1 Pm
G [t- T E @i t— ) e (- a))]) (@)
_ d " n—o A—1 s P1 Pm
(&) @ fe-0" ' B e-am - 0™)]) @)
(4 ' [(xfa))‘Jr”*o‘*l Fo (Wi (z—a)™, - w (xfa)pm)} .
dx Pm A tn—a ) s Wm

Applying now (3.3), we are easily led to the desired result (3.12). O

4. Results involving a class of operators ‘Z)i,k,aﬂ(wm)

In this section, we investigate the boundedness and composition properties of the
fractional integral operator defined by (1.14). New examples obtained by making
use of the summable hypergeometric functions are also mentioned.
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Theorem 4.1. Let A, pj,vj,w; € C R(p;) >0,R(AN)>0) (j=1,...,m) and
b > a. Suppose that o (k,,,) satisfies the condition (2.12). Then the integral operator

mew\’aﬁ(wm) is bounded on the space L (a,b) and

|72, sast]|, <M O= )™ fl, (11)

where the constant M (0 < M < 00) is given by

0 () oo [ - - ey
= ZO T A+ P k)| RO+ (R (o) Ko

(b _ CL) (%(pm),knﬁ

(4.2)

Proof. First, we note that the series given by (4.2) is convergent.
Now, by the definition of integral operator and ||.|| given by (1.14) and (1.7),
respectively, we have

|77, ol

—/ab J AR AN <xt>’“,~~,wm<xt)ﬂmno(t)dt\dx,

which upon changing the orders of integrations and using of the substitution z —t =
u yields

Hjam,A,aJr;(wm)(le

b b
< / ()] [ / (0= P |FZ (e =), ,wm@t)ﬂm)]dzl dt
a t
b b—
< [ 1ot / RO FE (o )| du| dt
a 0
b b—a R
<[l [ O e )
a 0

Using the definition (1.12) and interchanging summation and integration, we find
that

du] dt. (4.3)

|7 natsonre]

0 U)o P ey [
< Z T H ST uRFRom) km) =1y, [ |6 (¢) |dt.
—0 pma m 0 a

Expressing now the t—integral as ||¢||; and evaluating the u—integral, we are easily
lead to the result (4.1). O

Remark 4.1. Applying Theorem 4.1 to the sequence (2.22), we get the following
result (see [19, Theorem 4.1])

'm A
HEZm,/\,aJr;(wm ('DH b - a) ) £ ”30”1 )
where

B 1 T B 7 PO I YL o (b— q) REm)den)
L= > = Tl T (oK) | ROV & (R (o) Kon)]

k., =0
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Theorem 4.2. If R (A1) >0, R(A2) > 0, then

o o Q
jpwlw,,)\ha"l‘?(“’m) (jpnzu)\%a"'%(“’m)@) (I) = (jprv>\1+)\27a+;(wwL)s0) (I) ’ (44>

where the sequences o1 (1) (L, € NJ*) and o2 (ki) (ki € Ni*) satisfy the condition
(2.12) and the sequence Q = Q (1,,,) (1, € Nj") is given by

lm

Q= > o1(ln—kn)oz (kn). (4.5)

k., =0

In addition, the operator J ) is also bounded on L (a,b).

moA+A2,a4;(w

Proof. Since ¢ € L (a,b), we know from Theroem 4.1 that (jf"‘ Nasati(w )90) (2)
€ L(a,b), therefore, upon using Theorem 4.1 again, we have

Q 4 o
H (jpm,A1+/\z,a+;(wm)50) Hl = ijyiv\ha-&-'(wm) <‘7pn2“>\2,a+'(wm)@) H

< (-0 |72 e,
< 9 M, (b w)” VRO Yo, (4.6)
where
Z |01 () [l [ - e[ P (b — @) FP )
- IF A+<pm, L)) RO+ R(pm) )]
and

(b _ a) <§R(ﬂm),km>

| () [Jor [ - - - [ [P
e = ;O T A+<pm, Kn) | R O2) + R (o) Kom)]

This proves the boundedness of the operator jgzn Mt Amsati(wn) 00 L (a,b).

We now prove the composition property (4.4). Using (1.14), we have

j/;fyi,h,aﬁ(wm) (‘7;3«\2,(1+;(wm)<‘0> (@)

:/ (.7;— )M lfg'l /\l(wl(x_uyn’_._’wm(x_u)pm)

U (w—t " FT (=) w (u— )7 @ (t) dt | du

_/: o (1) dt/j (2 — )™ 1)

Fo s i —w) e wm (= w)™™)
.FZ? Ao (Wl (U—t) S, Wm (U—t)pm)du (47)

By setting now v = £=¢, the inner integral becomes

1
(CC _ t)A1+>\2—1 / 1))\171 (1 _ U)>\2—1

0

]-'gl A (W1 (@ =8)P o (= )P 0P
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Fo2 o\, (wi(z =) (1*0)“,’“ W (2 — )P (1 —v)P™) dv
—(p— Ml Z Z 1) 09 (K ) wht T2 ol o
=0 Ky, r >\1 + pm7 1m>) r (>\2 + <pm7km>)

1
. (Pm lm+km) oM em L) =1 1 X2+ (pm km)—1
(x —1t) (1-v) dv

2 (K ) w ll"l‘kl. wlerkm

>\1+>\2 1 01 <pmr71m+km>
_ —t
(I Z_Okz )\1+)\2+ <pm;1m+k >) (:C )

U AEDY Zm: 71 (L — T ()| S o= D
lm—O K, =0 (A + A2+ (pm, L)

l
A1+)\2 1 C Wiy (Pmslm)
= T —1
(@ Z r Al - A2 + <pm,lm>) (e =1)

1,,=0
=(x )R ESE i@ =) w2 — 1)), (4.8)
The result (4.4) follows immediately on using (4.7) and (4.8). O

Remark 4.2. If we choose

(71)11—k:1 <7m)lm—km (Ml)kl (Nm)k

Ly —kp) = . k,,) = . m
o1 (n —km) = G oS G e 204 o2 (km) = = !
in Theorem 4.2, then, by using ( [23, p. 17])
(-1)" (a), 1 k (=Dk
@ =map, ™ o Y

we have

L

Z (71) Lk (’Ym)szkm (Nl)kl (Nm)k,,
(I3 — kqp)! (l —km)! K4l k!

M)y, (), 1 &
:1!1 L CRIDYy

l7n~ j=1k;=0 (1 -~ lj)k- kj'

)

(), (i, =i, wy
=t em | (4.9)
. m L ,

where o F} denotes the well-known Gauss hypergeometric function (see [23, p. 18,
Eq. (17)]). By appealing to the Chu-Vandermonde identity [23, p. 19, Eq. (21)],
we obtain

(m + Hl)ll . (Ym + ,Um>l

1! a I

Thus, the relation given by (4.4) can be expressed as

QL) = m (4.10)

m m —_ 7n+ m
Ezm,h,aﬁ(wm) (EZM7)\27Q+§(“’771)§0> () = (E;)Ym7)\lll/+)\27a+ (wm)<‘0> (), (4.11)

which is equivalent to the result given in [19, Theorem 6.1].
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Theorem 4.3. Let R (A1) > 0, R(A2) > 0, and let the sequences 01 = o1 (Kum,)
(L, € NJ') and 62 = 02 (ki) (L, € NJ¥) satisfy the condition (2.12). In addition,
if the sequence @ = Q (1) (1, € NJ*) is given by

1
- la llz"':l’m:Oa
Q.= o1 (Ln — k) o (k) = 4.12
20 Jotien) {0, b2l b 21, 12
then we get
Ty swasson) (Tosmarion?) @ = (LE20) @), (@13

where IL;\JF denotes the Riemann-Liouville fractional integral operator defined by
(1.15).

Proof. The theorem follows immediately from the composition property (4.4) and
the reduction formula (1.15). O
Next, we specialize Theorem 4.2 by putting

(Vl)ll—kl ('Ym)zm_km

o1 (b — k) = (I3 — k1)! (b = km)!

and
(), (A ANk (), (F0 + NED))

B () Fom! ()
(MO N e,y £ [P (1 <i<ry), j=1,m). (414)

o9 (k) = o= P,

Here, we define the product of p Pochhammer symbols by ((ay)), = (a1),--- (ap),,
which is suggested by Miller (see [12]).
From Remark 4.2, we have

S (Wi iy,
Q(l’”):kmzzo =i T — o

0y (U8 + Ny (o, (5 + NEP))

V.

F! (( D), bl ( Dk
m lj
- o f 5% 0 0 (000, L
I g % lj)kj ((f9 N, kit
(W O, T by gy (B + NG
= lll ] 'lm Hrj+2Frj+l ! ’ ;1 ) (415)
1- meoi 1_'Yj_lj7 (frj )

where ,F, denotes the generalized hypergeometric function defined by (see, for
instance [23, p. 19, Eq. (23)]).

In general, to sum a generalized hypergeometric function at unit argument is a
very difficult task. However, major progress was achieved on this topic by Miller [12]
who gave the following interesting summation formula.
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Theorem 4.4. ( [12, p. 968]) For nonnegative integer n and positive integers (my):

rioFoin a, (fr+ Tm); 1= N, T+&), (Q+&n),

b () S0, G Gy

where m =mi+---4+my, A=b—a—m, (A\),, #0,a# fi (1<i<r).
The &1, -+ ,&n are nonvanishing zeros of the associated parametric polynomial
of degree m given by

Z Sml -1 m)r Jr Z {j} (a)l (t)l (A— t)mfl )
=0

where 7 = j1 + -+ + jr and S(Z)A s (1 <i<r) are determined by the generating
functions

my m,
. _ , .
(frta), = sV i (frta),, = ) )l
J1=0 jr=0

By applying Theorem 4.4, we have
e (BN
L=y =1, (F)
(it A ND) ey, a+ed))),

Tj+2F’I‘j+1

(ND = N9 —|—~--+N7Ef)),

(i, GG Al
where &; (J ) , §%gj> are nonvanishing zeros of the associated parametric polynomial

of degree N ( ) given by

NG NU)

Q(]) Z Z 5N<7> il" E\T,Ju)) i,

i1=0 zr =0

i1t i 4
Lty .
> { ]}(Mj)z (), (1= =y = ND — 1 = t) oy,
1=0 !
and sgn{ —js (1 <4 <r) are determined by the generating functions
N N(a)
(4) (1) o (4) (ry) 2y
(fl + x) N® ZO SN(J) i 7% ’ (frj + > <J> ZO SN{J) ir,. '
71 ZT = 7

The sequence €2 (1,,,) becomes

H (" s +N< Ny L&), A+HER),
e G (€0,

=: 0. (4.16)
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Upon using (4.14) and (4.16), the above evaluation suggests the following new
functions of Mittag-Leffler type:

b (P9 + NDY b hm
) 4.17
kgzojl_{ (fT(.f.)))kj TN+ (pm.km)) (4.17)

and

5;;37717>\ (Z"L)
Z H (; + ﬂj + N(j)) (1+ fy))lj (1 +€§\]1?J)) A gk,
1,=0j=1 G €0, T (s kem))
(4.18)

The corresponding fractional integral operators of (4.17) and (4.18) are, respective-
ly, given by

(72 rariom?) (@)
:/ DNER (i@ =) wn (m— 1)) @ () dt
and

(£72 rariom?) (@)
=/ (2= 1 ES (i (& — " o (2 — ") o (1) .

With these new notations, we have the following corollary.

Corollary 4.1. If R(A1) >0, R(A2) > 0, then

m P _ (C]
EZ‘HTJ)\lva_‘—;(wm/) <£jpmv)\27a+§(“’m)gp) (IE) - (gjpval"")‘?va"F?(“’m)gp) (ZE),

where the sequence ® = oo (k) (ky € N§) is given by (4.14) and the sequence
0 =Q(,) (kn, € N*) is given by (4.16).
In addition, the operator gj S AitAs,ati(wnm) 1S also bounded on L (a,b).
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