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CONTROL AND SYNCHRONIZATION OF
JULIA SETS GENERATED BY A CLASS OF
COMPLEX TIME-DELAY RATIONAL MAP∗
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and Yang Zhao1

Abstract In this paper, a class of complex time-delay rational map is s-
tudied by analyzing the fractal and dynamical properties of its corresponding
Julia sets (CTRM-Julia sets for short). By utilizing these given properties,
a hybrid control method which contains both state feedback and parameters
perturbation is applied to achieve the boundary control of CTRM-Julia set.
Moreover, the synchronization of two different CTRM-Julia sets is also investi-
gated by using coupling method. The synchronization index method is applied
to demonstrate the relationship between the degree of synchronization and the
coupling strength. Numerical examples are given to verify the effectiveness of
control and synchronization methods.
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1. Introduction

In the 1910s, French mathematician Gaston Julia [18] investigated the simple com-
plex map

zn+1 = z2
n + c, (1.1)

where c is a complex number, and obtained the classical Julia set. Although the
iteration pattern of system (1.1) is a simple procedure, it generates complicated
topology structure and beautiful fractal behaviors (Levin [20], Entwistle [14]).

Recently, the properties and applications of Julia sets from more general complex
maps were investigated. Saitoh et al. [29] discussed a complex system extended from
Logistic map, and got the condition under which the Julia set is Cantor set. Fornaess
[16] studied the complex Henon map and pointed out that the complex Henon map’s
maximum entropy set equals to its Julia set. By extending the complex map from
integral expression into rational expression, Blanchard et al. [10, 11] investigated
the fractal behavior of the following system

zn+1 =
zp+qn + λ

zqn
+ c, (1.2)
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where λ and c are complex numbers, p and q are positive integers. Because of the
existence of zero and pole points, system (1.2) revealed a richer variety of fractal
properties (Blanchard et al. [10, 11], Qiu et al. [27], Morabito and Devaney [25]).

Along with the theoretical researches mentioned above, the applications of Julia
sets have also generated considerable research interest in the fields of physics (Bech
[9], Wang and Chang [34], Derrida et al. [13]), biology (Levin [19], Mojica et al. [26]),
image cryptography (Sun et al. [33]),effect of noise (Argyris et al. [1–3], Andreadis
and Karakasidis [4–8], Wang et al. [35], Wang et al. [36], Wang et al. [37], Wang et
al. [38], Wang and Ge [39], Sun and Wang [32], Rani and Agarwal [28]) and so on.
In applications, the fractal behavior of a complex system is needed to be constrained
into a certain size or is needed to present the same properties with another system.
These are the problems of control and synchronization of Julia sets.

In the results of the control of Julia sets, Zhang and Liu [42] realized the control
of Julia set from system (1.1). Liu and Liu [21] extended the control method into
spatial case by studying the Julia set generated in coupled map lattice. In the
results of Zhang and Liu [42] and Liu and Liu [21], the fixed points of the systems
need to be calculable, while in Zhang [41], Zhang proposed a optimal control item,
which does not need to calculate the fixed points, to research the control of the
Julia sets from a class of complex perturbed rational map zn+1 = 1

2 (zn + λ
zqn

).

In the results of the synchronization of Julia sets, the early researches mainly
focused on the synchronization between the Julia sets of one system with different
parameters and the parameters must be given (Zhang and Liu [42], Liu and Liu [21]).
Recently, Wang and Liu [40] proposed the spatial Julia set of complex Lorenz system
and investigated its different-structure synchronization with the Julia set of complex
Henon map. In Sun et al. [31], the problem of synchronization control was solved
in the case that one of the two systems has unknown parameters.

However, as mentioned above, the previous results mainly came from the com-
plex integral expression (Zhang and Liu [42], Liu and Liu [21], Wang and Liu [40])
and trigonometric function systems (Sun et al. [31]), little is known about the con-
trol and synchronization of Julia sets from complex rational map like system (1.2).
Zhang [41] investigated the control and synchronization of the Julia sets from a
class of complex perturbed rational map zn+1 = 1

2 (zn + λ
zqn

). However, as a special

case of system (1.2), the system he investigated has no generality.

Moreover, time delays widely exit in the complex systems. The research on Julia
sets of complex time-delay system becomes a novel and interesting topic. Sun et
al. [30] investigated the properties changes of Julia set of system (1.1) when the
time-delay happen on the real axis and imaginary axis respectively.

Inspired by the above researches, this paper modifies the general complex ratio-
nal map (1.2) into a new system by adding time-delay and a complex constant λ2

into the denominator and deals with the control and synchronization of its corre-
sponding Julia sets. The new system is denoted as follows:

zn+1 =
zp+qn + λ1

zqn−t + λ2
+ c, (1.3)

where p, q, t ∈ N+ , p ≥ 2 , q > 0 , λ1 , λ2 , c are complex constants. Obviously,
If t = 0 and λ2 = 0, system (1.3) reduces to system (1.2). Furthermore, if p = 2
and λ1 = 0, system (1.3) changes into system (1.1). For convenience, the Julia set
of system (1.3) is denoted as CTRM-Julia set in this paper.
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The outline of this paper is given as below. In section 2, the definition and
some properties of the CTRM-Julia set are displayed. In section 3, a hybrid control
method which contains both state feedback and parameters perturbation is applied
to achieve the boundary control of CTRM-Julia set. Section 4 realizes the syn-
chronization of different CTRM-Julia sets by using the nonlinear coupling method.
We also analysis the relationship between the degree of synchronization and the
coupling strength in this section. At last, related conclusions are given.

2. Definition and properties of the Julia set from
complex time-delay rational map

Firstly, Let us recall the definition of Julia set from system (1.1).(Julia [18], Man-
delbrot and Van Ness [24]).

Definition 2.1. Define system (1.1) as f(zn) = z2
n + c and z0 as the initial point.

The filled Julia set of (1.1) is defined as Kf which satisfies that

Kf = {z0|fn(z0) 9∞, n→∞}.

While Julia set of system (1.1) is the boundary of Kf , i.e.s Jf = ∂Kf .

For convenience, system (1.3) is redefined as

R(zn−t, zn−t+1, . . . , zn) = zn+1 =
P (zn)

Q(zn−t)
+ c, (2.1)

where P (zn) = zp+qn + λ1 and Q(zn−t) = zqn−t + λ2. From Dedinition 2.1, it is clear
that the initial point of system (1.1) is a single value z0. While for system (2.1),
the number of initial points relies on t because of the existence of delay. That is,
when n = 0, we get the initial points of system (2.1), z−t, z−t+1, . . . , z−1, z0, which
is denoted as:

ψ = (z−t, z−t+1, . . . , z−1, z0).

Then, the definition of Julia set from system (2.1) is given as follows.

Definition 2.2. Set z−t, z−t+1, . . . , z−1 as the fixed variables and z0 = x0 + iy0 as
the free variable. The filled Julia set of system (2.1) is defined as KR such that

KR = {z0|Rn(z−t, z−t+1, ..., z0) 9∞, n→∞}.

While Julia set of system (2.1) is the boundary of KR, i.e.s JR = ∂KR.

In consideration of the circumstance that the denominator of (2.1) may equal
to 0 in the process of iteration, the following assumption is given.

Assumption 1. If there is an initial value ψ∗ = (z∗−t, z
∗
−t+1, ..., z

∗
0) and k ∈ N

satisfy that the denominator of (2.1) equal to 0 in the kth iteration of ψ∗, we regard
it as Rk(ψ∗)→∞, which illustrates that ψ∗ /∈ KR.

From the above analysis, it is clear that the trajectories of the points in the filled
Julia set KR have different boundness properties from the points out of it. In other
words, the Julia set JR is closely related to the trajectories of points in C. In order
to determine the points whose trajectories tend to infinity under function R, an
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escape criterion is needed (Julia [18], Getz and Helmstedt [17]). Thus, the following
lemmas and theorems are given which are helpful for the rest of the research in this
paper.

Lemma 2.1 (Falconer [15]). If a complex system f has attractive fixed points,
the filled Julia set Kf is the combined basin of attraction, the Julia set Jf is the
boundary of the attractive domain.

Theorem 2.1. The escape criterion of the CTRM-Julia set is SR which is denoted
as

SR = max
1≤i≤t

{|z−i| ,
1 +
√

1 + 4aibi
2ai

},

where ai =
|z−i|q

|z−i|q + |λ2|
, bi =

|λ1|
|z−i|q + |λ2|

+ |c|, ε ∈ R is an arbitrary real number.

Proof. ∀ε ∈ R, set SεR = max
1≤i≤t

{|z−i| ,
1 + ε+

√
(1 + ε)2 + 4aibi
2ai

}. When the

initial value z−t, z−t+1, ..., z−1 is given, the value of SR is fixed. If |z0| > SεR, we
have

|z1| > |
|z0|q+2 − |λ1|
|z−t|q + |λ2|

− |c||

>
|z−t|q

|z−t|q + |λ2|
|z0|2 −

|λ1|
|z−t|q + |λ2|

− |c|

= at|z0|2 − bt
> (1 + ε)|z0|.

Obviously |z1| > |z0| > SεR, similarly,

|z2| >
|z1|q+2 − |λ1|
|z−t+1|q + |λ2|

− |c|

>
|z−t+1|q

|z−t+1|q + |λ2|
|z1|2 − (

|λ1|
|z−t+1|q + |λ2|

+ |c|)

= at−1|z1|2 − bt−1

> (1 + ε)|z1|
> (1 + ε)2|z0|.

Through mathematical induction, we have

|zn| = |Rn(z−t, z−t+1, ..., z0)| > (1 + ε)n|z0| → ∞, (n→∞).

So only when |z0| < SεR, lim
n→∞

|zn| would be bounded. It is noted that it holds for

arbitrary ε > 0 here, let ε → 0, we get SεR → SR. In other words, The escape
criterion of the Julia set from system (2.1) is SR.

Theorem 2.2. For system (2.1), JR and KR are closed sets.

Proof. From Assumption 1, it is known that there exits a regionK
′

1 which contain-
s the pole point ψ∗ and its neighbourhood. If z0 ∈ K

′

1, lim
n→∞

Rn(z−t, z−t+1, ..., z0)→
∞. Besides, system (2.1) is continuous, so for arbitrary large T > 0, there exists
δ1 > 0, m > 1, such that to every z ∈ O(z0, δ1), |Rm(z−t, z−t+1, ..., z0)| > T.
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Denote K = KR ∪K
′

1 and KC = K
′

2. If z0 ∈ K
′

2, then there exists k, such that
Rk(z−t, z−t+1, ..., z0) = ∞. Rk(z−t, z−t+1, ..., z0) is continuous on coordinate z, so
there exists δ2 > 0, for arbitrary z ∈ O(z0, δ2), we have |Rk(z−t, z−t+1, ..., z0)| > T .
Thus, we get that if z0 ∈ K

′

1 ∪K
′

2, there exists neighborhood whose points belong
to K

′

1 ∪ K
′

2. So KC
R = K

′

1 ∪ K
′

2 is open set, and KR is closed set, namely Kf is
closed set.(KC means the complementary set of K in complex plane.)
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Figure 1. (a): p = 2, q > 0, λ1 = 0, λ2 = 0, c = −0.3904 − 0.58769i and t = 0 (b): p = 3, q = 1, λ1 =
0.1, λ2 = 0, c = 0, t = 1 and z−1 = 0.6 (c): p = 5, q = 2, λ1 = 0.001, λ2 = 2.5− 1.2i, c = −0.9 + 0.5i, t =
1 and z−1 = 0.6 (d): p = 3, q = 1, λ1 = 0, λ2 = 2 + 0.5i, c = −1, t = 1 and z−1 = 0.3i.

Corollary 2.1. For system (2.1), JR and KR are compact sets.

Proof. From Theorem 2.1, it is known that KR is bounded. From Theorem 2.2,
it is known that KR is closed set. Thus KR is compact set. Since JR = ∂+KR, Jf
is also compact set.
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Corollary 2.2. Infinity is an attracting fixed point of system (2.1), thus the Julia
set JR is the boundary of the attractive domain of infinity.

Proof. From Theorem 2.1, it is known that when z0 > SR, Rn(z0) → ∞ as
n → ∞, then Infinity is an attracting fixed point of system (2.1). From Lemma
2.1, it is known that the Julia set JR is the boundary of the attractive domain of
infinity.

Some simulations are represented in Fig.1. It is observed from Fig.1 that the
Julia sets from complex time-delay rational map have more complex fractal structure
than the general complex systems without time delay. In particular, when p = 2, q =
0, λ1 = 0, λ2 = 0, c = −0.3904 − 0.58769i and t = 0, the result is the Julia set of
system (1.1) (Andreadis and Karakasidis [4]).

In the next section, our solution of the control of CTRM-Julia set is to recon-
struct the attractive domain of infinity. Moreover, the attractive domain of infinity
is closely related to the trajectories of the points in complex plane, the synchroniza-
tion of CTRM-Julia sets can be obtained by changing the trajectories of points in
complex plane.

3. Control of the Julia set from complex time-delay
rational map

As mentioned in above section, we consider the problem of reconstructing the attrac-
tive domain of infinity of system (2.1) to realize the control of JR. In other words,
the controlling item u(n) we designed is needed to ensure that the fixed point is
unchanged. Furthermore, it must ensure that the fixed point is still attractive for
the following controlled system

zn+1 =
P (zn)

Q(zn−t)
+ c+ u(n). (3.1)

To make sure that the fixed point is unchanged, we apply the hybrid control method
(Luo et al. [23]) which contains both parameter perturbation and state feedback to
system (2.1).

u(n) = −α(zn+1 − zn), (3.2)

where 0 ≤ α ≤ 1. Then we get the controlled system

Ru = zn+1 = (1− α)(
P (zn)

Q(zn−t)
+ c) + αzn. (3.3)

Obviously, the controlled system (3.3) becomes the original system (2.1) when α =
0. It has been proved that the fixed point is unchanged by adding the hybrid
controlling item (Luo et al. [23]). In other words, infinity is still the fixed point of
the controlled system (3.3). In the following, we will discuss the structure of Julia
set of the controlled system (3.3). The following theorem is given:

Theorem 3.1. The escape criterion of the Julia set from the controlled system
(3.3) is SRu which is denoted as

SRu = max
1≤i≤t

{|z−i| ,
l +
√
l2 + 4aibi
2ai

},

where l = 1+α
1−α . ai and bi are the same as Theorem 2.1.
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Proof. For an arbitrary real number ε, set SεRu = max
1≤i≤t

{|z−i| ,
lε +

√
(lε)2 + 4aibi
2ai

},

where lε = 1+α+ε
1−α .

|z1| > |(1− α)(
|z0|q+2 − |λ1|
|z−t|q + |λ2|

− |c|)− α|z0||

> (1− α)at|z0|2 − α|z0| − (1− α)bt

> (1 + ε)|z0|.

Obviously |z1| > |z0| > SεRu , similarly,

|z2| > (1− α)(
|z1|q+2 − |λ1|
|z−t+1|q + |λ2|

− |c|)− α|z1|

= (1− α)at−1|z1|2 − α|z1| − (1− α)bt−1

> (1 + ε)|z1|
> (1 + ε)2|z0|.

Through mathematical induction, we have

|zn| = |(Ru)n(z−t, z−t+1, ..., z0)| > (1 + ε)n|z0| → ∞.

So only when |z0| < SεRu , lim
n→∞

|zn| would be bounded. It is noted that it holds for

arbitrary ε > 0 here, let ε → 0, we get SεRu → SRu . In other words, the escape
criterion of the Julia set from system (3.3) is SRu .
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(c) α = 0.5

Figure 2. (a): The controlled Julia set of (3.3) JRu with p = 3, q = 1, λ1 = 0, λ2 = 2 + 0.5i, c =
−1, t = 1, z−1 = 0.3i, α = 0.1 (b): JRu with the same parameters as (a) except α = 0.3. (c): JRu with
the same parameters as (a) except α = 0.5.

From Theorem 3.1, it is known that the infinity is still the attractive fixed point.
That is to say, the way to depict Julia set by constructing the attractive domain
of infinity is still valid. When α increases, it is clear that l = 1+α

1−α increases too,
namely SRu increases. When α→ 1, we have SRu →∞. Actually, when α→ 1, the
controlled system becomes zn+1 = zn which means that the values are unchanged
for all the points in complex plane. It also means that the Julia set of controlled
system covers the whole complex plane.

For example, we take p = 3, q = 1, λ1 = 0, λ2 = 2 + 0.5i, c = −1. The value of
the delay t = 1 and z−1 = 0.3i. The origin Julia set with these parameters is shown
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in Fig.1 (d) and the controlled Julia sets is shown in Fig.2. It is clear from the
simulations in Fig.2 that the controlled Julia set expands outward with the increase
of the controlled parameter α.

In the practical applications, we can take suitable values of α to have the desired
fractal behaviors of the system.

4. Synchronization of the Julia sets from complex
time-delay rational map

It is well known that chaos synchronization is one of the hottest topics in the s-
tudy of nonlinear system and is widely applied in mechanics, communication and
other different fields (Chen and Liu [12], Liu and Zhang [22]). As another typical
phenomenon in nonlinear system, the synchronization of fractal, especially the syn-
chronization of Julia sets, has also attracted significant interest in recent years. Let
us firstly recall and expand the definition of synchronization of Julia sets, which is
given by Zhang and Liu [42], to the study in this paper.

Consider two different complex time delay rational maps as follows

R1 = zn+1 =
zp+qn + λ1

zqn−t + λ2
+ c, (4.1)

and

R2 = wn+1 =
wp
∗+q∗

n + λ∗1
wq
∗

n−t∗ + λ∗2
+ c∗, (4.2)

where p∗, q∗, t∗ ∈ N+ , p∗ ≥ 2 , q∗ > 0 , λ∗1 , λ
∗
2 , c

∗ are complex constants. Define
the Julia sets of system (4.1) and (4.2) as JR1

and JR2
. A coupling term O(·) is

added to system (4.1) to associate JR1 with JR2 , we have

RO1 = R1 +O(zn, wn, λ1, λ2, t, c, λ
∗
1, λ
∗
2, t
∗, c∗, k), (4.3)

where k represents the uncertain coupling parameter or coupling strength. It is
clear that the change of k will be accompanied by the change of Julia set of coupled
system (4.3). Thus the following definition is given.

Definition 4.1 (Wang and Liu [40]). The synchronization between the Julia sets
of (4.1) and (4.2) occurs if

lim
k→k0

(
JRO

1
∪ JR2

− JRO
1
∩ JR2

)
= ∅,

or (
JRO

1
∪ JR2 − JRO

1
∩ JR2

)∣∣
k=k0

= ∅,

for some k0.

It is known that the trajectories of the points in the filled Julia set have different
boundness properties from the points out of it. In other words, the Julia sets of
system (4.1) and (4.2) are closely related to the trajectories of the points in C.
Thus, our solution of the synchronization between JR1

and JR2
is to synchronize

the trajectories.
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Theorem 4.1 (Wang and Liu [40]). The synchronization between the Julia sets of
(4.1) and (4.2) is realized if ∀υ0 ∈ C, such that

lim
n→∞

lim
k→k0

∣∣(RO1 )n(υ0)−Rn2 (υ0)
∣∣ = 0,

or
lim
n→∞

∣∣(RO1 )n(υ0)|k=k0 −Rn2 (υ0)
∣∣ = 0,

for some k0.

In addition, the following Lemma and Theorem are given which are helpful for
the following research.

Lemma 4.1 (Falconer [15]). Denote Kf as the filled Julia set of any complex system
f , for the initial point α0 ∈ Kf , we have fk(α0) ∈ Kf , k ∈ N.

Theorem 4.2. For the Julia set Kf of any complex system f , if ∃α0, n0 satisfy
that fn0(α0) /∈ Kf , then α0 /∈ Kf is also true.

Proof. Set α∗ = fn0(α0). Since α∗ /∈ Kf , we have lim
n→∞

fn(α∗) → ∞ which

indicates that lim
n→∞

fn+n0(α0)→∞. Set n+ n0 = N , we have lim
N→∞

fN (α0)→∞.
From the definition of Julia set, it is clear that α0 /∈ Kf .

Based on Theorem 4.1, the nonlinear coupling term [21, Liu & Liu]

O(zn, wn, λ1, λ2, t, c, λ
∗
1, λ
∗
2, t
∗, c∗, k)

is designed as:
O1(·) = k[R2 −R1].

Add it to system (4.1), we get the coupled system

RO1 = R1 + k[R2 −R1]. (4.4)

It is known from Theorem 2.1 that the Julia set of complex time delay system
is bounded which means that it can be obtained by calculating the iterations of the
points in a bounded space. That is, we only need to consider those initial points
in D such that JR1 ∩ JR2 ⊂ D. Then from Theorem 4.2, the scope can be further
narrowed to those points whose trajectories are still in D. For D is a bounded
space, there exists T > 0 that

max(|(R1)n(υ0)|, |(R2)n(υ0)|) < T. (4.5)

From Theorem 4.1 and (4.5), we obtain:

|(RO1 )n(υ0)− (R2)n(υ0)|
= |1− k|

∣∣(R1)n(υ0)− (R2)n(υ0)
∣∣

≤ |1− k|(2T ). (4.6)

If k → 1 in the right-hand of the above inequality (4.6), we have

|(RO1 )n(υ0)− (R2)n(υ0)| → 0.

It is evident that the synchronization of the trajectories of the systems (4.2) and
(4.4) is achieved. Based on Theorem 4.1, the synchronization between the Julia sets
of system (4.1) and system (4.2) is achieved.
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For example, the parameters of system (4.1) are chosen as p = 3, q = 1, λ1 =
0.1, λ2 = 0, c = 0, and t = 1, z−1 = 0.6. The Julia set of system (4.1) is shown in
Fig.1 (b). The parameters of system (4.2) are chosen as the same as the previous
section, its Julia set is shown in Fig.1 (d). In Fig.3, the Julia sets of coupled
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Figure 3. The parameters of system R1 are chosen as p = 3, q = 1, λ1 = 0.1, λ2 = 0, c = 0, t =
1 and z−1 = 0.6 (see Fig.1 (b)). The parameters of system R2 are chosen as p = 3, q = 1, λ1 = 0, λ2 =
2 + 0.5i, c = −1, t = 1 and z−1 = 0.3i (see Fig.1 d). Then the changes of Julia sets from the coupled
system (4.4) with different coupling strengthes are shown in: (a): k = 0, (b): k = 0.1, (c): k = 0.3, (d):
k = 0.5, (e): k = 0.7, (f): k = 0.8.

system (4.4) are present. It is apparent from Fig.3 that when k increases, the
symmetric structure of JR1

disappears along with the appearance of the outside
part of JR2

. When k → 1, JR1
becomes more and more similar with JR2

. Therefore
the synchronization between Julia sets of the system (4.1) and (4.2) is realized.

In the following, we apply the synchronization index method to quantify the
synchronization process of Julia sets. Let us firstly recall the details of the method
which is proposed by Wang and Liu [40].

1. Denote D : [a, b]× [c, d] as the initial space which satisfies that JRO
1
∪JR2

⊂ D,
where a, b, c, d ∈ N, a ≤ x0 ≤ b, c ≤ y0 ≤ d and z0 = x0 + iy0. By dividing
the two intervals, [a, b] and [c, d], into M − 1 subintervals, M2 points with the
following coordinates are obtained.x0 = a+ (i− 1)( b−a

M−1 ),

y0 = c+ (j − 1)( d−c
M−1 ).
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Each point z0 has a unique serial number (i, j) with 1 ≤ i, j ≤M .

2. Set n = 200 as the escape time limit and S = max(SR1 , SR2) as the escape
radius. A criterion φ(z0) is designed for each point as follows:

φ(z0) =



1, if |(RO1 )n(z0)| < S and |(R2)n(z0)| > S,

or |(RO1 )n(z0)| > S and |(R2)n(z0)| < S,

0, if |(RO1 )n(z0)| < S and |(R2)n(z0)| < S,

or |(RO1 )n(z0)| > S and |(R2)n(z0)| > S.

(a) (b) (c)

(d) (e) (f)

Figure 4. The parameters of systems R1 and R2 are same as Fig.3. Then the shared part and the
separated parts of J

RO
1

and JR2
with different coupling strengthes are shown in: (a):k = 0, (b):k =

0.1, (c):k = 0.3, (d):k = 0.5, (e):k = 0.7, (f):k = 0.8.

3. The synchronization index of JRO
1

and JR2 , which is defined as Φ(z0), is
calculated by:

Φ(z0) =
1

M2

∑
D

(φ(z0))

=
1

M2
[num(JRO

1
) + num(JR2)− 2num(JRO

1
∩ JR2)], (4.7)

where num(A) means the number of points in a set A under the background
of the escape time algorithm. If the JRO

1
and JR2

are separately plotted with
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red and black and their shared part is recoloured with gray (see Fig.4), then

Φ(z0) =
1

M2
(num(black) + num(red)). (4.8)

From (4.7) and (4.8), it is known that there is an inverse proportion relation-
ship between the synchronization degree and Φ(z0). That is, JRO

1
and JR2

are more similar if Φ(z0) is smaller and the synchronization is realized if the
black and red parts disappear (see Fig.4). i.e.s Φ(z0) = 0.

4. After calculating all Φ(z0) for k ∈ [0, 1] at the interval of 0.01, the change
curve of the synchronization process is illustrated in Fig.5.

As shown in Fig.5, as the coupling strength k increases, Φ(z0) becomes smaller
which indicates that the synchronization degree becomes higher. When k → 1, the
representation of Φ(z0)→ 0 indicates that JRO

1
totaly changes to JR2

. By using this
method, the relationship between the degree of synchronization and the coupling
strength can be observed visually.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

Φ
(z

0
)

Figure 5. The change curve of the synchronization process with k ∈ [0, 1] (The parameters of systems
R1 and R2 are the same as Fig.3).

5. Conclusion

In this paper, we modify the general complex rational map by adding time-delay
into the denominator. The definition of complex time-delay map is given and some
of its properties are analyzed. By adding a proper controlled item, we achieve
the boundary control of CTRM-Julia set. The synchronization between the Julia
sets of two different systems is realized by using nonlinear coupling method. The
relationship between the degree of synchronization and the coupling strength is
investigated.

The research on control and synchronization of the Julia sets from the complex
time-delay rational map is an important supplementary research on the fractal
theory, which provides theoretical support for the applications of rational Julia sets
in various fields.
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