EXISTENCE OF SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS WITH HARDY POTENTIAL*

Chuanzhi Bai

Abstract

In this paper, by using the Morse theory, we obtain the existence of nontrivial weak solutions of quasilinear elliptic systems with Hardy potential.

Keywords Quasilinear elliptic systems, morse theory, hardy potential.
MSC(2010) 35B30, 35J60, 35P15

1. Introduction

In this paper, we consider the quasilinear elliptic systems with Hardy potential

$$
\begin{cases}-\operatorname{div}\left(h_{1}\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u\right)-\frac{b_{1}}{|x|^{p}}|u|^{p-2} u=f(x, v) & \text { in } \Omega \tag{1.1}\\ -\operatorname{div}\left(h_{2}\left(|\nabla v|^{q}\right)|\nabla v|^{q-2} \nabla v\right)-\frac{b_{2}}{|x|^{q}}|v|^{q-2} v=g(x, u) & \text { in } \Omega \\ u=v=0 & \text { in } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 3)$ is a bounded domain containing the origin with smooth boundary $\partial \Omega, 1<p, q \leq 2$, and $0 \leq b_{1}<H_{p}, 0 \leq b_{2}<H_{q}$, where $H_{p}=\left(\frac{N-p}{p}\right)^{p}$ and $H_{q}=\left(\frac{N-q}{q}\right)^{q}$ are the best constants in the Hardy inequality respectively, i.e.,

$$
\begin{equation*}
\int_{\Omega} \frac{|u(x)|^{p}}{|x|^{p}} d x \leq \frac{1}{H_{p}} \int_{\Omega}|\nabla u(x)|^{p} d x, \quad u \in W_{0}^{1, p}(\Omega) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} \frac{|v(x)|^{q}}{|x|^{q}} d x \leq \frac{1}{H_{q}} \int_{\Omega}|\nabla v(x)|^{q} d x, \quad v \in W_{0}^{1, q}(\Omega) \tag{1.3}
\end{equation*}
$$

see, for instance, the paper [2]. Here

$$
W_{0}^{1, p}(\Omega)=\left\{u \in L^{p}(\Omega): \int_{\Omega}|\nabla u|^{p} d x<\infty, \text { and }\left.u\right|_{\partial \Omega}=0\right\}
$$

and

$$
W_{0}^{1, q}(\Omega)=\left\{v \in L^{q}(\Omega): \int_{\Omega}|\nabla v|^{q} d x<\infty, \text { and }\left.v\right|_{\partial \Omega}=0\right\}
$$

[^0]are equipped with the norm
$$
\|u\|_{p}=\left(\int_{\Omega}|\nabla u|^{p}\right)^{\frac{1}{p}} \text { and }\|v\|_{q}=\left(\int_{\Omega}|\nabla v|^{q}\right)^{\frac{1}{q}},
$$
respectively.
Owing to the presence of the nonhomogeneous potentials $h_{i}, i=1,2$, the system (1.1) is quasilinear. If $b_{1}=b_{2}=0$, and $p=q=2$, elliptic equations of (1.1) type has been firstly investigated by Bezerrado Ó [3], in which the author extended the results by Costa and Magalhães [4] to a more general class of operators. In [13], Zhang and Zhang investigated the system (1.1) with $b_{1}=b_{2}=0$ and $p=q=2$, in which they used variational arguments relying essentially on the minimum principle to obtain some existence results. On the other hand, the elliptic systems with singular potentials are mentioned in many papers, see for example $[6,8,12]$ in which the authors are usually interested in the critical singular case.

In this paper, motivated by the papers $[1,7,9]$, we will use Morse theory to investigate the multiplicity of solutions of problem (1.1). To the best of our knowledge, there is no effort being made in the literature to study the existence of solutions for problem (1.1). This paper will make some contribution in this research field.

2. Preliminaries

Set $X=W_{0}^{1, p}(\Omega) \times W_{0}^{1, q}(\Omega)$, then X is a Banach space with respect to the norm

$$
\|(u, v)\|=\|u\|_{p}+\|v\|_{q} .
$$

Let $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ be the p-Laplacian with $1<p<N$. We consider the eigenvalue problem for the p-Laplacian in $\Omega \subset \mathbb{R}^{N}$

$$
\begin{equation*}
-\Delta_{p} u=\lambda|u|^{p-2} u \quad \text { in } W_{0}^{1, p}(\Omega) . \tag{2.1}
\end{equation*}
$$

It is known that the first eigenvalue λ_{1} characterized by

$$
\lambda_{1}=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p} d x}{\int_{\Omega}|u|^{p} d x},
$$

which is simple and positive. Similarly, for the eigenvalue problem

$$
\begin{equation*}
-\Delta_{q} v=\mu|v|^{q-2} v \quad \text { in } W_{0}^{1, q}(\Omega), \tag{2.2}
\end{equation*}
$$

we have that the first eigenvalue

$$
\mu_{1}=\inf _{v \in W_{0}^{1, q}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla v|^{q} d x}{\int_{\Omega}|v|^{q} d x},
$$

is simple and positive. Besides, the corresponding normalized eigenfunction φ_{1} of λ_{1} is positive, and the corresponding normalized eigenfunction ψ_{1} of μ_{1} is also positive. Putting

$$
\begin{equation*}
U=\operatorname{span}\left\{\varphi_{1}\right\} \times \operatorname{span}\left\{\psi_{1}\right\}:=\left\langle\varphi_{1}\right\rangle \times\left\langle\psi_{1}\right\rangle, \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
V=\left\{(u, v) \in X: u \in\left\langle\varphi_{1}\right\rangle^{\perp}, v \in\left\langle\psi_{1}\right\rangle^{\perp}\right\} . \tag{2.4}
\end{equation*}
$$

We can easily know that V is complementary subspace of U. Hence we have the following direct sum

$$
X=U \bigoplus V
$$

If $(u, v) \in U$, we get

$$
\begin{equation*}
\|u\|_{p}^{p}=\lambda_{1} \int_{\Omega}|u(x)|^{p} d x, \quad\|v\|_{q}^{q}=\mu_{1} \int_{\Omega}|v(x)|^{q} d x . \tag{2.5}
\end{equation*}
$$

Moreover, if $(u, v) \in V$, we have

$$
\begin{equation*}
\|u\|_{p}^{p} \geq \lambda_{2} \int_{\Omega}|u(x)|^{p} d x, \quad\|v\|_{q}^{q} \geq \mu_{2} \int_{\Omega}|v(x)|^{q} d x . \tag{2.6}
\end{equation*}
$$

Regarding the functions h_{1}, h_{2}, we assume that
(H1) $h_{i}:[0,+\infty) \rightarrow \mathbb{R}, i=1,2$ are continuous and there exist $\alpha_{i}, \beta_{i}>0$, such that

$$
\alpha_{i} \leq h_{i}(t) \leq \beta_{i}, \quad \forall t \geq 0 .
$$

(H2) There are $\gamma_{i}>0, i=1,2$, such that

$$
\left(h_{1}\left(|\xi|^{p}\right)|\xi|^{p-2} \xi-h_{1}\left(|\eta|^{p}\right)|\eta|^{p-2} \eta\right) \cdot(\xi-\eta) \geq \gamma_{1}|\xi-\eta|^{p}, \quad \forall \xi, \eta \in \mathbb{R}^{N}
$$

and

$$
\left(h_{2}\left(|\xi|^{q}\right)|\xi|^{q-2} \xi-h_{2}\left(|\eta|^{q}\right)|\eta|^{q-2} \eta\right) \cdot(\xi-\eta) \geq \gamma_{2}|\xi-\eta|^{q}, \quad \forall \xi, \eta \in \mathbb{R}^{N}
$$

3. Main result

In order to obtain the main result of this paper, we make the following assumptions
(H3) $f(x, v)$ and $g(x, u)$ are two continuous functions with the subcritical growth, that is, there exist some positive constants C_{1}, C_{2} such that

$$
|f(x, v)| \leq C_{1}\left(1+|v|^{p_{1}-1}\right), \quad|g(x, u)| \leq C_{2}\left(1+|u|^{q_{1}-1}\right), \quad \forall x \in \Omega, u, v \in \mathbb{R}
$$

hold, where $1<p_{1}<p^{*}=\frac{N p}{N-p}, 1<q_{1}<q^{*}=\frac{N q}{N-q}$,
(H4) $b_{1}<H_{p} \alpha_{1}, b_{2}<H_{q} \alpha_{2}$, and
$\lim \sup _{|t| \rightarrow \infty} \frac{F(x, t)}{|t|^{q}}<\frac{1}{q}\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right) \mu_{1}, \quad \lim \sup _{|t| \rightarrow \infty} \frac{G(x, t)}{|t|^{p}}<\frac{1}{p}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right) \lambda_{1}$,
uniformly for all a.e. $x \in \bar{\Omega}$,
(H5) there exist $r>0, \hat{\lambda} \in\left(\lambda_{1}, \lambda_{2}\right)$ and $\hat{\mu} \in\left(\mu_{1}, \mu_{2}\right)$ such that

$$
\beta_{2} \mu_{1}<\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right) \hat{\mu}, \quad \beta_{1} \lambda_{1}<\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right) \hat{\lambda}
$$

and $|u|,|v| \leq r$ implies

$$
\begin{aligned}
& \frac{1}{q} \beta_{2} \mu_{1}|v|^{q} \leq F(x, v) \leq \frac{1}{q}\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right) \hat{\mu}|v|^{q}, \quad \text { a.e. } x \in \Omega \\
& \frac{1}{p} \beta_{1} \lambda_{1}|u|^{p} \leq G(x, u) \leq \frac{1}{p}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right) \hat{\lambda}|u|^{p}, \quad \text { a.e. } x \in \Omega .
\end{aligned}
$$

If (H1) and (H3) hold, then we can define the functional \mathcal{J} as follows

$$
\begin{align*}
\mathcal{J}(u, v)= & \int_{\Omega}\left[h\left(|\nabla u|^{p},|\nabla v|^{q}\right)-\frac{b_{1}}{p|x|^{p}}|u|^{p}-\frac{b_{2}}{q|x|^{q}}|v|^{q}\right] d x \\
& -\int_{\Omega} F(x, v) d x-\int_{\Omega} G(x, u) d x \tag{3.1}
\end{align*}
$$

where

$$
h(u, v)=\frac{1}{p} \int_{0}^{u} h_{1}(t) d t+\frac{1}{q} \int_{0}^{v} h_{2}(t) d t
$$

and

$$
F(x, v)=\int_{0}^{v} f(x, s) d s, \quad G(x, u)=\int_{0}^{u} g(x, s) d s
$$

It is easy to know that $\mathcal{J}^{\prime}: X \rightarrow X^{\prime}$ by

$$
\begin{align*}
& \mathcal{J}^{\prime}(u, v)(\xi, \eta) \\
= & \int_{\Omega}\left[h_{1}\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u \nabla \xi+h_{2}\left(|\nabla v|^{q}\right)|\nabla u|^{q-2} \nabla v \nabla \eta\right] d x \tag{3.2}\\
& -\int_{\Omega}\left(\frac{b_{1}}{|x|^{p}}|u|^{p-2} u \xi+\frac{b_{2}}{|x|^{q}}|v|^{q-2} v \eta\right) d x-\int_{\Omega}[f(x, v) \xi+g(x, u) \eta] d x
\end{align*}
$$

for all $(u, v),(\xi, \eta) \in X$.
Definition 3.1. We say that $(u, v) \in X$ is a weakly solution of system (1.1) if and only if the identity

$$
\mathcal{J}^{\prime}(u, v)(\xi, \eta)=0
$$

holds for all $(\xi, \eta) \in X$.
It is easy to check that (u, v) is a weak solution of problem (1.1) is equivalent to being a critical point of the functional \mathcal{J}.

Lemma 3.1. Assume that (H1), (H2) and (H4) hold. Then the functional \mathcal{J} is coercive in X, that is, $\mathcal{J}(u, v) \rightarrow+\infty$ as $\|(u, v)\| \rightarrow \infty$.
Proof. From (H4) and the continuity of the potentials F and G we have that for some $\epsilon>0$, there exists a positive constant C_{3} such that
$F(x, t) \leq \frac{1}{q}\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right)\left(\mu_{1}-\epsilon\right)|t|^{q}+C_{3}, \quad G(x, t) \leq \frac{1}{p}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right)\left(\lambda_{1}-\epsilon\right)|t|^{p}+C_{3}$,
for each $t \in \mathbb{R}$ and a.e. $x \in \Omega$. Thus, by the Sobolev inequality and (H1), for $(u, v) \in X$, we obtain

$$
\begin{aligned}
& \mathcal{J}(u, v) \\
= & \frac{1}{p} \int_{\Omega} \int_{0}^{|\nabla u|^{p}} h_{1}(t) d t d x+\frac{1}{q} \int_{\Omega} \int_{0}^{|\nabla v|^{q}} h_{2}(t) d t d x \\
& -\int_{\Omega}\left(\frac{b_{1}}{p|x|^{p}}|u|^{p}+\frac{b_{2}}{q|x|^{q}}|v|^{q}\right) d x-\int_{\Omega} F(x, v) d x-\int_{\Omega} G(x, u) d x \\
\geq & \frac{\alpha_{1}}{p} \int_{\Omega}|\nabla u|^{p} d x+\frac{\alpha_{2}}{q} \int_{\Omega}|\nabla v|^{q} d x-\frac{1}{p} \frac{b_{1}}{H_{p}} \int_{\Omega}|\nabla u|^{p} d x-\frac{1}{q} \frac{b_{2}}{H_{q}} \int_{\Omega}|\nabla v|^{q} d x
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{1}{p}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right)\left(\lambda_{1}-\epsilon\right) \int_{\Omega}|u|^{p} d x-\frac{1}{q}\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right)\left(\mu_{1}-\epsilon\right) \int_{\Omega}|v|^{q} d x-2 C_{3}|\Omega| \\
\geq & \frac{1}{p}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right)\left(1-\frac{\lambda_{1}-\epsilon}{\lambda_{1}}\right)\|u\|_{p}^{p} \\
& +\frac{1}{q}\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right)\left(1-\frac{\mu_{1}-\epsilon}{\mu_{1}}\right)\|v\|_{q}^{q}-2 C_{3}|\Omega| \rightarrow+\infty
\end{aligned}
$$

as $\|(u, v)\| \rightarrow \infty$. Hence we have that \mathcal{J} is coercive in X.
By [5], we have the following element inequalities : for any $x, y \in \mathbb{R}$, there exist constants $c_{p}, d_{p}>0$ such that

$$
\begin{equation*}
c_{p}|x-y|(|x|+|y|)^{p-2} \leq\left||x|^{p-2} x-|y|^{p-2} y\right| \leq d_{p}|x-y|^{p-1}, \quad \text { if } 1<p \leq 2 \tag{3.3}
\end{equation*}
$$

Lemma 3.2. Assume that (H1)-(H4) hold. If $b_{1}<\frac{H_{p} \gamma_{1}}{d_{p}}$ and $b_{2}<\frac{H_{q} \gamma_{2}}{d_{q}}\left(d_{p}, d_{q}\right.$ are as in (3.3), then \mathcal{J} satisfies the $(P S)$ condition.
Proof. Let $\left\{z_{n}=\left(u_{n}, v_{n}\right)\right\}$ is a (P.S.) sequence of \mathcal{J}, we get $\left\{\left(u_{n}, v_{n}\right)\right\}$ must be bounded by Lemma 3.1. Then passing to a subsequence if necessary, there exists $z=(u, v) \in X$ such that $\left(u_{n}, v_{n}\right) \rightharpoonup(u, v)$ weakly in X.

$$
\begin{align*}
& \mathcal{J}^{\prime}(z)\left(z-z_{n}\right) \\
= & \int_{\Omega}\left[h_{1}\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u\left(\nabla u-\nabla u_{n}\right)+h_{2}\left(|\nabla v|^{q}\right)|\nabla v|^{q-2} \nabla v\left(\nabla v-\nabla v_{n}\right)\right] d x \\
& -\int_{\Omega}\left(\frac{b_{1}}{|x|^{p}}|u|^{p-2} u\left(u-u_{n}\right)+\frac{b_{2}}{|x|^{q}}|v|^{q-2} v\left(v-v_{n}\right)\right) d x \\
& -\int_{\Omega}\left[f(x, v)\left(u-u_{n}\right)+g(x, u)\left(v-v_{n}\right)\right] d x \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{J}^{\prime}\left(z_{n}\right)\left(z_{n}-z\right) \\
= & \int_{\Omega}\left[h_{1}\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}\left(\nabla u_{n}-\nabla u\right)+h_{2}\left(\left|\nabla v_{n}\right|^{q}\right)\left|\nabla v_{n}\right|^{q-2} \nabla v_{n}\left(\nabla v_{n}-\nabla v\right)\right] d x \\
& -\int_{\Omega}\left(\frac{b_{1}}{|x|^{p}}\left|u_{n}\right|^{p-2} u_{n}\left(u_{n}-u\right)+\frac{b_{2}}{|x|^{q}}\left|v_{n}\right|^{q-2} v_{n}\left(v_{n}-v\right)\right) d x \\
& -\int_{\Omega}\left[f\left(x, v_{n}\right)\left(u_{n}-u\right)+g\left(x, u_{n}\right)\left(v_{n}-v\right)\right] d x \tag{3.5}
\end{align*}
$$

By (3.4) and (3.5) we obtain

$$
\begin{aligned}
& \mathcal{J}^{\prime}\left(z_{n}\right)\left(z_{n}-z\right)+\mathcal{J}^{\prime}(z)\left(z-z_{n}\right) \\
& =\int_{\Omega}\left(h_{1}\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-h_{1}\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x \\
& \quad+\int_{\Omega}\left(h_{2}\left(\left|\nabla v_{n}\right|^{q}\right)\left|\nabla v_{n}\right|^{q-2} \nabla v_{n}-h_{2}\left(|\nabla v|^{q}\right)|\nabla v|^{q-2} \nabla v\right) \cdot\left(\nabla v_{n}-\nabla v\right) d x \\
& \quad-\int_{\Omega} \frac{b_{1}}{|x|^{p}}\left(\left|u_{n}\right|^{p-2} u_{n}-|u|^{p-2} u\right) \cdot\left(u_{n}-u\right) d x \\
& \quad-\int_{\Omega} \frac{b_{2}}{|x|^{q}}\left(\left|v_{n}\right|^{q-2} v_{n}-|v|^{q-2} v\right) \cdot\left(v_{n}-v\right) d x
\end{aligned}
$$

$$
\begin{equation*}
-\int_{\Omega}\left[\left(f\left(x, v_{n}\right)-f(x, v)\right)\left(u_{n}-u\right)+\left(g\left(x, u_{n}\right)-g(x, u)\right)\left(v_{n}-v\right)\right] d x . \tag{3.6}
\end{equation*}
$$

By using (H2), we obtain

$$
\begin{align*}
& \int_{\Omega}\left(h_{1}\left(\left|\nabla u_{n}\right|^{p}\right)\left|\nabla u_{n}\right|^{p-2} \nabla u_{n}-h_{1}\left(|\nabla u|^{p}\right)|\nabla u|^{p-2} \nabla u\right) \cdot\left(\nabla u_{n}-\nabla u\right) d x \\
\geq & \gamma_{1} \int_{\Omega}\left|\nabla u_{n}-\nabla u\right|^{p} d x, \tag{3.7}\\
& \int_{\Omega}\left(h_{2}\left(\left|\nabla v_{n}\right|^{q}\right)\left|\nabla v_{n}\right|^{q-2} \nabla v_{n}-h_{2}\left(|\nabla v|^{q}\right)|\nabla v|^{q-2} \nabla v\right) \cdot\left(\nabla v_{n}-\nabla v\right) d x \\
\geq & \gamma_{2} \int_{\Omega}\left|\nabla v_{n}-\nabla v\right|^{q} d x . \tag{3.8}
\end{align*}
$$

From (3.3), we have for $1<p, q \leq 2$ that

$$
\begin{align*}
& \quad \int_{\Omega} \frac{b_{1}}{|x|^{p}}\left(\left|u_{n}\right|^{p-2} u_{n}-|u|^{p-2} u\right) \cdot\left(u_{n}-u\right) d x \leq d_{p} \int_{\Omega} \frac{b_{1}}{|x|^{p}}\left|u_{n}-u\right|^{p} d x \tag{3.9}\\
& \leq \\
& \leq \frac{d_{p} b_{1}}{H_{p}} \int_{\Omega}\left|\nabla\left(u_{n}-u\right)\right|^{p} d x,
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\Omega} \frac{b_{2}}{|x|^{q}}\left(\left|v_{n}\right|^{q-2} v_{n}-|v|^{q-2} v\right) \cdot\left(v_{n}-v\right) d x \leq d_{q} \int_{\Omega} \frac{b_{2}}{|x|^{q}}\left|v_{n}-v\right|^{q} d x \tag{3.10}\\
\leq & \frac{d_{q} b_{2}}{H_{q}} \int_{\Omega}\left|\nabla\left(v_{n}-v\right)\right|^{q} d x .
\end{align*}
$$

Moreover, using (H3), Holder's inequality and the compact embedding, we deduce that

$$
\begin{align*}
& \left.\mid \int_{\Omega} f\left(x, v_{n}\right)-f(x, v)\right)\left(u_{n}-u\right) d x \mid \\
\leq & C_{1} \int_{\Omega}\left(2+\left|v_{n}\right|^{p_{1}-1}+|v|^{p_{1}-1}\right)\left|u_{n}-u\right| d x \\
\leq & C_{1}\left(2|\Omega|^{\frac{p_{1}-1}{p_{1}}}+\left\|v_{n}\right\|_{L_{p_{1}}}^{p_{1}-1}+\|v\|_{L_{p_{1}}}^{p_{1}-1}\right)\left\|u_{n}-u\right\|_{L_{p_{1}}} \rightarrow 0, \tag{3.11}
\end{align*}
$$

as $n \rightarrow \infty$, and

$$
\begin{align*}
& \left|\int_{\Omega}\left(g\left(x, u_{n}\right)-g(x, u)\right)\left(v_{n}-v\right) d x\right| \\
\leq & C_{2} \int_{\Omega}\left(2+\left|u_{n}\right|^{q_{1}-1}+|u|^{q_{1}-1}\right)\left|v_{n}-v\right| d x \\
\leq & C_{2}\left(2|\Omega|^{\frac{q_{1}-1}{q_{1}}}+\left\|u_{n}\right\|_{L_{q_{1}}}^{q_{1}-1}+\|u\|_{L_{q_{1}}}^{q_{1}-1}\right)\left\|v_{n}-v\right\|_{L_{q_{1}}} \rightarrow 0, \tag{3.12}
\end{align*}
$$

as $n \rightarrow \infty$.
From (3.6)-(3.12), we get

$$
\begin{aligned}
0 \leq & \left(\gamma_{1}-\frac{d_{p} b_{1}}{H_{p}}\right) \int_{\Omega}\left|\nabla u_{n}-\nabla u\right|^{p} d x+\left(\gamma_{2}-\frac{d_{q} b_{2}}{H_{q}}\right) \int_{\Omega}\left|\nabla v_{n}-\nabla v\right|^{q} d x \\
\leq & \mathcal{J}^{\prime}\left(z_{n}\right)\left(z_{n}-z\right)+\mathcal{J}^{\prime}(z)\left(z-z_{n}\right) \\
& +\int_{\Omega}\left[\left(f\left(x, v_{n}\right)-f(x, v)\right)\left(u_{n}-u\right)+\left(g\left(x, u_{n}\right)-g(x, u)\right)\left(v_{n}-v\right)\right] d x \rightarrow 0,
\end{aligned}
$$

as $n \rightarrow \infty$, which implies that $\lim _{n \rightarrow \infty}\left\|u_{n}-u\right\|_{p}=\lim _{n \rightarrow \infty}\left\|v_{n}-v\right\|_{q}=0$, that is, $\left\{\left(u_{n}, v_{n}\right)\right\}$ converges strongly to (u, v) in X. Hence, \mathcal{J} satisfies the (PS) condition.

In the following, let U and V are as in (2.3) and (2.4), respectively.
Lemma 3.3. Assume that (H1) and (H5) hold. Then the functional \mathcal{J} has a local linking at the origin with respect to $X=U \bigoplus V$.

Proof. (i) Let $(u, v) \in U$. Since

$$
\begin{equation*}
\|(u, v)\| \rightarrow 0 \Rightarrow \int_{\Omega}|u(x)|^{p} d x \rightarrow 0, \int_{\Omega}|v(x)|^{q} \rightarrow 0 \tag{3.13}
\end{equation*}
$$

by (2.5), we have that for given $r>0$, there is some $\rho>0$ small enough such that

$$
\begin{equation*}
(u, v) \in U,\|(u, v)\| \leq \rho \Rightarrow|u(x)| \leq r,|v(x)| \leq r, \text { a.e. } x \in \Omega . \tag{3.14}
\end{equation*}
$$

Now on U, we have by (H1) and (H5) that for $(u, v) \in U$ with $\|(u, v)\| \leq \rho$,

$$
\begin{aligned}
\mathcal{J}(u, v)= & \frac{1}{p} \int_{\Omega} \int_{0}^{|\nabla u|^{p}} h_{1}(t) d t d x+\frac{1}{q} \int_{\Omega} \int_{0}^{|\nabla v|^{q}} h_{2}(t) d t d x \\
& -\int_{\Omega}\left(\frac{b_{1}}{p|x|^{p}}|u|^{p}+\frac{b_{2}}{q|x|^{q}}|v|^{q}\right) d x-\int_{\Omega} F(x, v) d x-\int_{\Omega} G(x, u) d x \\
\leq & \frac{\beta_{1}}{p} \lambda_{1} \int_{\Omega}|u|^{p} d x+\frac{\beta_{2}}{q} \mu_{1} \int_{\Omega}|v|^{q} d x-\int_{\Omega} F(x, v) d x-\int_{\Omega} G(x, u) d x \\
= & \int_{\{|u| \leq r\}}\left(\frac{1}{p} \beta_{1} \lambda_{1}|u|^{p}-G(x, u)\right) d x \\
& +\int_{\{|v| \leq r\}}\left(\frac{1}{q} \beta_{2} \mu_{1}|v|^{q}-F(x, v)\right) d x \leq 0 .
\end{aligned}
$$

(ii) Let $(u, v) \in V$. By (2.6), the Sobolev embedding, (H1) and (H5), we obtain that for $(u, v) \in V$ with $\|(u, v)\| \leq \rho$,

$$
\begin{aligned}
\mathcal{J}(u, v)= & \frac{1}{p} \int_{\Omega} \int_{0}^{|\nabla u|^{p}} h_{1}(t) d t d x+\frac{1}{q} \int_{\Omega} \int_{0}^{|\nabla v|^{q}} h_{2}(t) d t d x \\
& -\int_{\Omega}\left(\frac{b_{1}}{p|x|^{p}}|u|^{p}+\frac{b_{2}}{q|x|^{q}}|v|^{q}\right) d x \\
& -\frac{1}{p} \hat{\lambda}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right) \int_{\Omega}|u|^{p} d x-\frac{1}{q} \hat{\mu}\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right) \int_{\Omega}|v|^{q} d x \\
& -\int_{\{|u| \leq r\}}\left(G(x, u)-\frac{1}{p} \hat{\lambda}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right)|u|^{p}\right) d x \\
& -\int_{\{|u|>r\}}\left(G(x, u)-\frac{1}{p} \hat{\lambda}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right)|u|^{p}\right) d x \\
& -\int_{\{|v| \leq r\}}\left(F(x, v)-\frac{1}{q} \hat{\mu}\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right)|v|^{q}\right) d x \\
& -\int_{\{|v|>r\}}\left(F(x, v)-\frac{1}{q} \hat{\mu}\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right)|v|^{q}\right) d x
\end{aligned}
$$

$$
\begin{aligned}
\geq & \frac{1}{p}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right)\left(1-\frac{\hat{\lambda}}{\lambda_{2}}\right)\|u\|_{p}^{p}+\frac{1}{q}\left(\alpha_{2}-\frac{b_{2}}{H_{q}}\right)\left(1-\frac{\hat{\mu}}{\mu_{2}}\right)\|v\|_{q}^{q} \\
& -C_{6} \int_{\{|v|>r\}}|v|^{q_{2}} d x-C_{7} \int_{\{|u|>r\}}|u|^{p_{2}} d x \\
\geq & \frac{1}{p}\left(\alpha_{1}-\frac{b_{1}}{H_{p}}\right)\left(1-\frac{\hat{\lambda}}{\lambda_{2}}\right)\|u\|_{p}^{p}+\frac{1}{q}\left(\alpha_{2}-\frac{b_{2}}{H_{q} \alpha_{2}}\right)\left(1-\frac{\hat{\mu}}{\mu_{2}}\right)\|v\|_{q}^{q} \\
& -C_{8}\|u\|_{p}^{p_{2}}-C_{9}\|v\|_{q}^{q_{2}}
\end{aligned}
$$

where $C_{i}(i=6, \ldots, 9)$ are positive constants, $p<p_{2} \leq p^{*}$ and $q<q_{2} \leq q^{*}$. Thus, the last inequality implies that $\mathcal{J}(u, v)>0$ for $0<\|(u, v)\| \leq \rho$ with $\rho>0$ small. The proof is complete.
Lemma 3.4 ([10]). Let E be a Banach space and $f: E \rightarrow \mathbb{R}$ a C^{1}-functional satisfying the (PS) condition. Assume that f has a local linking to the decomposition $E=U \bigoplus V$ near the origin, where $\operatorname{dim} U=m<\infty$. If $0 \in E$ is the unique critical point of f in B_{ρ}, then

$$
C_{m}(f, 0)=H_{m}\left(f_{c} \cap B_{\rho}, f_{c} \cap B_{\rho} \backslash\{0\}\right) \neq 0
$$

From the proof of Lemma 3.3, we can get that there exists a $\rho_{0}>0$ such that for any $0<\rho<\rho_{0}$,

$$
\begin{array}{ll}
\mathcal{J}(u, v)>0, & \text { for }(u, v) \in B_{\rho} \cap V \backslash\{0\}, \\
\mathcal{J}(u, v) \leq 0, & \text { for }(u, v) \in B_{\rho} \cap U,
\end{array}
$$

where $B_{\rho}=\{(u, v) \in X:\|(u, v)\| \leq \rho\}$. From this point of view, we can conclude that $(0,0) \in X$ is the unique critical point of our \mathcal{J} in a ball that is small enough. Since $\operatorname{dim} U=\operatorname{dim}\left\langle\varphi_{1}\right\rangle \times\left\langle\psi_{1}\right\rangle=2<\infty$, by Lemmas 3.3 and 3.4, we have
Lemma 3.5. Let (H1)-(H5) hold. Then $(0,0)$ is a critical point of \mathcal{J} and $C_{2}(\mathcal{J},(0,0)) \neq 0$.
Lemma 3.6 ([11]). Let X be a real Banach space and let $\Phi \in C^{1}(X, \mathbb{R})$ satisfy the (PS) condition and be bounded from below. If Φ has a critical point that is homologically nontrivial and is not the minimizer of Φ, then Φ has at least three critical points.
Theorem 3.1. Assume that (H1)-(H5) hold. If

$$
b_{1}<\min \left\{1, \alpha_{1}, \frac{\gamma_{1}}{d_{p}}\right\} H_{p}, \quad b_{2}<\min \left\{1, \alpha_{2}, \frac{\gamma_{2}}{d_{q}}\right\} H_{q}
$$

then the problem (1.1) has at least two nontrivial weak solutions in X.
Proof. By Lemmas 3.1 and 3.2, \mathcal{J} is coercive and satisfies the (PS) condition. Hence \mathcal{J} is bounded below. By Lemma 3.5, $(0,0) \in X$ is homologically nontrivial critical point of \mathcal{J} but not a minimizer. Then the conclusion follows from Lemma 3.6.

Acknowledgements

The author thanks the editor and reviewer for their important and valuable comments.

References

[1] G. Afrouzi, N.T. Chung and Z. Naghizadeh, On some quasilinear elliptic systems with singular and sign-changing potentials. Mediterr. J. Math., 11(2014), 891-903.
[2] G.P. García Azorero and I. Peral, Hardy inequalities and some critical elliptic and parabolic problems. J. Diff. Equ., 144(1998), 441-476.
[3] J. Bezerrado Ó, Existence of solutions for quasilinear elliptic equations. J. Math. Anal. Appl., 207(1997), 104-126.
[4] D. Costa and C. Magalhẽs, Existence results for perturbations of the pLaplacian. Nonlinear Anal., 24(1995), 409-418.
[5] L. Damascelli, Comparision theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonity results. Ann. Inst. H. Poincaré Anal. Non Linéaire, 15(1998), 493-516.
[6] L. Ding and S. Xiao, Solutions for singular elliptic systems involving HardySobolev critical nonlinearity. Differ. Equ. Appl. 2(2010), 227-240.
[7] F. Ferrara and G.M. Bisci, Existence results for elliptic problems with Hardy potential. Bull. Sci. math., 138(2014), 846-859.
[8] T. Hsu and H. Li, Multiplicity of positive solutions for singular elliptic systems with critical Sobolev-Hardy and concave exponents. Acta Math. Sci., 31(2011), 791-804.
[9] D. Liu and P. Zhao, Multiple nontrivial solutions to p-Kirchhoff equation. Nonlinear Anal., 75(2012), 5032-5038.
[10] J. Liu, The Morse index of a saddle point. Syst. Sci. Math. Sci., 2(1998), 32-39.
[11] J. Liu and J. Su, Remarks on multiple nontrivial solutions for quasi-linear resonant problems. J. Math. Anal. Appl., 258(2001), 209-222.
[12] J. Long and J. Yang, Existence results for critical singular elliptic systems. Nonlinear Anal., 69(2008), 4199-4214.
[13] J. Zhang and Z. Zhang, Existence results for some nonlinear elliptic systems. Nonlinear Anal., 71(2009), 2840-2846.

[^0]: Email address: czbai@hytc.edu.cn
 Department of Mathematics, Huaiyin Normal University, Jiangsu, 223300
 Huaian, China
 *The author were supported by National Natural Science Foundation of China (11571136 and 11271364).

