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LONG TIME BEHAVIOR OF STOCHASTIC
MHD EQUATIONS PERTURBED BY

MULTIPLICATIVE NOISES∗
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Abstract In this paper, 2-dimensional (2D) magnetohydrodynamics (MHD)
equations perturbed by multiplicative noises in both the velocity and the mag-
netic field is studied. We first considered the stability, or the upper semi-
continuity, for equivalent random dynamical systems (RDS), and then applying
the abstract result we established the existence and the upper semi-continuity
of tempered random attractors for the stochastic MHD equations. This re-
sult shows that the asymptotic behavior of MHD equations is stable under
stochastic perturbations.
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1. Introduction

This paper deals with the long time behavior of the following stochastic Magneto-
hydrodynamics (MHD) equations defined on a bounded domain O ⊂ R2:

(SMHD)



du+
[
(u · ∇)u− 1

Re
4u− S(B · ∇)B +∇

(
p+

S|B|2

2

)]
dt

= f(x)dt+ εu ◦ dW1(t),

dB +
[
(u · ∇)B − (B · ∇)u+

1

Rm
c̃url (curl B)

]
dt = εB ◦ dW2(t),

div u = 0, div B = 0,

in which ε is considered in [0, 1] ⊂ R and when ε = 0, the equations reduce to
deterministic ones, see Temam [34] and Sermange & Temam [32]. This system
models a viscous incompressible and resistive fluid, whose density is supposed to be
always 1 for simplicity, filling a region O of the space R2. The model is interpreted
as follows, see for instance Sermange & Temam [32] and Cowling [14]:

• u = (u1(x, t), u2(x, t)), the velocity of the particulate of fluid which is at point
x at time t

• B = (B1(x, t), B2(x, t)), the magnetic field at point x at time t

• p = p(x, t), the pressure of the fluid
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• f(x) = (f1(x), f2(x)), a volume density force

• Re, the Reynolds number
Rm, the magnetic Reynolds number
S = M2/ReRm, where M is the Hartman number

• W1(t) and W2(t) are mutually independent two-sided real-valued Winner pro-
cesses on a probability space.

The boundary condition in this paper is taken as{
u(x, t) = 0 on Γ (non slip condition),

B · n = 0 and curl B = 0 on Γ (perfectly conducting wall),

where Γ is the boundary of O and n is the unit outward normal on Γ. In this 2D
case, operators are classically defined by

curl B =
∂B2

∂x1
− ∂B1

∂x2
, div B =

∂B1

∂x1
+
∂B2

∂x2
,

for every vector function B = (B1, B2), and

c̃url g =
( ∂g
∂x2

,− ∂g

∂x1

)
, ∇g =

( ∂g
∂x1

,
∂g

∂x2

)
, 4g =

∂2g

∂x2
1

+
∂2g

∂x2
2

,

for every scalar function g.
Because of their important physical applications and the mathematical prop-

erties that they have both the character of Navier-Stokes equations (see, e.g.,
[7,8,12,33]) and that of Maxwell equations (see, e.g., [1,20]), MHD equations have
drawn much attention and some remarkable works can be seen in the literature. For
long time behavior of MHD equations, Sermange & Temam [32] and Temam [34]
investigated both 2D and 3D deterministic MHD equations (with ε = 0) and con-
structed the global attractor for the equations, Zhao & Li [41] studied the stochastic
MHD equations perturbed by additive noises and obtained the existence of the ran-
dom attractor. Also, Barbu & Da Prato [4] proved the existence of solutions, as
well as the unique existence of an invariant measure, to a kind of stochastic MHD
equations.

In this paper, we focus on the upper semi-continuity as well as the existence
of random attractors for MHD equations (SMHD). The concept of random attrac-
tors for RDS is a generalization of global attractors for deterministic autonomous
systems and pullback attractors for deterministic non-autonomous systems, see for
instance [9, 27, 28, 36, 37, 39]. The upper semi-continuity of random attractors is
known as a relation between global attractors and random attractors and it pro-
vides a view that the deterministic system is stable under perturbations after a long
time, see Cui et al. [15,16,26], Robinson [31], Wang [35], and see also [6,10,11,24,25]
for instance.

To investigate the equations (SMHD), we employ the idea of equivalent RDS
(Definition 2.1) to transform the stochastic differential equation (SDE) (SMHD)
to a random differential equation (RDE). Actually, for the existence of random
attractors for stochastic differential equations (SDE), the equivalence of RDS, or
say the conjugation of flows, has been studied and the idea has been used quite
often, see for instance [18, 21, 30, 38]. Since it is known that equivalent RDS have
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the same intrinsic asymptotic notions, such as Lyapunov exponents and random
attractors, as pointed out by Qiao & Duan [30] and Imkeller & Lederer [21], see
also Imkeller & Schmalfuss [22], one may expect that the random attractors for
equivalent RDS should have the same upper semi-continuity. Indeed, it is proved in
this paper under some conditions, such as the family of cohomology (Definition 2.1)
is almost surely a component of continuous semigroup of bounded linear operators
on a Banach space, see Proposition 2.1. This result allows us to investigate the
upper semi-continuity of random attractors for a RDS by studying other equivalent
ones instead of itself.

To simplify the representation of analysis and calculations of nonlinear terms we
employ two trilinear operators b and b, which will be specified in Section 3.1. This
is motivated by Temam [34] and Sermange & Temam [32] where deterministic cases
were investigated. It is remarkable that the two operators also play an important
role in the study of Navier-Stokes equations, see for instance Flandoli & Schmalfuss
[19], Temam [33], Brzezniak et al. [7,8], Caraballo et al. [12] and references therein.

Main Result. Assume that f(x) ∈ L2(O). Then for each ε ∈ (0, 1], the RDS
generated by equations (SMHD) possesses a unique tempered random attractor
Aε = {Aε(ω)}ω in H. Moreover, it holds true almost surely that

lim
ε→0+

distH
(
Aε(ω),A

)
= 0,

where A is the global attractor for system (SMHD) with ε = 0.

This paper is arranged as follows. In Section 2, we introduce some basic and
important concepts related to RDS, among which is an idea of equivalence of RDS.
In Section 3, we make some settings for equations (SMHD) in a mathematical view
and we introduce a RDS (θ, ψ) which is equivalent to the original system generated
by (SMHD). In Section 4 we make some crucial uniform estimates and in Section 5
we conclude the main result by studying the long time behavior of (θ, ψ).

2. Preliminaries

Notations. We denote by ‖ · ‖X the norm of a Banach space X. Lp(O), p ∈ N, is
the space of all p times integrable functions from O to R endowed with the norm
| · |p, i.e. ‖g‖Lp(O) = |g|p for all g ∈ Lp(O), where

|g|p =

(∫
O

∣∣g(x)
∣∣p dx

)1/p

.

Denote by Hp(O) the Sobolev space of functions which are in L2(O) together with
their weak derivatives of order ≤ p; Hp

0 is the Hilbert subspace of Hp(O) made of
functions vanishing on Γ. For convenience, we let Lp(O) = (Lp(O))2 and Hp(0)(O) =

(Hp
(0)(O))2. The norm of Lp(O) induced by Lp(O) is written by ‖ · ‖p for short. We

always use letter c to denote a constant independent of ε and other sensitive terms.
More particular spaces see Section 3.1.

Suppose we are given a Banach space (X, ‖ · ‖X) with Borel σ-algebra B(X), a
probability space (Ω,F , P ). Let I be an (unnecessarily bounded or open) interval
in real line.
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2.1. Preliminary results on RDS

In this part we recall some basic concepts and well-known results related to random
attractors for RDS, more details see Refs. [2, 5, 35,42].

Definition 2.1. (Ω,F , P, (θt)t∈R) is called a parametric dynamical system (PDS)
if θ : R× Ω→ Ω is (B(R)×F ,F)-measurable, θ0 is the identity on Ω, θs+t = θt ◦θs
for all s, t ∈ R and θtP = P for all t ∈ R.

Definition 2.2. A continuous RDS on X over a metric dynamical system (Ω,F ,
P, (θt)t∈R) is a mapping

φ : R+ × Ω×X → X, (t, ω, x) 7→ φ(t, ω)x,

which is (B(R+)×F × B(X),B(X))-measurable and satisfies, for P -a.e. ω ∈ Ω,

(i) φ(0, ω) is the identity operator on X;

(ii) φ(t+ s, ω) = φ(t, θsω) ◦ φ(s, ω) for all t, s ∈ R+;

(iii) φ(t, ω) : X → X is continuous for all t ∈ R+.

Definition 2.3. A random (compact, resp. bounded) set {B(ω)}ω∈Ω in X is a
family of (compact resp. bounded) sets indexed by ω such that for every x ∈ X the
mapping ω 7→ d(x,B(ω)) is measurable with respect to F .

Definition 2.4. A family of random sets
{
Bε = {Bε(ω)}ω∈Ω

}
ε∈I

in X is called

upper semi-continuous at ε0 if

lim
ε→ε0

distX
(
Bε(ω), Bε0(ω)

)
= 0 for P -a.s. ω ∈ Ω,

where and throughout this paper distX(·, ·) is the Hausdorff semi-metric in X, i.e.

distX(Y,Z) = sup
y∈Y

inf
z∈Z
‖y − z‖X

for any Y, Z ⊆ X.

Definition 2.5 (See [2, 13]). (1) A random variable R(ω) : Ω → (0,∞) is called
tempered with respect to (θt)t∈R if

lim
t→∞

e−γtR(θ−tω) = 0 P-a.s. for all γ > 0,

(2) A random bounded subset {B(ω)}ω∈Ω of X is called tempered with respect to
(θt)t∈R if

lim
t→∞

e−γt‖B(θ−tω)‖X = 0 P-a.s. for all γ > 0,

where ‖B‖X = supx∈B ‖x‖X .

Hereafter in this section, we let D = {D = {D(ω)}ω∈Ω} be the universe of all
random subsets D of X satisfying some conditions, and φ a continuous RDS on X
over (Ω,F , P, (θt)t∈R).

Definition 2.6. Let {K(ω)}ω∈Ω ∈ D. Then {K(ω)}ω∈Ω is called a D-random
absorbing set for φ if for every B ∈ D and P -a.e. ω ∈ Ω, there exists a T (B,ω) > 0
such that

φ(t, θ−tω)B(θ−tω) ⊆ K(ω) for all t ≥ T (B,ω).
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Definition 2.7. φ is said to be D-pullback asymptotically compact in X if for
P -a.e. ω ∈ Ω, {φ(tn, θ−tnω)xn}∞n=1 has a convergent subsequence in X whenever
tn →∞, and xn ∈ B(θ−tnω) with {B(ω)}ω∈Ω ∈ D.

Definition 2.8 (See [19]). A random set A = {A(ω)}ω∈Ω ∈ D of X is called a
D-random attractor (or D-pullback attractor) for φ if the following conditions are
satisfied, for P -a.e. ω ∈ Ω,

(i) A is a random compact set in X;

(ii) A is invariant, that is,

φ(t, ω)A(ω) = A(θtω), ∀t ≥ 0;

(iii) A attracts every member of D, that is, for every B = {B(ω)}ω∈Ω ∈ D,

lim
t→∞

distX
(
φ(t, θ−tω)B(θ−tω), A(ω)

)
= 0,

where distX(·, ·) is the Hausdorff semi-metric in X.

Lemma 2.1 (See [5,13]). If there is a closed random tempered absorbing set {B(ω)}ω
of φ in D and φ is D-asymptotically compact in X, then A = {A(ω)}ω∈Ω is the
unique random attractor of φ, where

A(ω) =
⋂
t>0

⋃
τ≥t

φ(τ, θ−τω)B(θ−τω).

Note that a D-random attractor if exists, then it is unique.

Lemma 2.2 (See [35]). Let Φ0 be an autonomous dynamical system with the global
attractor A0 in X. Given ε > 0, suppose that Φε is the perturbed random dynamical
system with a random attractor Aε = {Aε(ω)}ω∈Ω ∈ D and a random absorbing set
Eε ∈ D. Then

distX(Aε(ω),A0)→ 0 P-a.s. as ε→ 0+,

if the following three conditions are satisfied:

(i) for P-a.e. ω ∈ Ω, t ≥ 0, εn ↓ 0, and xn, x ∈ X with xn → x, it holds

lim
n→∞

Φεn(t, ω)xn = Φ0(t)x,

(ii) there exists some deterministic constant K such that, for P-a.e. ω ∈ Ω,

lim sup
ε↓0

‖Eε(ω)‖X ≤ K,

where ‖Eε(ω)‖X = supx∈Eε(ω) ‖x‖X ;

(iii) there exists a ε0 > 0 such that for P-a.e. ω ∈ Ω,⋃
0<ε≤ε0

Aε(ω) is precompact in X.
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2.2. Upper semi-continuity of random attractors for equiva-
lent RDS

Definition 2.9 (Equivalence of RDS, see [13]). Let ψ and φ be two RDS over the
same PDS (Ω,F , P, (θt)t∈R) with phase space X1 and X2, respectively. Then RDS
(θ, ψ) and (θ, φ) are said to be (topologically) equivalent (or conjugate) if there
exists a mapping T : Ω×X1 7→ X2, which is called a cohomology of ψ and φ, with
the properties:

(i) the mapping x 7→ T(ω, x) is a homeomorphism from X1 onto X2 for every
ω ∈ Ω;

(ii) the mapping ω 7→ T(ω, x1) and ω 7→ T−1(ω, x2) are measurable for every
x1 ∈ X1 and x2 ∈ X2;

(iii) the cocycles ψ and φ are cohomologous, i.e.

φ(t, ω,T(ω, x)) = T(θtω, ψ(t, ω, x)) for any x ∈ X1.

Two families of RDS {ψε}ε and {φε}ε indexed by ε ∈ I are called equivalent if for
any fixed ε ∈ I ψε and φε are equivalent.

For the existence of random attractors of equivalent RDS, we have the following
lemma. The reader is referred to H. Keller & B. Schmalfuss [23].

Lemma 2.3. Assume that ψ and φ be two equivalent families of RDS over
(Ω,F , P, (θt)t∈R) on X1 and X2 with corresponding cohomology T in the sense of
Definition 2.9. Let Di = {Di = {Di(ω)}ω∈Ω} be some collection of random subsets
of Xi, i = 1, 2, satisfying{

D2(ω)
}
D2

=
{
T
(
ω,D1(ω)

)}
D1

for P -a.s. ω ∈ Ω.

Then φ has a D2-random attractor A2 = {A2(ω)}ω∈Ω ∈ D2 iff ψε has a D1-random
attractor A1 = {A1(ω)}ω∈Ω ∈ D1. Moreover, it holds the relation

A2(ω) = T(ω,A1(ω)), ω ∈ Ω.

Proof. (Outline.) It is trivial to verify the conditions (i), (ii) and (iii) of Definition
2.8 by the properties of T. The measurability required by Definition 2.3 follows from
I. Chueshov [13, Proposition 1.3.1] or J.P. Aubin & H. Frankowska [3, Theorem 8.2.8]
directly.

For the upper semi-continuity of random attractors admitted by equivalent RDS,
we have the following result.

Proposition 2.1. Assume that {ψε}ε∈I and {φε}ε∈I be two equivalent families of
RDS over (Ω,F , P, (θt)t∈R) on X1 and X2 with corresponding cohomology {Tε}ε∈I
in the sense of Definition 2.9. Let Di = {Di = {Di(ω)}ω∈Ω} be some collection of
random subsets of Xi, i = 1, 2, satisfying{

D2(ω)
}
D2

=
{
Tε
(
ω,D1(ω)

)}
D1

for all ε ∈ I and P -a.s. ω ∈ Ω.

Then if for some ε0 ∈ I there exists a small neighborhood U(ε0, δ) := {ε ∈ I :
|ε− ε0| < δ} of ε0 such that for each ε ∈ U(ε0, δ):

(Hα) ψε and φε have a D1- and D2-random attractor A ε
1 = {Aε1(ω)}ω∈Ω and A ε

2 =
{Aε2(ω)}ω∈Ω, respectively,
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(Hβ) Tε(ω, ·) is P -a.s. a bounded linear operator from X1 onto X2,

(Hγ) T·(ω, x1) is continuous at ε0 for P -a.e. ω ∈ Ω and every x1 ∈ X1,

then
lim
ε→ε0

distX2

(
Aε2(ω), Aε02 (ω)

)
= 0 for P -a.s. ω ∈ Ω

iff limε→ε0 distX1

(
Aε1(ω), Aε01 (ω)

)
= 0 P -a.s.

Proof. Note that by Lemma 2.3 we have the relation for each ε ∈ U(ε0, δ) that

Aε2(ω) = Tε(ω,A
ε
1(ω)), ω ∈ Ω.

Therefore, the sufficiency follows from the inequality

distX2

(
Aε2(ω), Aε02 (ω)

)
= distX2

(
Tε(ω,A

ε
1(ω)),Tε0(ω,Aε01 (ω))

)
= sup
yε∈Aε1(ω)

inf
z∈Aε01 (ω)

∥∥Tε(ω, yε)− Tε0(ω, z)
∥∥
X2

≤ sup
yε∈Aε1(ω)

inf
z∈Aε01 (ω)

∥∥Tε(ω, yε)− Tε(ω, z)
∥∥
X2

+ inf
z∈Aε01 (ω)

∥∥Tε(ω, z)− Tε0(ω, z)
∥∥
X2

≤ ‖Tε‖L (X1,X2)distX1

(
Aε1(ω), Aε01 (ω)

)
+
∥∥Tε(ω, z)− Tε0(ω, z)

∥∥
X2

and the necessity is analogously derived by applying T−1
ε .

Remark 2.1. Note that the sufficiency of Proposition 2.1 actually holds true when-
ever Tε, ε ∈ U(ε0, δ), has a decomposition Tε = Tε,1 +Tε,2 with Tε,j satisfying (Hα)
and (Hγ), j = 1, 2, since for Housdorff semi-distance we have

distX(A+B,C +D) ≤ distX(A,C) + distX(B,D),

where A+B = {a+ b : a ∈ A, b ∈ B}, for all subsets A,B,C,D of X.

3. Mathematical setting for MHD equations and
the RDS

In this part, we give some settings in mathematical view of equation (SMHD).
Given a bounded, open and simply connected subset O of R2, whose boundary

∂O = Γ is sufficiently regular. Then we have the following mathematical version of
(SMHD) on O × R+:

du+
[
(u · ∇)u− S(B · ∇)B − ν14u+∇P

]
dt = f(x)dt+ εu ◦ dW1(t), (3.1)

dB +
[
(u · ∇)B − (B · ∇)u− ν24B

]
dt = εB ◦ dW2(t), (3.2)

divu = 0, divB = 0, (3.3)

where we have used the relation c̃url (curl B) = ∇(divB) − 4B. The unknowns
u = (u1, u2) and B = (B1, B2) are vector-valued mappings from O × R to R2;
S and νi are positive constants and ν1 ∧ ν2 =: ν; P (x, t) = p + 2−1S|B|2 is a
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scalar mapping from O×R to R+; f(x) =
(
f1(x), f2(x)

)
is a real and vector-valued

function; coefficient ε ∈ [0, 1] and when ε = 0 it reduces to a deterministic and
autonomous system; Wi(t) are mutually independent two-sided real-valued Winner
processes on probability space (Ω,F ,P), where

Ω =
{
ω ∈ C(R,R) : ω(0) = 0

}
and F is Borel σ-algebra induced by the compact open topology of Ω, P the cor-
responding Wiener measure on (Ω,F ); ◦ denotes the Stratonovich sense in the
stochastic term.

We supplement equations (3.1)-(3.3) with the initial-boundary condition{
u(x, 0) = u0(x), B(x, 0) = B0(x) on O,
u(x, t) = 0, B · n = 0, curl B = 0 on Γ× [0,∞),

(3.4)

where n is the unit outward normal on Γ and curl B = ∂B2

∂x1
− ∂B1

∂x2
.

3.1. Functional spaces and operators

To formulate our problem let us introduce the following functional spaces which are
a combination of spaces used for Navier-Stokes equations (NSE) and spaces used in
the theory of Maxwell equations (ME). Set H = H1 ×H2 and V = V1 × V2, where

(NSE)


H1 =

{
ϕ ∈ L2(O) : divϕ = 0, ϕ · n|Γ = 0

}
,

V1 =
{
ϕ ∈ H1

0(O) : divϕ = 0
}
,

V ′1 = {ϕ ∈ H−1(O) : divϕ = 0},
(3.5)

and

(ME)

{
H2 = H1,

V2 =
{
ϕ ∈ H1(O) : divϕ = 0, ϕ · n|Γ = 0

}
.

(3.6)

For more details on the characterization of these spaces we refer to M. Sermange &
R. Temam [32] and R. Temam [33,34].

Equip Hi with the usual scalar product (·, ·) and norm ‖ · ‖ induced by L2(O),
i.e.

(u, v) =

2∑
i=1

∫
O
ui(x)vi(x) dx and ‖u‖ = (u, u)1/2, u, v ∈ L2(O).

We endow H = H1 ×H2 with the scalar product (·, ·)H and norm ‖ · ‖H by

(v1, v2)H = (u1, u2) + S(B1, B2) and ‖v‖H = (v, v)
1/2
H , vi = (ui, Bi) ∈ H1.

Note that since O is a smooth bounded domain, the norms induced by V1 and V2

defined above is actually equivalent as pointed out by R. Temam [33,34]. We denote
by ‖∇·‖ and ((·, ·)) the former norm and the associated inner product, respectively,
where, thanks to Poincaré’s inequality,

((u, v)) =

2∑
i,j=1

∫
O

∂ui
∂xj

∂vi
∂xj

dx and ‖∇u‖ = ((u, u))1/2, u, v ∈ V1.
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We equip V = V1 × V2 with the scalar product ((·, ·))V and the norm ‖ · ‖V given
by

((v1, v2))V = ((u1, u2)) + S((B1, B2)) and ‖v‖V = ((v, v))
1/2
V ,

vi = (ui, Bi) ∈ V, i = 1, 2. Note that the relation holds true for X = H or V that

‖v‖2X = ‖u‖2X1
+ S‖B‖2X2

, v = (u,B) ∈ X.

Consider the trilinear form b(u, v, w) on L1(O)×H1(O)× L1(O) defined by

b(u, v, w) =

2∑
i,j=1

∫
O
ui
∂vj
∂xi

wj dx,

whenever the integrals make sense. It is clear that b is continuous on (H1(O))3 and
that b(u, v, w) =

(
(u ·∇)v, w

)
whenever the sum and the integration could exchange

order. Moreover, we have the following useful relations since the dimension is two,
see R. Temam [33, p.163] and [34, p.119], and also [7, 8, 32],

b(u, v, v) = 0, b(u, v, w) = −b(u,w, v) for u ∈ V2, v, w ∈ V1, (3.7)

|b(u, v, w)| ≤

C1


‖u‖1/2‖∇u‖1/2‖∇v‖1/2‖4v‖1/2‖w‖,
‖u‖1/2‖4u‖1/2‖∇v‖‖w‖,
‖u‖‖∇v‖‖w‖1/2‖4w‖1/2,
‖u‖1/2‖∇u‖1/2‖∇v‖‖w‖1/2‖∇w‖1/2,

u ∈ H1(O), v ∈ H2(O), w ∈ L2(O),

u ∈ H2(O), v ∈ H1(O), w ∈ L2(O),

u ∈ L2(O), v ∈ H1(O), w ∈ H2(O),

u, v, w ∈ H1(O),

(3.8)

for some deterministic constant C1 > 0. Define a bilinear operator B : (H1(O))2 →
H−1(O) by 〈

B(u, v), w
〉

= b(u, v, w), u, v, w ∈ H1(O), (3.9)

and a continuous and trilinear operator b on V × V × V by

b(v1, v2, v3) = b(u1, u2, u3)− Sb(B1, B2, u3) + Sb(u1, B2, B3)− Sb(B1, u2, B3),
(3.10)

for vi = (ui, Bi) ∈ V, i = 1, 2, 3. Thanks to the last inequality of (3.8) and the
discrete Hölder’s inequality we have∣∣b(v1, v2, v3)

∣∣ ≤ C2‖v1‖1/2H ‖∇v1‖1/2H ‖∇v2‖H‖v3‖1/2H ‖∇v3‖1/2H , vi ∈ V, (3.11)

where C2 is a deterministic and positive constant as long as S is given and fixed.

3.2. The RDS associated with stochastic MHD equations

Now we associate a RDS (θ,φ) with the MHD equations (3.1)-(3.3). First consider
the 1-dimensional Ornstein-Uhlenbeck equation, see for instance [5, 17,38],

dz + zdt = dW (t). (3.12)

By identifying W (t) with

W (t, ω) = ω(t), t ∈ R, ω ∈ Ω
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and defining the time shift θt by

θtω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R,

we find that a solution of (3.12) is provided by

z(t) = z(θtω) := −
∫ 0

−∞
es(θtω)(s) ds, t ∈ R.

Moreover, z(θtω) is pathwise continuous in t and |z(θtω)| is a tempered random
variable, see also [2, 38,40], satisfying

lim
t→±∞

|z(θtω)|
|t|

= 0, lim
t→±∞

1

t

∫ t

0

z(θsω) ds = 0, ω ∈ Ω. (3.13)

Let
ξ(t) = e−εz(θtω1)u(t), η(t) = e−εz(θtω2)B(t), t ≥ 0.

Then by (3.1)-(3.3) and (3.12), ξ(t) and η(t) should satisfy the equations in a weak
form∗:

dξ

dt
− ν14ξ = e−εz(θtω)

(
−B(eεz(θtω)ξ, eεz(θtω)ξ) + SB(eεz(θtω)η, eεz(θtω)η)

)
+ e−εz(θtω)f(x) + εξz(θtω), (3.14)

dη

dt
− ν24η = e−εz(θtω)

(
−B(eεz(θtω)ξ, eεz(θtω)η) + B(eεz(θtω)η, eεz(θtω)ξ)

)
+ εηz(θtω), (3.15)

div ξ = 0, div η = 0, (3.16)

with the initial-boundary condition{
ξ(x, 0) = ξ0(x), η(x, 0) = η0(x) on O,
ξ(x, t) = 0, η · n = 0, curl η = 0 on Γ× [0,∞),

(3.17)

where we have used a common notation ω for ω1 and ω2 for simplicity; B is the
operator given by (3.9).

By employing Galerkin method as [32,34] we have the following well-possessedness
of problem (3.14)-(3.17):

Lemma 3.1. Let f(x) ∈ L2(O). Then for each (ξ0, η0) ∈ H and every ω ∈ Ω,
ε ∈ [0, 1], there exists a unique weak solution

(ξ, η) ∈ L2
loc(0,∞;V ) ∩ Cloc([0,∞);H)

satisfying (3.14)-(3.17) in distribution sense with (ξ, η)|t=0 = (ξ0, η0). Moreover,
the mapping (ξ0, η0) 7→ (ξ, η) is continuous in H.

We denote by = the solution vector (ξ, η) of the problem (3.14)-(3.17) throughout
the paper for convenience. Then Lemma 3.1 allows us to define a continuous RDS
(θ, ψ) corresponding to system (3.14)-(3.17) in H by

θtω(·) = ω(·+ t)− ω(t), t ∈ R, ω ∈ Ω,

ψ(t, ω)=0 = =(t, ω,=0), t ≥ 0, ω ∈ Ω.

∗This is because the term involving p would disappear when multiplied by a test function v in
V1 and integrated over O.
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Let
u(t, ω, u0) = eεz(θtω)ξ(t, ω, ξ0), B(t, ω,B0) = eεz(θtω)η(t, ω, η0)

with u0 = eεz(ω)ξ0, B0 = eεz(ω)η0 for every t ≥ 0, ω ∈ Ω. Then it is easy to
check that (u,B) is the weak solution to equations (3.1)-(3.3) with (3.4) and it is
continuous in H with respect to initial data. Thus the cocycle φ corresponding to
system (3.1)-(3.3) can be defined as

φ(t, ω)(u0, B0) =
(
u(t, ω, u0), B(t, ω,B0)

)
= eεz(θtω)=(t, ω,=0). (3.18)

Also, the two RDS (θ, φ) and (θ, ψ) are actually equivalent. Indeed, let Tε(ω, x) =
eεz(ω)x for each x ∈ H, ω ∈ Ω and ε ∈ [0,∞), then it is readily verified that the three
properties of Tε required by Definition 2.9 hold true and moreover, {Tε}ε∈[0,1] is
a component of the uniformly continuous semigroup {Tε}ε∈[0,∞) of bounded linear
operators on H (see A. Pazy [29]). Therefore, it makes sense to investigate the RDS
(θ, ψ) instead of (θ, φ) in the sequel by Lemma 2.3 and Proposition 2.1.

Hereafter through the paper, we denote by D = {D = {D(ω)}ω} the universe
of all tempered (vector-valued) functions in H.

4. Uniform estimates for solutions

In the following we derive some uniform estimates which is necessary for us to study
the random attractors for MHD equations.

Lemma 4.1. Assume f(x) ∈ L2(O) and ε ∈ [0, 1]. Then for each D ∈ D there
exists a random variable TD(ω) > 0 such that the solution =(t, ω,=0) with =0 ∈ D
of problem (3.14)-(3.16) satisfies

‖=(t, θ−tω,=0)‖2H ≤ Rε(ω) + 1, t ≥ TD(ω), (4.1)

with Rε(ω) a tempered random variable given by

Rε(ω) = 2ν−1
1 ‖f‖2V ′1

∫ 0

−∞
eλs+2ε

∫ 0
s
z(θσω)dσ−2εz(θsω) ds, (4.2)

where λ is a positive and deterministic constant given by (4.11).

Proof. Multiply (3.14) by ξ and (3.15) by Sη, repectively, and then integrate the
outcomes over O to find that

1

2

d

dt
‖ξ‖2 + ν1‖∇ξ‖2

= e−εz(θtω)
(
−B(eεz(θtω)ξ, eεz(θtω)ξ) + SB(eεz(θtω)η, eεz(θtω)η), ξ

)
+ e−εz(θtω)

∫
O
f · ξ dx+ ε‖ξ‖2z(θtω), (4.3)

S

2

d

dt
‖η‖2 + Sν2‖∇η‖2

= e−εz(θtω)
(
−B(eεz(θtω)ξ, eεz(θtω)η) + B(eεz(θtω)η, eεz(θtω)ξ), Sη

)
+ εS‖η‖2z(θtω). (4.4)
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Notice from (3.9) and (3.7) that
(B(eεz(θtω)ξ, eεz(θtω)ξ), ξ) = e2εz(θtω)b(ξ, ξ, ξ) = 0,

(SB(eεz(θtω)η, eεz(θtω)η), ξ) = Se2εz(θtω)b(η, η, ξ),(
B(eεz(θtω)ξ, eεz(θtω)η), Sη

)
= 0,(

B(eεz(θtω)η, eεz(θtω)ξ), Sη
)

= −Se2εz(θtω)b(η, η, ξ),

(4.5)

and thereby, it follows from (4.3)-(4.5) that

1

2

d

dt
‖ξ‖2 + ν1‖∇ξ‖2 = Seεz(θtω)b(η, η, ξ) + e−εz(θtω)

∫
O
f · ξ dx+ ε‖ξ‖2z(θtω),

(4.6)

S

2

d

dt
‖η‖2 + Sν2‖∇η‖2 = −Seεz(θtω)b(η, η, ξ) + εS‖η‖2z(θtω). (4.7)

Thus equality (4.6) added to (4.7) yields that

d

dt

(
‖ξ‖2 + S‖η‖2

)
+ 2ν1‖∇ξ‖2 + 2ν2S‖∇η‖2

= 2e−εz(θtω)

∫
O
f · ξ dx+ 2εz(θtω)

(
‖ξ‖2 + S‖η‖2

)
. (4.8)

Since

2e−εz(θtω)

∫
O
f · ξ dx ≤ 2ν−1

1 e−2εz(θtω)‖f‖2V ′1 + ν1‖∇ξ‖2, (4.9)

then from (4.8) we see that

d

dt
‖=‖2H + ν‖=‖2V ≤ 2εz(θtω)‖=‖2H + 2ν−1

1 ‖f‖2V ′1 e
−2εz(θtω), (4.10)

where we have used the notations = = (ξ, η) and ν = ν1∧ν2. Note that by Poincaré
inequality there exists a positive deterministic constant λ such that

λ‖ξ‖2 ≤ ν

2
‖∇ξ‖2, λ‖η‖2 ≤ ν

2
‖∇η‖2, ∀ξ ∈ V1, η ∈ V2. (4.11)

Thus, inequality (4.10) implies that

d

ds
‖=(s, ω,=0)‖2H +

(
λ− 2εz(θsω)

)
‖=(s, ω,=0)‖2H +

ν

2
‖=(s, ω,=0)‖2V

≤ 2ν−1
1 ‖f‖2V ′1 e

−2εz(θsω). (4.12)

For t ≥ 0, we multiply (4.12) by exp{λs− 2ε
∫ s

0
z(θσω)dσ} and integrate the result

over (0, t) to obtain

‖=(t, ω,=0)‖2H +
ν

2

∫ t

0

eλ(s−t)+2ε
∫ t
s
z(θσω)dσ‖=(s, ω,=0)‖2V ds

≤e−λt+2ε
∫ t
0
z(θσω)dσ‖=0‖2H + 2ν−1

1 ‖f‖2V ′1

∫ t

0

eλ(s−t)+2ε
∫ t
s
z(θσω)dσ−2εz(θsω) ds

=e−λt+2ε
∫ t
0
z(θσω)dσ‖=0‖2H + 2ν−1

1 ‖f‖2V ′1

∫ 0

−t
eλs+2ε

∫ 0
s
z(θσ+tω)dσ−2εz(θs+tω) ds.

(4.13)
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Replacing ω with θ−tω in (4.13) we conclude that

‖=(t, θ−tω,=0)‖2H ≤e
−λt+2ε

∫ 0
−t z(θσω)dσ‖=0‖2H

+ 2ν−1
1 ‖f‖2V ′1

∫ 0

−t
eλs+2ε

∫ 0
s
z(θσω)dσ−2εz(θsω) ds, t ≥ 0.

(4.14)
Since z(ω) is a tempered random variable and we have let =0 ∈ D, by (3.13) we
find that there exists a time TD(ω) for every D ∈ D and ω ∈ Ω such that

e−λt+2ε
∫ 0
−t z(θσω)dσ+2ε

∫ 0
−1
|z(θσω)|dσ‖=0‖2H ≤

ν

ν + 2
, t ≥ TD(ω), (4.15)

which completes the proof together with (4.14).

Lemma 4.2. Suppose f(x) ∈ L2(O) and ε ∈ [0, 1]. Then the solution =(t, ω,=0)
with =0 ∈ D of problem (3.14)-(3.17) satisfies∫ t+1

t

‖=(s, θ−t−1ω,=0)‖2V ds ≤ 2eλ

ν
e2ε

∫ 0
−1
|z(θσω)|dσRε(ω) + 1, t ≥ TD(ω),

(4.16)
where Rε(ω) is the tempered random variable given by (4.2) and TD(ω) is the one
found out by (4.15).

Proof. Let T ∈ (0, t). By (4.12) we have

d

ds
‖=(s, θ−tω,=0)‖2H +

(
λ− 2εz(θs−tω)

)
‖=(s, θ−tω,=0)‖2H +

ν

2
‖=(s, θ−tω,=0)‖2V

≤2ν−1
1 ‖f‖2V ′1 e

−2εz(θs−tω). (4.17)

Multiply (4.17) by exp{λ(s − t) − 2ε
∫ s
t
z(θσ−tω)dσ} and integrate the result over

(T, t) with respect to s to find that

‖=(t, θ−tω,=0)‖2H − eλ(T−t)−2ε
∫ T
t
z(θσ−tω)dσ‖=(T, θ−tω,=0)‖2H

+
ν

2

∫ t

T

eλ(s−t)−2ε
∫ s
t
z(θσ−tω)dσ‖=(s, θ−tω,=0)‖2V ds

≤ 2ν−1
1 ‖f‖2V ′1

∫ t

T

eλ(s−t)−2ε
∫ s
t
z(θσ−tω)dσ−2εz(θs−tω) ds. (4.18)

On the other hand, by (4.13) we see that

‖=(T, θ−tω,=0)‖2H ≤e−λT+2ε
∫ T
0
z(θσ−tω)dσ‖=0‖2H

+ 2ν−1
1 ‖f‖2V ′1

∫ T

0

eλ(s−T )+2ε
∫ T
s
z(θσ−tω)dσ−2εz(θs−tω) ds,

(4.19)

and then that

eλ(T−t)−2ε
∫ T
t
z(θσ−tω)dσ‖=(T, θ−tω,=0)‖2H

≤eλ(T−t)−2ε
∫ T
t
z(θσ−tω)dσ

(
e−λT+2ε

∫ T
0
z(θσ−tω)dσ‖=0‖2H
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+ 2ν−1
1 ‖f‖2V ′1

∫ T

0

eλ(s−T )+2ε
∫ T
s
z(θσ−tω)dσ−2εz(θs−tω) ds

)
=e−λt+2ε

∫ t
0
z(θσ−tω)dσ‖=0‖2H

+ 2ν−1
1 ‖f‖2V ′1

∫ T

0

eλ(s−t)+2ε
∫ t
s
z(θσ−tω)dσ−2εz(θs−tω) ds, (4.20)

which along with (4.18) implies that

‖=(t, θ−tω,=0)‖2H +
ν

2

∫ t

T

eλ(s−t)−2ε
∫ s
t
z(θσ−tω)dσ‖=(s, θ−tω,=0)‖2V ds

≤ e−λt+2ε
∫ t
0
z(θσ−tω)dσ‖=0‖2H

+ 2ν−1
1 ‖f‖2V ′1

∫ t

0

eλ(s−t)+2ε
∫ t
s
z(θσ−tω)dσ−2εz(θs−tω) ds

= e−λt+2ε
∫ 0
−t z(θσω)dσ‖=0‖2H + 2ν−1

1 ‖f‖2V ′1

∫ 0

−t
eλs+2ε

∫ 0
s
z(θσω)dσ−2εz(θsω) ds.

(4.21)

Replacing t with t+ 1 and T with t in (4.21), we have

‖=(t+ 1, θ−t−1ω,=0)‖2H

+
ν

2

∫ t+1

t

eλ(s−t−1)−2ε
∫ s
t+1

z(θσ−t−1ω)dσ‖=(s, θ−t−1ω,=0)‖2V ds

≤ e−λ(t+1)+2ε
∫ 0
−t−1

z(θσω)dσ‖=0‖2H

+ 2ν−1
1 ‖f‖2V ′1

∫ 0

−t−1

eλs+2ε
∫ 0
s
z(θσω)dσ−2εz(θsω) ds. (4.22)

Note that for all s ∈ (t, t+ 1),

eλ(s−t−1)−2ε
∫ s
t+1

z(θσ−t−1ω)dσ ≥ e−λ−2ε
∫ 0
−1
|z(θσω)|dσ. (4.23)

From (4.22) and (4.23) we argue for all t ≥ 0 that∫ t+1

t

‖=(s, θ−t−1ω,=0)‖2V ds

≤ 2ν−1e−λt+2ε
∫ 0
−t−1

z(θσω)dσ+2ε
∫ 0
−1
|z(θσω)|dσ‖=0‖2H

+
4eλ‖f‖2V ′1
νν1

e2ε
∫ 0
−1
|z(θσω)|dσ

∫ 0

−t−1

eλs+2ε
∫ 0
s
z(θσω)dσ−2εz(θsω) ds,

which implies for t ≥ TD(ω), the one given by (4.15), that∫ t+1

t

‖=(s, θ−t−1ω,=0)‖2V ds ≤ 2eλ

ν
e2ε

∫ 0
−1
|z(θσω)|dσRε(ω) + 1, (4.24)

where Rε(ω) is the tempered random variable given by (4.2) and therefore the
lemma is concluded.



Long time behavior of stochastic MHD equations 1095

Lemma 4.3. Assume that f(x) ∈ L2(O) and ε ∈ [0, 1]. Then there exists a random
variable R∗ε (ω) such that for each D ∈ D the solution =(t, ω,=0) with =0 ∈ D of
problem (3.14)-(3.16) satisfies

‖=(t, θ−tω,=0)‖2V ≤ R∗ε (ω), t ≥ TD(ω), (4.25)

where TD(ω) is as given by Lemma 4.1.

Proof. Multiply (3.14) by −4ξ and (3.15) by −S4η, repectively, and then inte-
grate the results over O to find that

1

2

d

dt
‖∇ξ‖2 + ν1‖4ξ‖2

= e−εz(θtω)
(
−B(eεz(θtω)ξ, eεz(θtω)ξ) + SB(eεz(θtω)η, eεz(θtω)η),−4ξ

)
− e−εz(θtω)

∫
O
f · 4ξ dx+ ε‖∇ξ‖2z(θtω), (4.26)

S

2

d

dt
‖∇η‖2 + Sν2‖4η‖2

= e−εz(θtω)
(
−B(eεz(θtω)ξ, eεz(θtω)η) + B(eεz(θtω)η, eεz(θtω)ξ),−S4η

)
+ εS‖∇η‖2z(θtω). (4.27)

By the second inequality of (3.8) and the Young’s inequality we find that

e−εz(θtω)
(
−B(eεz(θtω)ξ, eεz(θtω)ξ),−4ξ

)
= eεz(θtω)b(ξ, ξ,4ξ)
≤ ceεz(θtω)‖ξ‖1/2‖∇ξ‖‖4ξ‖3/2

≤ ν1

8
‖4ξ‖2 + ce4εz(θtω)‖ξ‖2‖∇ξ‖4. (4.28)

Similarly, we have

e−εz(θtω)
(
SB(eεz(θtω)η, eεz(θtω)η),−4ξ

)
≤Sν2

4
‖4η‖2 +

ν1

8
‖4ξ‖2 + ce4εz(θtω)‖η‖2‖∇η‖4, (4.29)

e−εz(θtω)
(
−B(eεz(θtω)ξ, eεz(θtω)η) + B(eεz(θtω)η, eεz(θtω)ξ),−S4η

)
≤Sν2

4
‖4η‖2 +

ν1

8
‖4ξ‖2 + ce4εz(θtω)

(
‖ξ‖2‖∇η‖4 + ‖η‖2‖∇ξ‖4

)
. (4.30)

Since

−e−εz(θtω)

∫
O
f · 4ξ dx ≤ ce−2εz(θtω)‖f‖2 +

ν1

8
‖4ξ‖2, (4.31)

we insert the results (4.28)-(4.31) into identities (4.26) and (4.27) to obtain

1

2

d

dt
‖∇ξ‖2 +

5ν1

8
‖4ξ‖2 ≤ Sν2

4
‖4η‖2 + ce4εz(θtω)

(
‖ξ‖2‖∇ξ‖4 + ‖η‖2‖∇η‖4

)
+ ce−2εz(θtω)‖f‖2 + ε‖∇ξ‖2z(θtω), (4.32)

S

2

d

dt
‖∇η‖2 +

3Sν2

4
‖4η‖2 ≤ ν1

8
‖4ξ‖2 + ce4εz(θtω)

(
‖ξ‖2‖∇η‖4 + ‖η‖2‖∇ξ‖4

)
+ εS‖∇η‖2z(θtω). (4.33)
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Then from the above two inequalities we have

d

dt

(
‖∇ξ‖2 + S‖∇η‖2

)
+ ν
(
‖4ξ‖2 + S‖4η‖2

)
≤ ce4εz(θtω)

(
‖ξ‖2‖∇ξ‖4 + ‖η‖2‖∇η‖4 + ‖ξ‖2‖∇η‖4 + ‖η‖2‖∇ξ‖4

)
+ 2ε

(
‖∇ξ‖2 + S‖∇η‖2

)
z(θtω) + ce−2εz(θtω)‖f‖2

≤ ce4εz(θtω)
(
‖ξ‖2 + S‖η‖2

)(
‖∇ξ‖2 + S‖∇η‖2

)2
+ 2ε

(
‖∇ξ‖2 + S‖∇η‖2

)
z(θtω) + ce−2εz(θtω)‖f‖2, (4.34)

where ν = ν1 ∧ ν2, and thereby

d

dt
‖∇=(t, ω,=0)‖2H + ν‖4=(t, ω,=0)‖2H ≤ce4εz(θtω)‖=‖2H‖∇=‖4H

+ 2εz(θtω)‖∇=‖2H + ce−2εz(θtω),
(4.35)

where c is a deterministic and positive constant independent of ε. Let

Mε(t, ω) = e4εz(θtω)‖=(t, ω,=0)‖2H‖∇=(t, ω,=0)‖2H + ε|z(θtω)|,
Nε(t, ω) = e−2εz(θtω).

Then it follows from (4.35) that

d

dt
‖∇=(t, ω,=0)‖2H ≤ cMε(t, ω)‖∇=(t, ω,=0)‖2H + cNε(t, ω), t ≥ 0. (4.36)

For t ≥ TD(ω) fixed, TD(ω) is as given by Lemma 4.1, and s ∈ (t, t+ 1), we apply
Gronwall lemma to (4.36) over (s, t+ 1) and replace ω with θ−t−1ω to get

‖∇=(t+ 1, θ−t−1ω,=0)‖2H ≤ e
∫ t+1
s

cMε(τ,θ−t−1ω)dτ‖∇=(s, θ−t−1ω,=0)‖2H

+ c

∫ t+1

s

e
∫ t+1
τ

cMε(ς,θ−t−1ω)dςNε(τ, θ−t−1ω) dτ

≤ e
∫ t+1
t

cMε(τ,θ−t−1ω)dτ‖∇=(s, θ−t−1ω,=0)‖2H

+ c

∫ t+1

t

e
∫ t+1
τ

cMε(ς,θ−t−1ω)dςNε(τ, θ−t−1ω) dτ.

(4.37)
Integrate (4.37) with respect to s over (t, t+ 1) and we obtain

‖∇=(t+ 1, θ−t−1ω,=0)‖2H

≤ e
∫ t+1
t

cMε(τ,θ−t−1ω)dτ

∫ t+1

t

‖∇=(s, θ−t−1ω,=0)‖2H ds

+ c

∫ t+1

t

e
∫ t+1
τ

cMε(ς,θ−t−1ω)dςNε(τ, θ−t−1ω) dτ

≤ cec
∫ t+1
t

Mε(τ,θ−t−1ω)dτ

(∫ t+1

t

‖∇=(s, θ−t−1ω,=0)‖2Hds+

∫ t+1

t

Nε(τ, θ−t−1ω)dτ

)
.

(4.38)
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On the other hand, by (4.1), for τ ∈ (t, t+ 1) with t fixed as above, we have

‖=(τ, θ−t−1ω,=0)‖2H = ‖=(τ, θ−τ ◦ θτ−t−1ω,=0)‖2H ≤ Rε(θτ−t−1ω) + 1

≤ sup
τ∈(0,1)

Rε(θ−τω) + 1 =: rε(ω), (4.39)

where Rε(ω) is the tempered random variable given by (4.2) and rε(ω) is readi-
ly checked a tempered random variable since z(ω) is P-a.s. pathwise continuous.
Therefore,∫ t+1

t

Mε(τ, θ−t−1ω) dτ

=

∫ t+1

t

(
e4εz(θτ−t−1ω)‖=(τ, θ−t−1ω,=0)‖2H‖∇=(τ, θ−t−1ω,=0)‖2H + ε

∣∣z(θτ−t−1ω)
∣∣)

≤ rε(ω)

∫ t+1

t

(
e4εz(θτ−t−1ω)‖∇=(τ, θ−t−1ω,=0)‖2H

)
dτ + 2ε

∫ 0

−1

|z(θτω)| dτ

≤ rε(ω) sup
τ∈(−1,0)

e4εz(θτω)

∫ t+1

t

‖∇=(τ, θ−t−1ω,=0)‖2H dτ + sup
τ∈(−1,0)

2ε|z(θτω)|.

(4.40)

Notice from (4.24) that∫ t+1

t

‖=(s, θ−t−1ω,=0)‖2V ds ≤ 2eλ

ν
e2ε

∫ 0
−1
|z(θσω)|dσRε(ω) + 1, t ≥ TD(ω).

(4.41)
We insert (4.41) into (4.40) to obtain that∫ t+1

t

Mε(τ, θ−t−1ω) dτ ≤ crε(ω)
(
Rε(ω) + 1

)
sup

τ∈(−1,0)

e6ε|z(θτω)|, t ≥ TD(ω),

(4.42)
for some positive constant c. Let

M∗ε (ω) := rε(ω)
(
Rε(ω) + 1

)
sup

τ∈(−1,0)

e6ε|z(θτω)|, ω ∈ Ω.

Then it defined a tempered random variable M∗ε (ω), which is also continuous in ε
satisfying

M∗ε (ω) ≥ rε(ω) ≥ Rε(ω) + 1, ω ∈ Ω.

Hence, we have∫ t+1

t

Nε(τ, θ−t−1ω) dτ =

∫ t+1

t

e−2εz(θτ−t−1ω) dτ

≤ sup
τ∈(−1,0)

e2ε|z(θtω)| ≤M∗ε (ω).
(4.43)

Therefore, from (4.38) and (4.41)-(4.43) it follows that

‖∇=(t+ 1, θ−t−1ω,=0)‖2H ≤ cecM
∗
ε (ω)

(
2eλ

ν
e2ε

∫ 0
−1
|z(θσω)|dσRε(ω) + 1 +M∗ε (ω)

)
≤ cecM

∗
ε (ω)M∗ε (ω) =: R∗ε (ω), t ≥ TD(ω),

which completes the proof.
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5. Random attractors for the RDS

In this section, we investigate the existence and the upper semi-continuity of ran-
dom attractors for the stochastic MHD equations when the perturbation factor ε
vanishes. We use subscript “ ε” or superscript “ ε” to indicate the dependence of ε.

5.1. Existence.

Theorem 5.1. Assume that f(x) ∈ L2(O). Then for each ε ∈ (0, 1], the RDS
(θ, ψε) generated by the random system (3.14)-(3.17) possesses a unique D-random
attractor Aε = {Aε(ω)}ω in H.

Proof. Let Eε = {Eε(ω)}ω and E∗ε = {E∗ε (ω)}ω be given by

Eε(ω) = {= ∈ H : ‖=‖2H ≤ Rε(ω) + 1},
E∗ε (ω) = {= ∈ H : ‖=‖2V ≤ R∗ε (ω)},

(5.1)

where Rε(ω) is the tempered random variable given by Lemma 4.1 and R∗ε (ω) the
random variable given by Lemma 4.3. Then for each ε ∈ (0, 1] fixed, from Lemma
4.1 and Lemma 4.3 it follows that Eε ∈ D is a closed random tempered absorbing
set for ψ in H, and that ψ is D-asymptotically compact in H, thus the proof is
complete by Lemma 2.1.

5.2. Upper semi-continuity.

To study the upper semi-continuity of random attractors, we consider the following
deterministic case of (3.14)-(3.16) as ε = 0:

dξ

dt
− ν14ξ = −B(ξ, ξ) + SB(η, η) + f(x), (5.2)

dη

dt
− ν24η = −B(ξ, η) + B(η, ξ), (5.3)

divξ = 0, divη = 0, (5.4)

with corresponding initial-boundary condition{
ξ(x, 0) = ξ0(x), η(x, 0) = η0(x) on O,
ξ(x, t) = 0, η · n = 0, curl η = 0 on Γ.

(5.5)

It is clear that such an autonomous system generates a continuous semigroup
{ψ0(t)} given by ψ0(t)=0 = =(t) := (ξ(t), η(t)) and possesses a unique global at-
tractor A in H. To study the stableness relation between Aε and A , we denote by
=ε = (ξε, ηε) the solution of problem (3.14)-(3.17).

Lemma 5.1. Assume that f(x) ∈ L2(O). Then for each T ≥ 0 and ω ∈ Ω,

‖=ε(t, ω,=ε0)−=(t)‖H → 0 as ε→ 0+,

provided =ε0 → =0 in H as ε→ 0+.
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Proof. Let U = (U1,U2) = (ξε− ξ, ηε− η) = =ε−=, where =ε solves the problem
(3.14)-(3.17) and = solves (5.2)-(5.5). Then minus (3.14) by (5.2) and we obtain

dU1

dt
− ν14U1 =

(
− e−εz(θtω)B(eεz(θtω)ξε, e

εz(θtω)ξε) + B(ξ, ξ)
)

+ S
(
e−εz(θtω)B(eεz(θtω)ηε, e

εz(θtω)ηε)−B(η, η)
)

+
(
e−εz(θtω) − 1

)
f(x) + εξεz(θtω).

(5.6)

Similarly, from (3.15) and (5.3) we find that

dU2

dt
− ν24U2 =

(
− e−εz(θtω)B(eεz(θtω)ξε, e

εz(θtω)ηε) + B(ξ, η)
)

+
(
e−εz(θtω)B(eεz(θtω)ηε, e

εz(θtω)ξε)−B(η, ξ)
)

+ εηεz(θtω).

(5.7)
Take the inner product of the first term on the right hand side of (5.6) with U1 in
H1, then it follows from the trilinearity of b and relations (3.9) and (3.7) that(

− e−εz(θtω)B(eεz(θtω)ξε, e
εz(θtω)ξε) + B(ξ, ξ),U1

)
= −eεz(θtω)b(ξε, ξε,U1) + b(ξ, ξ,U1)

= −eεz(θtω)b(ξε, ξε,U1) + eεz(θtω)b(ξε, ξ,U1)− eεz(θtω)b(ξε, ξ,U1) + b(ξ, ξ,U1)

= −eεz(θtω)b(ξε,U1,U1)−
(
eεz(θtω)b(ξε, ξ,U1)− b(ξ, ξ,U1)

)
= −b(eεz(θtω)ξε − ξ, ξ,U1) = −b

(
eεz(θtω)U1 + (eεz(θtω) − 1)ξ, ξ,U1

)
= −eεz(θtω)b

(
U1, ξ,U1

)
− (eεz(θtω) − 1)b

(
ξ, ξ,U1

)
. (5.8)

Analogously to (5.8), for the second term on the right hand side of (5.6) we have

S
(
e−εz(θtω)B(eεz(θtω)ηε, e

εz(θtω)ηε)−B(η, η),U1

)
=Seεz(θtω)b

(
ηε,U2,U1

)
+ Seεz(θtω)b

(
U2, η,U1

)
+ S(eεz(θtω) − 1)b

(
η, η,U1

)
.

(5.9)

Take the inner product of (5.6) with U1 in H and it follows from (5.8)-(5.9) that

1

2

d

dt
‖U1‖2 + ν1‖∇U1‖2 = −eεz(θtω)b

(
U1, ξ,U1

)
− (eεz(θtω) − 1)b

(
ξ, ξ,U1

)
+ Seεz(θtω)b

(
ηε,U2,U1

)
+ Seεz(θtω)b

(
U2, η,U1

)
+ S(eεz(θtω) − 1)b

(
η, η,U1

)
+ (e−εz(θtω) − 1)

(
f(x),U1

)
+ εz(θtω)(ξε,U1).

(5.10)

Similarly, taking the inner product of terms on the right hand side of (5.7) with
SU2 in H, we have(

− e−εz(θtω)B(eεz(θtω)ξε, e
εz(θtω)ηε) + B(ξ, η), SU2

)
= −Seεz(θtω)b(ξε, ηε,U2) + Sb(ξ, η,U2)

= −Seεz(θtω)b(ξε, ηε,U2) + Seεz(θtω)b(ξ, η,U2) + S(1− eεz(θtω))b(ξ, η,U2)

= −Seεz(θtω)b(U1, η,U2) + S(1− eεz(θtω))b(ξ, η,U2), (5.11)
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and(
e−εz(θtω)B(eεz(θtω)ηε, e

εz(θtω)ξε)−B(η, ξ), SU2

)
=Seεz(θtω)b(ηε,U1,U2) + Seεz(θtω)b(U2, ξ,U2) + S(eεz(θtω) − 1)b(η, ξ,U2).

(5.12)

Then taking the inner product of (5.7) with SU2 in H, by (5.11)-(5.12) we obtain

S

2

d

dt
‖U2‖2 + ν2S‖∇U2‖2

=− Seεz(θtω)b(U1, η,U2)− S(eεz(θtω) − 1)b(ξ, η,U2) + Seεz(θtω)b(ηε,U1,U2)

+ Seεz(θtω)b(U2, ξ,U2) + S(eεz(θtω) − 1)b(η, ξ,U2) + Sεz(θtω)(ηε,U2),
(5.13)

which together with (5.10) and (3.7) implies that

1

2

d

dt

(
‖U1‖2 + S‖U2‖2

)
+ ν1‖∇U1‖2 + ν2S‖∇U2‖2

= eεz(θtω)
(
− b
(
U1, ξ,U1

)
+ Sb

(
U2, η,U1

)
− Sb(U1, η,U2) + Sb(U2, ξ,U2)

)
+(eεz(θtω) − 1)

(
− b
(
ξ, ξ,U1

)
+ Sb

(
η, η,U1

)
− Sb(ξ, η,U2) + Sb(η, ξ,U2)

)
+(e−εz(θtω) − 1)

(
f,U1

)
+ εz(θtω)(ξε,U1) + Sεz(θtω)(ηε,U2), (5.14)

and then that

d

dt
‖U‖2H + 2ν‖∇U‖2H

≤ 2eεz(θtω)
(
− b
(
U1, ξ,U1

)
+ Sb

(
U2, η,U1

)
− Sb(U2, η,U2) + Sb(U2, ξ,U2)

)
−2(eεz(θtω) − 1)

(
b
(
ξ, ξ,U1

)
− Sb

(
η, η,U1

)
+ Sb(ξ, η,U2)− Sb(η, ξ,U2)

)
+2(e−εz(θtω) − 1)

(
f,U1

)
+ εz(θtω)(ξε,U1) + Sεz(θtω)(ηε,U2)

= −2eεz(θtω)
b(U,=,U)− 2(eεz(θtω) − 1)b(=,=,U)

+2(e−εz(θtω) − 1)
(
f,U1

)
+ 2εz(θtω)(ξε,U1) + 2Sεz(θtω)(ηε,U2), (5.15)

where b is the operator given by (3.10), ν = ν1 ∧ ν2.

On the other hand, from (3.11) and Young’s inequality we have the estimates

eεz(θtω)
∣∣b(U,=,U)

∣∣ ≤ ceεz(θtω)‖U‖H‖∇U‖H‖∇=‖H
≤ ce2εz(θtω)‖∇=‖2H‖U‖2H + ν‖∇U‖2H ,

(5.16)∣∣b(=,=,U)
∣∣ ≤ ‖=‖1/2H ‖∇=‖

3/2
H ‖U‖

1/2
H ‖∇U‖

1/2
H

≤ (‖=‖2H + 1)‖∇=‖2H + c‖∇U‖2H‖U‖2H .
(5.17)

Also, it is elementary to verify that

2(e−εz(θtω) − 1)
(
f,U1

)
+ 2εz(θtω)(ξε,U1) + 2Sεz(θtω)(ηε,U2)

≤‖U‖2H + c|e−εz(θtω) − 1|2‖f‖2 + cε|z(θtω)|2‖=ε‖2H .
(5.18)
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Therefore, it follows from (5.15)-(5.18) that

d

dt
‖U‖2H ≤ c

(
e2εz(θtω)‖∇=‖2H + |e−εz(θtω) − 1|‖∇U‖2H + 1

)
‖U‖2H

+ c
(
|e−εz(θtω) − 1|(‖=‖2H + 1)‖∇=‖2H + |e−εz(θtω) − 1|2

)
+ εc|z(θtω)|2‖=ε‖2H .

(5.19)

Denote by

Jε(t, ω) = e2εz(θtω)‖∇=‖2H + |e−εz(θtω) − 1|‖∇U‖2H + 1,

Kε(t, ω) = |e−εz(θtω) − 1|(‖=‖2H + 1)‖∇=‖2H + |e−εz(θtω) − 1|2 + ε|z(θtω)|2‖=ε‖2H .

Then applying Gronwall Lemma techniques to (5.19), it holds for every T > 0 and
ω ∈ Ω that

‖U(T, ω,U0)‖2H ≤ ec
∫ T
0
Jε(τ,ω)dτ‖U0‖2H + c

∫ T

0

ec
∫ T
s
Jε(τ,ω)dτKε(s, ω) ds

≤ ec
∫ T
0
Jε(τ,ω)dτ‖U0‖2H + cec

∫ T
0
Jε(τ,ω)dτ

∫ T

0

Kε(s, ω) ds.

(5.20)

Now it suffices to verify for every fixed T > 0 and ω ∈ Ω that∫ T

0

Jε(τ, ω) dτ <∞,
∫ T

0

Kε(τ, ω) dτ <∞, (5.21)

since if so, by Lebesgue’s dominated convergence theorem we immediately have

‖U(T, ω,U0)‖H → 0 as ε→ 0+, (5.22)

provided ‖U0‖H → 0, and thereby we conclude the lemma. By the regularity result
Lemma 3.1 and the pathwise continuity of z(ω) we estimate the second estimate of
(5.21), and the first is similar.∫ T

0

Kε(τ, ω) dτ

=

∫ T

0

(
|e−εz(θτω) − 1|(‖=‖2H + 1)‖∇=‖2H + |e−εz(θτω) − 1|2 + ε|z(θτω)|2‖=ε‖2H

)
dτ

≤ sup
τ∈(0,T )

(
|e−εz(θτω) − 1|(‖=‖2H + 1) + ε|z(θτω)|2

)∫ T

0

(
‖∇=‖2H + ‖=ε‖2H

)
dτ <∞,

(5.23)
for all T > 0 and ω ∈ Ω, where the finite bound can be seen from (4.13) since the
estimate of the term ‖∇=‖H can be obtained analogously to ‖∇=ε‖H . The lemma
is concluded.

Now we are in the position to show the upper semi-continuity of random at-
tractors for the RDS (θ, ψε) generated by the random system (3.14)-(3.17), which
together with Theorem 5.1 implies the Main Result of this paper by the argument
of equivalent RDS, Lemma 2.3 and Proposition 2.1.
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Theorem 5.2. Assume that f(x) ∈ L2(O). Let Aε = {Aε(ω)}ω be the D-random
attractor for system (3.14)-(3.17) and A is the global attractor for the autonomous
system (5.2)-(5.4) in H. Then

lim
ε→0+

distH
(
Aε(ω),A

)
= 0.

Proof. The proof is done by verifying the three conditions required by Lemma
2.2 since we have done enough preparations before. First note that condition (i) is
actually indicated by Lemma 5.1.

Condition (ii) is verified by takingK = 2ν−1
1 ‖f‖2V ′1 +1, which equals limε→0+ Rε(ω)

for every ω ∈ Ω, where Rε(ω) is the tempered random variable in (5.1) and given
by (4.2). Since E∗ε (ω), ε ∈ (0, 1], defined by (5.1) is a compact random absorbing
set in H, we have ⋃

0<ε≤1

Aε(ω) ⊂
⋃

0<ε≤1

E∗ε (ω), ω ∈ Ω,

which indicates (iii) and then we complete the proof.
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