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Abstract In this paper, we prove some stability results concerning the gen-
eralized quadratic and quartic type functional equation in the context of non-
Archimedean fuzzy normed spaces in the spirit of Hyers-Ulam-Rassias. As
applications, we establish some results of approximately generalized quadratic
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that the assumption of the non-Archimedean absolute value of 2 is less than
1 cannot be omitted in our corollaries. The results improve and extend some
recent results.

Keywords Fuzzy stability, fuzzy norm, non-Archimedean fuzzy normed s-
pace, quadratic and quartic type functional equation.

MSC(2010) 39B82, 39B72.

1. Introduction

In 1897, Hensel [14] discovered the p-adic numbers as a number theoretical ana-
logue of power series in complex analysis. He indeed introduced a field with a
valuation norm, which does not have the Archimedean property. The most impor-
tant examples of non-Archimedean spaces are p-adic numbers. A key property of
p-adic numbers is that they do not satisfy the Archimedean axiom: for all x, y > 0,
there exists an integer n, such that x < ny. During the last three decades, the
theory of non-Archimedean spaces has gained the interest of physicists for their
research, in particular the problems that emerge in quantum physics, p-adic and
superstrings [22]. Although many results in the classical normed space theory have a
non-Archimedean counterpart, but their proofs are essentially different and require
an entirely new kind of intuition. One may note that |n| ≤ 1 in each valuation field,
every triangle is isosceles and there may be no unit vector in a non-Archimedean
normed space [33]. These facts show that the non-Archimedean framework is of
special interest.

In order to construct a fuzzy structure on a linear space, Katsaras [21] defined
the notion of fuzzy norm on a linear space. Later, several notions of fuzzy norm from
different points of view have been introduced and discussed by some mathematicians
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[9,18,24,39]. Cheng and Mordeson [6] gave a new definition of a fuzzy norm in such
a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [23].
Bag and Samanta [3] modified the definition of Cheng and Mordeson [6]. They also
studied some nice properties of the fuzzy norm in [4]. Recently various results have
been investigated in this topic (see [28,30,31] and references therein).

A classical question in the theory of functional equations is as follows: “When
is true that a function, which approximately satisfies a functional equation E must
be close to an exact solution of the equation E?” If the problem accepts a unique
solution, we say the equation is stable. The first stability problem concerning group
homomorphism was raised by Ulam [38] and affirmatively solved for Banach spaces
by Hyers [15]. Subsequently, Hyers’ result was generalized by Aoki [2] for additive
mappings and Rassias [34] for linear mappings by allowing the norm of the Cauchy
difference, f(x+ y)− f(x)− f(y), to be controlled by ε(‖x‖p + ‖y‖p). Taking into
consideration a lot of influence of Ulam, Hyers and Rassias on the development
of stability problems of functional equations, the stability phenomenon that was
proved by Rassias is called the generalized Hyers-Ulam stability or the Hyers-Ulam-
Rassias stability. The above results have been generalized by Forti [10] and Găvruţă
[11] who permitted the Cauchy difference to become arbitrarily unbounded. Since
then, the stability problems of various functional equations and mappings with
more general domains and ranges have been investigated by several mathematicians
(see [5, 17,20,37] and references therein).

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), (1.1)

is called the quadratic functional equation and it is is related to the symmetric
biadditive mapping [1,19,37]. Every solution of the quadratic equation (1.1) is said
to be a quadratic mapping. It is well-known that a function f between real vector
spaces satisfies the quadratic equation (1.1) for all x, y if and only if there is a
unique symmetric bi-additive function B such that f(x) = B(x, x) for all x, where
B is given by B(x, y) = 1

4 [f(x + y)− f(x− y)]. Various stability problems for the
quadratic functional equation (1.1) was solved by many authors (see [7, 16]).

In 2003, Chung and Sahoo [8] determine the general solution of the functional
equation

f(x+ 2y) + f(x− 2y) = 4f(x+ y) + 4f(x− y) + 24f(y)− 6f(x), (1.2)

for all x, y ∈ R and proved that every solution f is of the form f(x) = A(x, x, x, x),
where A is a 4-additive function. In 2005, Lee, Im and Hwang [25] introduced the
quartic functional equation

f(2x+ y) + f(2x− y) = 4f(x+ y) + 4f(x− y) + 24f(x)− 6f(y). (1.3)

The functional equations (1.2) and (1.3) are equivalent since in either case f(0) = 0
and f(−x) = f(x) for all x ∈ R. For any arbitrary constant c ∈ R, the function
f(x) = cx4 satisfies the functional equation (1.3) on R. Thus for the obvious reason
it is called the quartic functional equation and every solution of equation (1.3) is
said to be a quartic function. The stability of the quartic functional equation was
considered by Rassias [35] for mapping f : X → Y , where X is a real normed space
and Y is a Banach space.
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In this paper, we consider the following functional equation

f(kx+ y) + f(kx− y)

=k2f(x+ y) + k2f(x− y) + 2f(kx)− 2k2f(x)− 2(k2 − 1)f(y), (1.4)

for a fixed integer k with k 6= 0,±1. It is easy to show that f(x) = ax4 + bx2

satisfies the functional equation (1.4). Gordji, Abbaszadeh and Park [12] estab-
lished the general solution and proved the generalized Hyers-Ulam stability of the
functional equation (1.4) in quasi-Banach spaces. The main purpose of this pa-
per is to establish the fuzzy stability of the functional equation (1.4) in the sense
of [28] in the framework of non-Archimedean fuzzy normed spaces. In addition,
we establish some results of approximately generalized quadratic and quartic type
mapping in non-Archimedean normed spaces. We also show that the assumption
of the non-Archimedean absolute value of 2 is less than 1 cannot be omitted in our
corollaries. Our results may be regarded as a continuation of the previous contri-
bution of the authors in the setting of fuzzy stability (see [28, 31]), but they are of
different nature [32].

2. Preliminaries

In this section, some notations and basic definitions are given which will be used in
this paper.

Definition 2.1 ( [29]). Let K be a field. A non-Archimedean absolute value on K
is a function | · | : K→ R such that for any a, b ∈ K we have

1. |a| ≥ 0 and equality holds if and only if a = 0;

2. |ab| = |a||b|;
3. |a+ b| ≤ max{|a|, |b|} (the strong triangle inequality).

Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all non-zero integer n. In addition,
we will always assume that | · | is non-trivial, that is there is an a0 ∈ K such that
|a0| 6= 0, 1. The most important examples of non-Archimedean spaces are p-adic
numbers.

Example 2.1 ( [29]). Let p be a prime number. For any non-zero rational number
x = a

b p
r such that a and b are coprime to the prime number p, define the p-

adic absolute value |x|p = p−r. Then | · | is a non-Archimedean norm on Q. The
completion of Q with respect to | · | is denoted by Qp and is called the p-adic number

field. In fact, Qp is the set of all formal series x =
∞∑
k≥r

akp
k, where ak ≤ p − 1 are

integers. The addition and multiplication between any two elements of Qp are

defined naturally. The norm |
∞∑
k≥r

akp
k|p = p−r is non-Archinedean norm on Qp

and it makes Qp a locally compact field [36]. Note that if p > 2, then |2n|p = 1 for
each integer n but |2|2 < 1.

Following [29], we give our definition of a non-Archimedean fuzzy normed space.

Definition 2.2 ( [29]). Let X be a linear space over a non-Archimedean field K.
A function N : X ×R→ [0, 1] is said to be a non-Archimedean fuzzy norm on X if
for all x, y ∈ X and all s, t ∈ R:
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(N1) N(x, c) = 0 for c ≤ 0;

(N2) x = 0 if and only if N(x, c) = 1 for all c > 0;

(N3) N(cx, t) = N(x, t
|c| ) if c 6= 0;

(NA4) N(x+ y,max{s, t}) ≥ min{N(x, s), N(y, t)};

(N5) lim
t→∞

N(x, t) = 1.

In this case (X,N) is called a non-Archimedean fuzzy normed space.

Clearly, if (NA4) holds, then so is (N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)}.
If the scalar field is R then X is trival [26]. Recall that a classical vector space

over the complex or real field satisfying (N1)−(N5) is called a fuzzy normed space in
the literature. We repeatedly use the fact N(−x, t) = N(x, t), x ∈ X, t > 0, which
is deduced from (N3). It is easy to see that (NA4) is equivalent to the following
condition:

(NA4′)N(x+ y, t) ≥ min{N(x, t), N(y, t)}(x, y ∈ X, t ∈ R).

There exists a close relationship between the notion of a fuzzy normed space and
that of a probabilistic normed space. In fact, a function N fulfilling (N1) − (N5)
and in addition being left continuous on R with N(x,∞) = 1 and N(x,−∞) = 0
is the so-called distance distribution function. So N(0, t) is a particular distance
distribution function, namely ε0 (see [13]).

Example 2.2. Let (X, ‖ · ‖) be a non-Archimedean normed space, and α, β > 0.
Then

N(x, t) =


αt

αt+β‖x‖ , t > 0, x ∈ X,

0, t ≤ 0, x ∈ X,

is a non-Archimedean fuzzy norm on X.

Example 2.3. Let (X, ‖ · ‖) be a non-Archimedean normed space. Then

N(x, t) =


0, t ≤ ‖x‖,

1, t > ‖x‖,

is a non-Archimedean fuzzy norm on X.

Definition 2.3 ( [29]). Let (X,N) be a non-Archimedean fuzzy normed space. Let
{xn} be a sequence in X. Then {xn} is said to be convergent if there exists x ∈ X
such that

lim
n→∞

N(xn − x, t) = 1,

for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote
by N − limxn = x.
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A sequence {xn} in X is called a Cauchy sequence if, for every ε > 0 and t > 0,
there exists n0 ∈ N such that N(xn+p − xn, t) > 1 − ε for all n ≥ n0 and p > 0.
Due to

N(xn+p − xn, t) ≥ min{N(xn+p − xn+p−1, t), . . . , N(xn+1 − xn, t)},

the sequence {xn} is a Cauchy sequence if, for every ε ≥ 0 and t > 0, there exists
n0 ∈ N such that N(xn+1 − xn, t) > 1− ε for all n ≥ n0.

It is well known that every convergent sequence in a (non-Archimedean) fuzzy
normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy
norm is said to be complete and the (non-Archimedean) fuzzy normed space is
called a (non-Archimedean) fuzzy Banach space.

3. Fuzzy Hyers-Ulam-Rassias stability of the func-
tional equation (1.4)

In this section, assume that K is non-Archimedean field, X is a vector space over
K, (Y,N) is a non-Archimedean fuzzy Banach space over K, and (Z,N ′) is (an
Archimedean or a non-Archimedean fuzzy) normed space. We prove generalized
Hyers-Ulam stability of the functional equation (1.4) in non-Archimedean fuzzy
Banach spaces.

For the sake of convenience, given mapping f : X → Y , we define the difference
operator ∆f : X → Y of the functional equation (1.4) by

∆f(x, y) =f(kx+ y) + f(kx− y)− k2f(x+ y)

− k2f(x− y)− 2f(kx) + 2k2f(x) + 2(k2 − 1)f(y),

for all x, y ∈ X and for a fixed integer k with k 6= 0,±1.
A function f from a real vector space V into a real vector space W is said to be a

quadratic and quartic mapping if f(x) = A(x, x, x, x)+B(x, x), where A : V 4 →W
is a 4-additive mapping and B : V 2 → W is a bi-additive mapping. The proof of
the following lemma was found in [12].

Lemma 3.1. Let V and W be real vector spaces. If a mapping f : V →W satisfies
the functional equation (1.4), then f is a quadratic and quartic mapping.

Theorem 3.1. Let ϕq : X×X → Z be a mapping and for some α > 0 with |4| < α
such that

N ′(ϕq(
x

2
,
y

2
), t) ≥ N ′(ϕq(x, y), αt), (3.1)

for all x, y ∈ X and t > 0. Suppose that a mapping f : X → Y with f(0) = 0
satisfies the inequality

N(∆f(x, y), t) ≥ N ′(ϕq(x, y), t), (3.2)

for all x, y ∈ X and t > 0. Then there exists a unique quadratic map Q : X → Y
such that

N(f(2x)− 16f(x)−Q(x), t) ≥ N1(x, α|k4 − k2|t), (3.3)
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for all x ∈ X and t > 0, where

N1(x, t) = min

{
N ′(ϕq(0, x),

1

|2k2|
t), N ′(ϕq(0, x),

|k2 − 1|
|4|

t), N ′(ϕq(0, 2x), |k2 − 1|t),

N ′(ϕq(0, (k − 1)x),
|k2 − 1|
|2k2|

t), N ′(ϕq(0, (k − 2)x),
|k2 − 1|
|4k2|

t),

N ′(ϕq(0, (k − 3)x),
|k2 − 1|
|k2|

t), N ′(ϕq(0, kx),
|k2 − 1|
|4k2|

t),

N ′(ϕq(0, (k + 1)x),
|k2 − 1|
|k2|

t), N ′(ϕq(x, x),
1

|16k2 − 8|
t),

N ′(ϕq(x, x),
1

|k2|
t), N ′(ϕq(x, 2x),

1

|2(k2 − 1)|
t),

N ′(ϕq(x, 2x),
1

|4k2|
t), N ′(ϕq(x, 3x),

1

|k2|
t), N ′(ϕq(x, (k − 1)x),

1

|4|
t),

N ′(ϕq(x, (k − 2)x), t), N ′(ϕq(x, kx),
1

|2|
t), N ′(ϕq(x, (k + 1)x),

1

|4|
t),

N ′(ϕq(x, (k + 2)x), t), N ′(ϕq(2x, x),
1

|4|
t), N ′(ϕq(2x, 2x), t)

}
.

Proof. Putting x = 0 in (3.2) and then changing y to x, we get

N(f(x)− f(−x), t) ≥ N ′(ϕq(0, x), |k2 − 1|t), (3.4)

for all x ∈ X and t > 0. Letting y = x in (3.2), we obtain

N
(
f((k + 1)x) + f((k − 1)x)− k2f(2x)− 2f(kx) + (4k2 − 2)f(x), t

)
≥N ′(ϕq(x, x), t), (3.5)

for all x ∈ X and t > 0. Letting y = 2x in (3.2), we have

N(f((k + 2)x) + f((k − 2)x)− k2f(3x)− k2f(−x)− 2f(kx)

+ 2k2f(x) + 2(k2 − 1)f(2x), t)

≥N ′(ϕq(x, 2x), t), (3.6)

for all x ∈ X and t > 0. By (3.4) and (3.6), we have

N(f((k + 2)x) + f((k − 2)x)− k2f(3x)− k2f(−x)− 2f(kx)

+ 2k2f(x) + 2(k2 − 1)f(2x), t)

≥min

{
N ′(ϕq(x, 2x), t), N ′(ϕq(0, x),

|k2 − 1|
|k2|

t)

}
, (3.7)

for all x ∈ X and t > 0. Letting y = kx in (3.2), we have

N(f((k + 2)x) + f((k − 2)x)− k2f(3x)− 2f(kx) + k2f(x)

+ 2(k2 − 2)f(2x) + 2k2f(x), t)

≥N ′(ϕq(x, kx), t), (3.8)
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for all x ∈ X and t > 0. By (3.4) and (3.8), we have

N(f(2kx)− k2f((k + 1)x)− k2f((k − 1)x)− 2(k2 − 2)f(kx) + 2k2f(x), t)

≥min

{
N ′(ϕq(x, kx), t), N ′(ϕq(0, (k − 1)x),

|k2 − 1|
|k2|

t)

}
, (3.9)

for all x ∈ X and t > 0. Letting y = (k + 1)x in (3.2), we get

N(f((2k + 1)x) + f(−x)− k2f((k + 2)x)− k2f(−kx)− 2f(kx) + 2k2f(x)

+ 2(k2 − 1)f((k + 1)x), t)

≥N ′(ϕq(x, (k + 1)x), t), (3.10)

for all x ∈ X and t > 0. By (3.4) and (3.10), we have

N(f((2k + 1)x) + f(x)− k2f((k + 2)x)− k2f(kx)− 2f(kx) + 2k2f(x)

+ 2(k2 − 1)f((k + 1)x), t)

≥min

{
N ′(ϕq(x, (k + 1)x), t), N ′(ϕq(0, kx),

|k2 − 1|
|k2|

t), N ′(ϕq(0, x), |k2 − 1|t)
}
,

(3.11)

for all x ∈ X and t > 0. Letting y = (k − 1)x in (3.2), we get

N(f((2k − 1)x) + f(x)− k2f((2− k)x)− (k2 + 2)f(kx) + 2k2f(x)

+ 2(k2 − 1)f((k − 1)x), t)

≥N ′(ϕq(x, (k − 1)x), t), (3.12)

for all x ∈ X and t > 0. It follows from (3.4) and (3.12) that

N(f((2k − 1)x) + f(x)− k2f((k − 2)x)− (k2 + 2)f(kx)

+ 2k2f(x) + 2(k2 − 1)f((k − 1)x), t)

≥min

{
N ′(ϕq(x, (k − 1)x), t), N ′(ϕq(0, (k − 2)x),

|k2 − 1|
|k2|

t)

}
, (3.13)

for all x ∈ X and t > 0. Letting y = (k + 2)x in (3.2), we get

N
(
f(2(k + 1)x) + f(−2x)− k2f((k + 3)x)− k2f(−(k + 1)x)− 2f(kx)

+ 2k2f(x) + 2(k2 − 1)f((k + 2)x), t
)

≥N ′(ϕq(x, (k + 2)x), t), (3.14)

for all x ∈ X and t > 0. It follows from (3.4) and (3.14) that

N(f(2(k + 1)x) + f(2x)− k2f((k + 3)x)− k2f((k + 1)x)

− 2f(kx) + 2k2f(x) + 2(k2 − 1)f((k + 2)x), t)

≥min

{
N ′(ϕq(x, (k + 2)x), t), N ′(ϕq(0, (k + 1)x),

|k2 − 1|
|k2| t), N ′(ϕq(0, 2x), |k2 − 1|t)

}
,

(3.15)
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for all x ∈ X and t > 0. Letting y = (k − 2)x in (3.2), we have

N(f(2(k − 1)x) + f(2x)− k2f((k − 1)x)− k2f(−(k − 3)x)− 2f(kx)

+ 2k2f(x) + 2(k2 − 1)f((k − 2)x), t)

≥N ′(ϕq(x, (k − 2)x), t), (3.16)

for all x ∈ X and t > 0. It follows from (3.4) and (3.16) that

N(f(2(k − 1)x) + f(2x)− k2f((k − 1)x)− k2f((k − 3)x)− 2f(kx)

+ 2k2f(x) + 2(k2 − 1)f((k − 2)x), t)

≥min

{
N ′(ϕq(x, (k − 2)x), t), N ′(ϕq(0, (k − 3)x),

|k2 − 1|
|k2|

t)

}
, (3.17)

for all x ∈ X and t > 0. Letting y = 3x in (3.2), we have

N(f((k + 3)x) + f((k − 3)x)− k2f(4x)− k2f(−2x)− 2f(kx) + 2k2f(x)

+ 2(k2 − 1)f(3x), t)

≥N ′(ϕq(x, 3x), t), (3.18)

for all x ∈ X and t > 0. It follows from (3.4) and (3.18) that

N(f((k + 3)x) + f((k − 3)x)− k2f(4x)− k2f(2x)− 2f(kx)

+ 2k2f(x) + 2(k2 − 1)f(3x), t)

≥min

{
N ′(ϕq(x, 3x), t), N ′(ϕq(0, 2x),

|k2 − 1|
|k2|

t)

}
, (3.19)

for all x ∈ X and t > 0. Replacing x and y by 2x and x in (3.2), respectively, we
obtain

N(f((2k + 1)x) + f((2k − 1)x)− k2f(3x)− 2f(2kx)

+ 2k2f(2x) + (k2 − 2)f(x), t)

≥N ′(ϕq(2x, x), t), (3.20)

for all x ∈ X and t > 0. Letting 2x and 2y in place of x and y in (3.2), respectively,
we get

N(f(2(k + 1)x) + f(2(k − 1)x)− k2f(4x)− 2f(2kx) + 2(2k2 − 1)f(2x), t)

≥N ′(ϕq(2x, 2x), t), (3.21)

for all x ∈ X and t > 0. By (3.5), (3.7), (3.9), (3.11), (3.13) and (3.20), we get

N((k4 − k2)[f(3x)− 6f(2x) + 15f(x)], t)

≥min

{
N ′(ϕq(x, 2x),

1

|k2|
t), N ′(ϕq(0, x),

|k2 − 1|
|k4|

t), N ′(ϕq(x, kx),
1

|2|
t),

N ′(ϕq(0, (k − 1)x),
|k2 − 1|
|2k2|

t), N ′(ϕq(x, (k + 1)x), t), N ′(ϕq(0, x), |k2 − 1|t),

N ′(ϕq(0, kx),
|k2 − 1|
|k2|

t), N ′(ϕq(x, (k − 1)x), t), N ′(ϕq(0, (k − 2)x),
|k2 − 1|
|k2|

t),

N ′(ϕq(x, x),
1

|4k2 − 2|
t), N ′(ϕq(2x, x), t)

}
, (3.22)
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for all x ∈ X and t > 0. It follows from (3.5), (3.7), (3.9), (3.15), (3.17), (3.19) and
(3.21) that

N((k4 − k2)[f(4x)− 4f(3x) + 4f(2x) + 4f(x)], t)

≥min

{
N ′(ϕq(x, 2x),

1

|2(k2 − 1)|
t), N ′(ϕq(0, x),

1

|2k2|
t), N ′(ϕq(x, kx),

1

|2|
t),

N ′(ϕq(0, (k − 1)x),
|k2 − 1|
|2k2|

t), N ′(ϕq(x, (k + 2)x), t),

N ′(ϕq(0, (k + 1)x),
|k2 − 1|
|k2|

t), N ′(ϕq(0, 2x), |k2 − 1|t),

N ′(ϕq(x, (k − 2)x), t), N ′(ϕq(0, (k − 3)x),
|k2 − 1|
|k2|

t), N ′(ϕq(x, 3x),
1

|k2|
t),

N ′(ϕq(0, 2x),
|k2 − 1|
|k4|

t), N ′(ϕq(2x, 2x), t), N ′(ϕq(x, x),
1

|k2|
t)

}
, (3.23)

for all x ∈ X and t > 0. By (3.22) and (3.23), we obtain

N( (k4 − k2)[f(4x)− 20f(2x) + 64f(x)], t) ≥ N1(x, t), (3.24)

for all x ∈ X and t > 0, where

N1(x, t) = min

{
N ′(ϕq(0, x),

1

|2k2|
t), N ′(ϕq(0, x),

|k2 − 1|
|4|

t), N ′(ϕq(0, 2x), |k2 − 1|t),

N ′(ϕq(0, (k − 1)x),
|k2 − 1|
|2k2|

t), N ′(ϕq(0, (k − 2)x),
|k2 − 1|
|4k2|

t),

N ′(ϕq(0, (k − 3)x),
|k2 − 1|
|k2|

t), N ′(ϕq(0, kx),
|k2 − 1|
|4k2|

t),

N ′(ϕq(0, (k + 1)x),
|k2 − 1|
|k2|

t), N ′(ϕq(x, x),
1

|16k2 − 8|
t),

N ′(ϕq(x, x),
1

|k2|
t), N ′(ϕq(x, 2x),

1

|2(k2 − 1)|
t),

N ′(ϕq(x, 2x),
1

|4k2|
t), N ′(ϕq(x, 3x),

1

|k2|
t), N ′(ϕq(x, (k − 1)x),

1

|4|
t),

N ′(ϕq(x, (k − 2)x), t), N ′(ϕq(x, kx),
1

|2|
t), N ′(ϕq(x, (k + 1)x),

1

|4|
t),

N ′(ϕq(x, (k + 2)x), t), N ′(ϕq(2x, x),
1

|4|
t), N ′(ϕq(2x, 2x), t)

}
.

Then the inequality (3.24) implies that

N(f(4x)− 20f(2x) + 64f(x), t) ≥ N1(x, |k4 − k2|t), (3.25)

for all x ∈ X and t > 0. Let g : X → Y be a mapping defined by g(x) :=
f(2x)− 16f(x) for all x ∈ X. Then from (3.25), we get

N(g(2x)− 4g(x), t) ≥ N1(x, |k4 − k2|t), (3.26)

for all x ∈ X and t > 0. Replacing x by x
2n+1 in (3.26) and using (3.1), we have

N(g(
x

2n
)− 4g(

x

2n+1
), t) ≥ N1(x, αn+1|k4 − k2|t), (3.27)
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for all x ∈ X and t > 0. Hence

N(4ng(
x

2n
)− 4n+1g(

x

2n+1
), t) ≥ N1(x,

αn+1

|4|n
|k4 − k2|t), (3.28)

for all x ∈ X, t > 0 and non-negative integers n.

Since lim
n→∞

N1(x, α
n+1

|4|n |k
4−k2|t) = 1, the inequality (3.28) shows that {4ng( x2n )}

is a Cauchy sequence in the non-Archimedean fuzzy Banach space (Y,N) for all
x ∈ X. Hence, we can define the mapping Q : X → Y by

Q(x) := lim
n→∞

4ng(
x

2n
), (3.29)

for all x ∈ X. Thus

lim
n→∞

N(4ng(
x

2n
)−Q(x), t) = 1, (3.30)

for all x ∈ X and t > 0. For each n ≥ 1, we have

N(g(x)− 4ng(
x

2n
), t) = N(

n−1∑
i=0

[4ig(
x

2i
)− 4i+1g(

x

2i+1
)], t)

≥ min

n−1⋃
i=0

{N(4ig(
x

2i
)− 4i+1g(

x

2i+1
), t)}

≥ N1(x, α|k4 − k2|t), (3.31)

for all x ∈ X and t > 0. It follows from (3.30) and (3.31) that

N(g(x)−Q(x), t) ≥ min{N(g(x)− 4ng(
x

2n
), t), N(4ng(

x

2n
)−Q(x), t)}

≥ N1(x, α|k4 − k2|t), (3.32)

for each x ∈ X, t > 0 and large enough n, which implies that (3.3) holds for all
x ∈ X and t > 0.

Now, we show that Q is quadratic. It follows from (3.30) that

lim
n→∞

N(4ng(
x

2n−1
)−Q(2x), t) = 1, lim

n→∞
N(Q(x)− 4n−1g(

x

2n−1
), t) = 1, (3.33)

for all x ∈ X and t > 0. Therefore

N(Q(2x)− 4Q(x), t) = N(Q(2x)− 4ng(
x

2n−1
) + 4ng(

x

2n−1
)− 4Q(x), t)

≥min{N(Q(2x)− 4ng(
x

2n−1
), t), N(4ng(

x

2n−1
)− 4Q(x), t)}

= min{N(Q(2x)− 4ng(
x

2n−1
), t), N(4n−1g(

x

2n−1
)−Q(x),

t

|4|
)},

for all x ∈ X and t > 0. By (3.33), the right hand side of the above inequality tends
to 1 as n→∞. Therefore, we implies that

Q(2x) = 4Q(x), (3.34)
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for all x ∈ X. Replacing x, y by x
2n , y

2n in (3.2), respectively, and using (N3), we
obtain

N(4n∆f(
x

2n
,
y

2n
), t) ≥ N ′(ϕq(

x

2n
,
y

2n
),

t

|4|n
),

for all x, y ∈ X and t > 0. On the other hand, it can be easily verified that

∆g(x, y) = ∆f(2x, 2y)− 16∆f(x, y),

for all x, y ∈ X. Hence

N(∆Q(x, y), t) = N(Q(kx+ y) +Q(kx− y)− k2Q(x+ y)− k2Q(x− y)

− 2Q(kx) + 2k2Q(x) + 2(k2 − 1)Q(y), t)

=N([Q(kx+ y)− 4ng(
kx+ y

2n
)] + [Q(kx− y)− 4ng(

kx− y
2n

)]

− k2[Q(x+ y)− 4ng(
x+ y

2n
)]− k2[Q(x− y)− 4ng(

x− y
2n

)]

− 2[Q(kx)− 4ng(
kx

2n
)] + 2k2[Q(x)− 4ng(

x

2n
)]

+ 2(k2 − 1)[Q(y)− 4ng(
y

2n
)] + 4n[∆f(

x

2n−1
,

y

2n−1
)− 16∆f(

x

2n
,
y

2n
)], t)

≥min

{
N(Q(kx+ y)− 4ng(

kx+ y

2n
), t), N(Q(kx− y)− 4ng(

kx− y
2n

), t),

N(Q(x+ y)− 4ng(
x+ y

2n
),

t

|k2|
), N(Q(x− y)− 4ng(

x− y
2n

),
t

|k2|
),

N(Q(kx)− 4ng(
kx

2n
),
t

|2|
), N(Q(x)− 4ng(

x

2n
),

t

|k2|
),

N(Q(y)− 4ng(
y

2n
),

t

|2(k2 − 1)|
), N ′(ϕq(x, y),

αn−1t

|4|n
), N ′(ϕq(x, y),

αnt

|4|n+2
)

}
,

for all x, y ∈ X and t > 0. The first seven terms on the right hand side of the above
inequality tend to 1 as n→∞ by (3.30) and the eighth and ninth terms tend to 1
as n→∞ by |4| < α and (N5). Therefore, N(∆Q(x, y), t) = 1 for all x, y ∈ X and
t > 0. By (N2), we yields

Q(kx+ y) +Q(kx− y)− k2Q(x+ y)− k2Q(x− y)

− 2Q(kx) + 2k2Q(x) + 2(k2 − 1)Q(y) = 0,

for all x, y ∈ X. Hence the mapping Q satisfies (1.1). By Lemma 3.1, the mapping
Q(2x)−16Q(x) is quadratic. Hence (3.34) implies that the mapping Q is quadratic.

To prove the uniqueness of the mapping Q, let Q′ : X → Y be another quadratic
mapping, such that N(f(2x) − 16f(x) − Q′(x), t) ≥ N1(x, α|k4 − k2|t). Then for
each x ∈ X and all t ≥ 0, we get

N(Q(x)−Q′(x), t)

= N(Q(x)− f(2x) + 16f(x) + f(2x)− 16f(x)−Q′(x), t)

≥ min{N(Q(x)− f(2x) + 16f(x), t), N(f(2x)− 16f(x)−Q′(x), t)}
≥ N1(x, α|k4 − k2|t).
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Since Q′( x2n ) = 1
4nQ

′(x) and Q( x2n ) = 1
4nQ(x), by the above inequality, (3.1) and

(N3), we conclude that

N(Q(x)−Q′(x), t) = N(Q(
x

2n
)−Q′( x

2n
),

1

|4n|
t)

≥ N1(
x

2n
,
α

|4n|
|k4 − k2|t)

≥ N1(x,
αn+1

|4n|
|k4 − k2|t),

for all x ∈ X, t > 0 and n ∈ N. Since |4| < α, lim
n→∞

( α|4| )
n = ∞. Then, the right

hand side of the above inequality tends to 1 as n → ∞. So Q(x) = Q′(x) for all
x ∈ X. This completes the proof of the theorem.

Theorem 3.2. Let ϕt : X×X → Z be a mapping and for some β > 0 with |16| < β
such that

N ′(ϕt(
x

2
,
y

2
), t) ≥ N ′(ϕt(x, y), βt), (3.35)

for all x, y ∈ X and t > 0. Suppose that a mapping f : X → Y with f(0) = 0
satisfies the inequality

N(∆f(x, y), t) ≥ N ′(ϕt(x, y), t), (3.36)

for all x, y ∈ X and t > 0. Then there exists a unique quartic mapping T : X → Y
such that

N(f(2x)− 4f(x)− T (x), t) ≥ N2(x, β|k4 − k2|t), (3.37)

for all x ∈ X and t > 0, where

N2(x, t) = min

{
N ′(ϕt(0, x),

1

|2k2|
t), N ′(ϕt(0, x),

|k2 − 1|
|4|

t), N ′(ϕt(0, 2x), |k2 − 1|t),

N ′(ϕt(0, (k − 1)x),
|k2 − 1|
|2k2|

t), N ′(ϕt(0, (k − 2)x),
|k2 − 1|
|4k2|

t),

N ′(ϕt(0, (k − 3)x),
|k2 − 1|
|k2|

t), N ′(ϕt(0, kx),
|k2 − 1|
|4k2|

t),

N ′(ϕt(0, (k + 1)x),
|k2 − 1|
|k2|

t), N ′(ϕt(x, x),
1

|16k2 − 8|
t),

N ′(ϕt(x, x),
1

|k2|
t), N ′(ϕt(x, 2x),

1

|2(k2 − 1)|
t),

N ′(ϕt(x, 2x),
1

|4k2|
t), N ′(ϕt(x, 3x),

1

|k2|
t), N ′(ϕt(x, (k − 1)x),

1

|4|
t),

N ′(ϕt(x, (k − 2)x), t), N ′(ϕt(x, kx),
1

|2|
t), N ′(ϕt(x, (k + 1)x),

1

|4|
t),

N ′(ϕt(x, (k + 2)x), t), N ′(ϕt(2x, x),
1

|4|
t), N ′(ϕt(2x, 2x), t)

}
.
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Proof. By the similar reasoning as in the proof of Theorem 3.1, we obtain

N(f(4x)− 20f(2x) + 64f(x), t) ≥ N2(x, |k4 − k2|t), (3.38)

for all x ∈ X and t > 0. Letting h : X → Y be a mapping defined by h(x) :=
f(2x)− 4f(x) for all x ∈ X. Then, we obtain

N(h(2x)− 16h(x), t) ≥ N2(x, |k4 − k2|t), (3.39)

for all x ∈ X and t > 0. Replacing x by x
2n+1 in (3.39) and using (3.35), we have

N(h(
x

2n
)− 16h(

x

2n+1
), t) ≥ N2(x, βn+1|k4 − k2|t), (3.40)

for all x ∈ X and t > 0. Hence

N(16nh(
x

2n
)− 16n+1h(

x

2n+1
), t) ≥ N2(x,

βn+1

|16|n
|k4 − k2|t), (3.41)

for all x ∈ X, t > 0 and non-negative integers n.

From |16| < β, we conclude that lim
n→∞

N1(x, β
n+1

|16|n |k
4 − k2|t) = 1. Then the in-

equality (3.41) shows that {16nh( x2n )} is a Cauchy sequence in the non-Archimedean
fuzzy Banach space (Y,N) for all x ∈ X. Hence we can define the mapping
T : X → Y by

T (x) := lim
n→∞

16nh(
x

2n
), (3.42)

for all x ∈ X. Thus

lim
n→∞

N(16nh(
x

2n
)− T (x), t) = 1, (3.43)

for all x ∈ X and t > 0. For each n ≥ 1, we have

N(h(x)− 16nh(
x

2n
), t) = N(

n−1∑
i=0

[16ih(
x

2i
)− 16i+1h(

x

2i+1
)], t)

≥ min

n−1⋃
i=0

{N(16ih(
x

2i
)− 16i+1h(

x

2i+1
), t)}

≥ N2(x, β|k4 − k2|t), (3.44)

for all x ∈ X and t > 0. It follows from (3.43) and (3.44) that

N(h(x)− T (x), t) ≥ min{N(h(x)− 16nh(
x

2n
), t), N(16nh(

x

2n
)− T (x), t)}

≥ N2(x, β|k4 − k2|t), (3.45)

for each x ∈ X, t > 0 and large enough n. This means that the inequality (3.37)
holds for all x ∈ X and t > 0.

The rest of the proof is similar to the proof of Theorem 3.1. This completes the
proof of the theorem.
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Theorem 3.3. Let ϕ : X ×X → Z be a mapping and for some δ > 0 with |4| < δ
such that

N ′(ϕ(
x

2
,
y

2
), t) ≥ N ′(ϕ(x, y), δt), (3.46)

for all x, y ∈ X and t > 0. Suppose that a mapping f : X → Y with f(0) = 0
satisfies the inequality

N(∆f(x, y), t) ≥ N ′(ϕ(x, y), t), (3.47)

for all x, y ∈ X and t > 0. Then there exist a unique quadratic mapping Q : X → Y
and a quartic mapping T : X → Y such that

N(f(x)−Q(x)− T (x), t) ≥ Ñ(x, δ|12||k4 − k2|t), (3.48)

for all x ∈ X and t > 0, where

Ñ(x, t) = min

{
N ′(ϕ(0, x),

1

|2k2|
t), N ′(ϕ(0, x),

|k2 − 1|
|4|

t), N ′(ϕ(0, 2x), |k2 − 1|t),

N ′(ϕ(0, (k − 1)x),
|k2 − 1|
|2k2|

t), N ′(ϕ(0, (k − 2)x),
|k2 − 1|
|4k2|

t),

N ′(ϕ(0, (k − 3)x),
|k2 − 1|
|k2|

t), N ′(ϕ(0, kx),
|k2 − 1|
|4k2|

t),

N ′(ϕ(0, (k + 1)x),
|k2 − 1|
|k2|

t), N ′(ϕ(x, x),
1

|16k2 − 8|
t),

N ′(ϕ(x, x),
1

|k2|
t), N ′(ϕ(x, 2x),

1

|2(k2 − 1)|
t),

N ′(ϕ(x, 2x),
1

|4k2|
t), N ′(ϕ(x, 3x),

1

|k2|
t), N ′(ϕ(x, (k − 1)x),

1

|4|
t),

N ′(ϕ(x, (k − 2)x), t), N ′(ϕ(x, kx),
1

|2|
t), N ′(ϕ(x, (k + 1)x),

1

|4|
t),

N ′(ϕ(x, (k + 2)x), t), N ′(ϕ(2x, x),
1

|4|
t), N ′(ϕ(2x, 2x), t)

}
.

Proof. Clearly |16| ≤ |4| < δ. By Theorems 3.1 and 3.2, there exist a quadratic
mapping Q0 : X → Y and a quartic T0 : X → Y such that

N(f(2x)− 16f(x)−Q0(x), t) ≥ Ñ(x, δ|k4 − k2|t), (3.49)

N(f(2x)− 4f(x)− T0(x), t) ≥ Ñ(x, δ|k4 − k2|t), (3.50)

for all x ∈ X and t > 0. It follows from (3.49) and (3.50) that

N(f(x) +
1

12
Q0(x)− 1

12
T0(x), t)

= N(
1

12
[f(2x)− 4f(x)− T0(x)]− 1

12
[f(2x)− 16f(x)−Q0(x)], t)

≥ min

{
N(

1

12
[f(2x)− 4f(x)− T0(x)], t), N(

1

12
[f(2x)− 16f(x)−Q0(x)], t)

}
= min {N(f(2x)− 4f(x)− T0(x), |12|t), N(f(2x)− 16f(x)−Q0(x), |12|t)}

≥ Ñ(x, δ|12||k4 − k2|t), (3.51)
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for all x ∈ X and t > 0. So we obtain (3.48) by letting Q(x) = − 1
12Q0(x) and

T (x) = 1
12T0(x) for all x ∈ X.

To prove the uniqueness property of Q and T , and let Q′, T ′ : X → Y be another
quadratic and quartic mapping satisfying (3.48). Set Q̃ = Q−Q′ and T̃ = T − T ′.
So

N(Q̃(x) + T̃ (x), t)

=N([Q(x)− T (x)− f(x)] + [f(x)−Q′(x)− T ′(x)], t)

≥min {N(f(x)−Q(x)− T (x), t), N(f(x)−Q′(x)− T ′(x), t)}

≥Ñ(x, δ|12||k4 − k2|t), (3.52)

for all x ∈ X and t > 0. By Q̃(2x) = 4Q̃(x) and T̃ (2x) = 16T̃ (x), we have

N(T̃ (x), t) = N(T̃ (
x

2n
) + Q̃(

x

2n
)− Q̃(

x

2n
),

t

|16|n
)

≥min

{
T̃ (

x

2n
) + Q̃(

x

2n
),

t

|16|n
), N(Q̃(

x

2n
),

t

|16|n
)

}
≥min

{
Ñ(x,

δn+1|12|
|16|n

|k4 − k2|t), N(Q̃(x),
t

|4|n
)

}
, (3.53)

for all x ∈ X and t > 0. Since the right hand side of the obove inequality tends
to 1 as n → ∞, we find that T̃ (x) = 0. Therefore T̃ = 0, and then Q̃ = 0. This
completes the proof of the theorem.

4. Applications of the fuzzy stability of functional
equation (1.4)

In this section, we present some applications of fuzzy stability to the generalized
Hyers-Ulam stability of the functional equation (1.4) in non-Archimedean normed
spaces.

Theorem 4.1. Let K be a non-Archimedean field, X be a linear space over K,
(Y, ‖·‖Y ) be a complete non-Archimedean normed space over K, let ϕq be a mapping
from X ×X to [0,∞). Suppose for a positive real number α with |4| < α

ϕq(
x

2
,
y

2
) ≤ 1

α
ϕq(x, y) (4.1)

holds for all x, y ∈ X. Further, suppose that a mapping f : X → Y with f(0) = 0
satisfies the inequality

‖∆f(x, y)‖Y ≤ ϕq(x, y), (4.2)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such
that

‖f(2x)− 16f(x)−Q(x)‖Y ≤
1

α
Mq(x), (4.3)
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for all x ∈ X, where

Mq(x) =
1

|k4 − k2|
max

{
|2k2|ϕq(0, x),

|4|
|k2 − 1|

ϕq(0, x),
1

|k2 − 1|
ϕq(0, 2x),

|2k2|
|k2 − 1|

ϕq(0, (k − 1)x),
|4k2|
|k2 − 1|

ϕq(0, (k − 2)x),

|k2|
|k2 − 1|

ϕq(0, (k − 3)x),
|4k2|
|k2 − 1|

ϕq(0, kx), |16k2 − 8|ϕq(x, x),

|k2|ϕq(x, x), |2(k2 − 1)|ϕq(x, 2x), |4k2|ϕq(x, 2x), |k2|ϕq(x, 3x),

|4|ϕq(x, (k − 1)x), ϕq(x, (k − 2)x), |2|ϕq(x, kx), |4|ϕq(x, (k + 1)x),

ϕq(x, (k + 2)x), |4|ϕq(2x, x), ϕq(2x, 2x),
|k2|
|k2 − 1|

ϕq(0, (k + 1)x)

}
.

Proof. Let Z = R with the fuzzy norm and λ, µ > 0

N ′(x, t) =

 λt
λt+µ|x| , t > 0, x ∈ R,

0, t ≤ 0, x ∈ R,

and define

N(y, t) =

 λt
λt+µ‖y‖Y , t > 0, y ∈ Y,

0, t ≤ 0, y ∈ Y.

Then N is a non-Archimedean fuzzy norm on Y and N ′ is a fuzzy norm on R. The
result follows from Theorem 3.1. This completes the proof of the theorem.

Corollary 4.1. Let K be a non-Archimedean field, (X, ‖·‖X) be a non-Archimedean
normed space over K, and (Y, ‖ · ‖Y ) be a complete non-Archimedean normed space
over K. Suppose that θ > 0, 0 ≤ r < 2, |2| < 1, and f : X → Y be a mapping
satisfying f(0) = 0 and

‖∆f(x, y)‖Y ≤ θ(‖x‖rX + ‖y‖rX), (4.4)

for all x, y ∈ X. Then there exists a unique quadratic mapping Q : X → Y such
that

‖f(2x)− 16f(x)−Q(x)‖Y ≤
θ‖x‖rX

|k4 − k2||2|r
max{2, 1

|k2 − 1|
}, (4.5)

for all x ∈ X.

Proof. The proof follows immediately by taking ϕq : X ×X → [0,∞) be defined
by ϕq(x, y) = θ(‖x‖rX+‖y‖rX) for all x, y ∈ X and choosing α = |2|r in Theorem 4.1.

Corollary 4.2. Let K be a non-Archimedean field, (X, ‖·‖X) be a non-Archimedean
normed space over K, and (Y, ‖ · ‖Y ) be a complete non-Archimedean normed space
over K. Suppose that θ > 0, |2| < 1, and f : X → Y be a mapping satisfying
f(0) = 0 and

‖∆f(x, y)‖Y ≤ θ[‖x‖rX‖y‖sX + (‖x‖r+sX + ‖y‖r+sX )], (4.6)
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for all x, y ∈ X, where r, s be non-negative real numbers with λ := r + s < 2. Then
there exists a unique quadratic mapping Q : X → Y such that

‖f(2x)− 16f(x)−Q(x)‖Y ≤
θ‖x‖λX

|k4 − k2||2|λ
max{3, 1

|k2 − 1|
}, (4.7)

for all x ∈ X.

Proof. The asserted result in Corollary 4.2 can be easily derived by considering
ϕq : X × X → [0,∞) be defined by ϕq(x, y) = θ[‖x‖rX‖y‖sX + (‖x‖r+sX + ‖y‖r+sX )]
for all x, y ∈ X and α = |2|λ in Theorem 4.1.

Example 4.1 ( [27]). Let p > 2 be a prime number and f : Qp → Qp be defined
by f(x) = 2. By Example 2.1, |2n|p = 1 for all n ∈ Z. Then for ε = 1,

|∆f(x, y)|p = |4(k2 − 1)|p ≤ 1 ≤ ε,

for all x, y ∈ Qp. However,

|4ng(
x

2n
)− 4n+1g(

x

2n+1
)|p = |22n+1|p|45|p = |45|p,

for all x ∈ Qp and n ∈ N. Hence {4ng( x2n )} is not a Cauchy sequence, where
g(x) := f(2x)− 16f(x) (see the proof of Theorem 3.1).

Theorem 4.2. Let K be a non-Archimedean field, X be a linear space over K,
(Y, ‖ · ‖Y ) be a complete non-Archimedean normed space over K, let ϕt : X ×X →
[0,∞) be a mapping and for a positive real number β with |16| < β such that

ϕt(
x

2
,
y

2
) ≤ 1

β
ϕt(x, y), (4.8)

for all x, y ∈ X. Suppose that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

‖∆f(x, y)‖Y ≤ ϕt(x, y), (4.9)

for all x, y ∈ X. Then there exists a unique quartic mapping T : X → Y such that

‖f(2x)− 4f(x)− T (x)‖Y ≤
1

β
Mt(x), (4.10)

for all x ∈ X, where

Mt(x) =
1

|k4 − k2|
max

{
|2k2|ϕt(0, x),

|4|
|k2 − 1|

ϕt(0, x),
1

|k2 − 1|
ϕt(0, 2x),

|2k2|
|k2 − 1|

ϕt(0, (k − 1)x),
|4k2|
|k2 − 1|

ϕt(0, (k − 2)x),

|k2|
|k2 − 1|

ϕt(0, (k − 3)x),
|4k2|
|k2 − 1|

ϕt(0, kx), |16k2 − 8|ϕt(x, x),

|k2|ϕt(x, x), |2(k2 − 1)|ϕt(x, 2x), |4k2|ϕt(x, 2x), |k2|ϕt(x, 3x),

|4|ϕt(x, (k − 1)x), ϕt(x, (k − 2)x), |2|ϕt(x, kx), |4|ϕt(x, (k + 1)x),

ϕt(x, (k + 2)x), |4|ϕt(2x, x), ϕt(2x, 2x),
|k2|
|k2 − 1|

ϕt(0, (k + 1)x)

}
.
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Proof. The proof the theorem is similar to the proof of Theorem 4.1 and the
result follows from Theorem 3.2, and thus it is omitted.

Corollary 4.3. Let K be a non-Archimedean field, (X, ‖·‖X) be a non-Archimedean
normed space over K, and (Y, ‖ · ‖Y ) be a complete non-Archimedean normed space
over K. Suppose that θ > 0, 0 ≤ r < 4, |2| < 1, and f : X → Y be a mapping
satisfying f(0) = 0 and (4.4) for all x, y ∈ X. Then there exists a unique quartic
mapping T : X → Y such that

‖f(2x)− 4f(x)− T (x)‖Y ≤
θ‖x‖rX

|k4 − k2||2|r
max{2, 1

|k2 − 1|
}, (4.11)

for all x ∈ X.

Proof. Let ϕt : X ×X → [0,∞) be defined by ϕt(x, y) = θ(‖x‖rX + ‖y‖rX) for all
x, y ∈ X. Then the results follows from Theorem 4.2 by choosing β = |2|r.

Corollary 4.4. Let K be a non-Archimedean field, (X, ‖·‖X) be a non-Archimedean
normed space over K, and (Y, ‖ · ‖Y ) be a complete non-Archimedean normed space
over K. Suppose that θ > 0, |2| < 1, and f : X → Y be a mapping satisfying
f(0) = 0 and (4.6) for all x, y ∈ X, where r, s be non-negative real numbers with
λ := r + s < 4. Then there exists a unique quartic mapping T : X → Y such that

‖f(2x)− 4f(x)− T (x)‖Y ≤
θ‖x‖λX

|k4 − k2||2|λ
max{3, 1

|k2 − 1|
}, (4.12)

for all x ∈ X.

Proof. Taking ϕt : X × X → [0,∞) be defined by ϕt(x, y) = θ[‖x‖rX‖y‖sX +
(‖x‖r+sX +‖y‖r+sX )] for all x, y ∈ X and choosing β = |2|λ in Theorem 4.2, we obtain
the inequality (4.12).

The following Example 4.2 shows that the assumption |2| < 1 cannot be omitted
in Corollary 4.3 and 4.4.

Example 4.2 ( [27]). Let p > 2 be a prime number and f : Qp → Qp be defined
by f(x) = 2. By Example 2.1, |2n|p = 1 for all n ∈ Z. Then for ε = 1,

|∆f(x, y)|p = |4(k2 − 1)|p ≤ 1 ≤ ε,

for all x, y ∈ Qp. However

|16ng(
x

2n
)− 16n+1g(

x

2n+1
)|p = |24n+1|p|45|p = |45|p,

for all x ∈ Qp and n ∈ N. Hence {16ng( x2n )} is not a Cauchy sequence, where
g(x) := f(2x)− 4f(x) (see the proof of Theorem 3.2).

Theorem 4.3. Let K be a non-Archimedean field, X be a linear space over K,
(Y, ‖ · ‖Y ) be a complete non-Archimedean normed space over K, let ϕ : X ×X →
[0,∞) be a mapping and for a positive real number δ with |4| < δ such that

ϕ(
x

2
,
y

2
) ≤ 1

δ
ϕ(x, y), (4.13)

for all x, y ∈ X. Suppose that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

‖∆f(x, y)‖Y ≤ ϕ(x, y), (4.14)
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for all x, y ∈ X. Then there exist a unique quadratic mapping Q : X → Y and a
quartic mapping T : X → Y such that

‖f(x)−Q(x)− T (x)‖Y ≤
1

|12|δ
M(x), (4.15)

for all x ∈ X, where

M(x) =
1

|k4 − k2|
max

{
|2k2|ϕ(0, x),

|4|
|k2 − 1|

ϕ(0, x),
1

|k2 − 1|
ϕ(0, 2x),

|2k2|
|k2 − 1|

ϕ(0, (k − 1)x),
|4k2|
|k2 − 1|

ϕ(0, (k − 2)x),

|k2|
|k2 − 1|

ϕ(0, (k − 3)x),
|4k2|
|k2 − 1|

ϕ(0, kx), |16k2 − 8|ϕ(x, x),

|k2|ϕ(x, x), |2(k2 − 1)|ϕ(x, 2x), |4k2|ϕ(x, 2x), |k2|ϕ(x, 3x),

|4|ϕ(x, (k − 1)x), ϕ(x, (k − 2)x), |2|ϕ(x, kx), |4|ϕ(x, (k + 1)x),

ϕ(x, (k + 2)x), |4|ϕ(2x, x), ϕ(2x, 2x),
|k2|
|k2 − 1|

ϕ(0, (k + 1)x)

}
.

Proof. The proof the theorem is similar to the proof of Theorem 4.1, and the
result follows from Theorem 3.3.

Corollary 4.5. Let K be a non-Archimedean field, (X, ‖·‖X) be a non-Archimedean
normed space over K, and (Y, ‖ · ‖Y ) be a complete non-Archimedean normed space
over K. Suppose that θ > 0, 0 ≤ r < 2, |2| < 1, and f : X → Y be a mapping
satisfying f(0) = 0 and (4.4) for all x, y ∈ X. Then there exist a unique quadratic
mapping Q : X → Y and a quartic mapping T : X → Y such that

‖f(x)−Q(x)− T (x)‖Y ≤
θ‖x‖rX

|12||k4 − k2||2|r
max{2, 1

|k2 − 1|
}, (4.16)

for all x ∈ X.

Proof. Let ϕ : X ×X → [0,∞) be defined by ϕ(x, y) = θ(‖x‖rX + ‖y‖rX) for all
x, y ∈ X. Then the results follows from Theorem 4.3 by choosing δ = |2|r.

Corollary 4.6. Let K be a non-Archimedean field, (X, ‖·‖X) be a non-Archimedean
normed space over K, and (Y, ‖ · ‖Y ) be a complete non-Archimedean normed space
over K. Suppose that θ > 0, |2| < 1, and f : X → Y be a mapping satisfying
f(0) = 0 and (4.6) for all x, y ∈ X, where r, s be non-negative real numbers with
λ := r + s < 2. Then there exists a unique quartic mapping T : X → Y such that

‖f(x)−Q(x)− T (x)‖Y ≤
θ‖x‖λX

|12||k4 − k2||2|λ
max{3, 1

|k2 − 1|
}, (4.17)

for all x ∈ X.

Proof. Taking ϕ : X × X → [0,∞) be defined by ϕ(x, y) = θ[‖x‖rX‖y‖sX +
(‖x‖r+sX +‖y‖r+sX )] for all x, y ∈ X and choosing δ = |2|λ in Theorem 4.3, we obtain
the inequality (4.17).

The following Example 4.3 shows that the assumption |2| < 1 cannot be omitted
in Corollary 4.5 and 4.6.
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Example 4.3 ( [27]). Let p > 2 be a prime number and f : Qp → Qp be defined
by f(x) = 2. By Example 2.1, |2n|p = 1 for all n ∈ Z. Then for ε = 1,

|∆f(x, y)|p = |4(k2 − 1)|p ≤ 1 ≤ ε,

for all x, y ∈ Qp. However {4n[f( x
2n−1 ) − 16f( x2n )]} and {16n[f( x

2n−1 ) − 4f( x2n )]}
are not Cauchy sequence. In fact, by using the fact that |2n|p = 1 for all n ∈ Z, we
get

|4n[f(
x

2n−1
)− 16f(

x

2n
)]− 4n+1[f(

x

2n
)− 16f(

x

2n+1
)]|p = |45|p,

and

|16n[f(
x

2n−1
)− 4f(

x

2n
)]− 16n+1[f(

x

2n
)− 4f(

x

2n+1
)]|p = |45|p,

for all x ∈ Qp and n ∈ N. Hence the sequences {4n[f( x
2n−1 ) − 16f( x2n )]} and

{16n[f( x
2n−1 )− 4f( x2n )]} are not converge in Qp.
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