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STABILITY ANALYSIS OF AN ENTERPRISE
COMPETITIVE MODEL WITH TIME DELAY∗
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Abstract A three-dimensional enterprise competitive model with time delay
is considered. Where the delay is regarded as bifurcation parameters. By
analyzing the corresponding characteristic equation of positive equilibrium,the
local stability of positive equilibrium is regarded. By using the normal form
method and center manifold theorem, we give the formula for determining
the direction of the Hopf bifurcation and the stability of bifurcating periodic
solutions. Numerical simulations are shown to illustrate the obtained results.
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1. Introduction

In recent years, in the fields of economic, the changes of enterprises’ number caused
by their competition are becoming more and more highlighted. Using the Ecological
Theory to study the principle of enterprises’ competition has become an important
method. An increasing number of scholars are studying this issues, and have made
some achievements. Hannan [3] synthesized the basic of Organizational Ecology
and developed it, at the same time, he put forward the mathematical model for
measuring enterprise’s development, transition and succession. Moore’s [6] Business
Ecosystem Coevolution argued that, in the context of world economy mutually
melting and environment increasingly deteriorating, enterprises should formulate
their development strategy in an enterprise ecosystem perspective.

As an essential part of national economic system, investment enterprise has an
important contribution to macro-Economics’ development, decompressing of em-
ployment and stability of the society. Development of investing enterprise depends
on competing for projects’s competition. Their relationship is very similar to the
relationship between predator and prey in the predator-prey models. Meanwhile,
competitions also exist among investment enterprises and this competitions are
similar to the relationship between two kinds of predators in predator-prey mod-
els. This similarities provide a new way for us to study the investment behaviors.
In this paper, we consider the delay Enterprise Competive Model beside on the
predator-prey model in ecology and analyzed the stability of this model.

Hypotheses of this model are as follows:
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(1) Enterprise cluster in one area can be regarded as a a population of ecosystem,
and investment enterprise number per unit area can be accurately described
by a variable.

(2) In the competition of investment market, acquirement of investing items is
the main aspect of enterprise’s competition for their source.

(3) According to investing items’ geographical scope, we classify these enterprises
into two parts, i.e., big investment enterprises and small and medium-size
investment enterprise.

(4) Entrepreneurs are rational to considerate that there will be few competitions
with other investment enterprises nearby their company.

(5) In one area, if investment items are more enough, entrepreneurs set up to
establish investment enterprise. And suppose this process will cost τ(τ > 0)
times.

(6) Based on Hasting’s predator-prey mode ( [1, 4]), Liu Kai [5] built the model
to describe the relationship of investment enterprises and investment items.

dx

dt
= (a− µx)x− d(z + y)x,

dy

dt
= cx(t− τ)(z + y)− (m+ e)y,

dz

dt
= my − bz,

(1.1)

where x, y, z present invest enterprises number per unit area of investment item,
small and medium-size invest enterprise and big investment enterprise, respectively.
Besides the natural tension ax, one area’s investing item number suffers from the
feedback from x’s increase which can be represented by −bx2. It should also satisfy
the S curve in the long run. Logistic equation x(a−µx) here represents investment
item’s variation with time t. Where a, µ and d respectively represent investment
item’s growth rate, inhibiting coefficient and coefficient that investment item fall
prey to investment enterprise. Besides, c is the growth rate of small and medium-size
investment enterprise along with the increase of the investment project, x(t − τ)
is the investment item’s number of accumulated over time τ , e is the coefficient
that small and medium-size investment enterprise out of this industry, m is the
coefficient of proportional small and medium-size investment enterprise transformed
into big investment enterprise, m + e is the reducing ratio of small and medium-
size investment enterprise, b is the coefficient that big investment enterprise out of
industry. All the coefficients above are positive.

Reference [5] considered the local stability, global stability and permanence
of the equilibrium of system (1.1). But it ignored the limitation of market self-
regulation. Therefore, it can not describe economic activities practically. In view
of this, this paper consider the macroeconomic control effects in system (1.1), and
obtain a new delayed enterprise competive model.

2. Stability analysis and Hopf bifurcation

In this paper, we focus our attention on the new competitive model with time delay
which is described by
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dx

dt
= (a− µx)x− d(z + y)x,

dy

dt
= cx(z + y)−my − ey,

dz

dt
= my − bz +K[z − z(t− τ)],

(2.1)

where z(t− τ) is the number of small and medium-size investment enterprise trans-
formed into big investment enterprise accumulated over time τ . K[z − z(t − τ)] is
the state’s adjustment for business economic. K > 0 is the growth factor of support
for the development of the big investment enterprise. On the contrary, K < 0 is the
restraint coefficient of restraining the development of the big investment enterprise.

Clearly, system (2.1) always has a unique positive equilibrium E∗(x∗, y∗, z∗),
where

E∗ = (x∗, y∗, z∗)

=

(
b(m+ e)

c(m+ b)
,
b(acm+ abc− bmµ− beµ)

cd(b+m)2
,
m(acm+ abc− bmµ− beµ)

cd(b+m)2

)
.

By analyzing the characteristic equation of the linearized system of system (2.1) at
the positive equilibrium, we investigate the stability of the positive equilibrium and
the existence of the local Hopf bifurcations occurring at the positive equilibrium.

The linearized system of (2.1) is

u̇ = Au(t) +Bu(t− τ), (2.2)

where

u(t) = (x, y, z)T , A = (aij)3×3, B = (bij)3×3, a11 = a− 2ux∗ − dz∗ − dy∗,
a12 = a13 = −dx∗, a21 = c(y∗ + z∗), a22 = cx∗ −m− e, a23 = cx∗,

a32 = m, a33 = −b+K, b33 = −K,

all the others of aij and bij are 0.
The characteristic equation of system (2.2) is

λ3 + a1λ
2 + a2λ+ a3 +

(
Kλ2 + a4λ+ a5

)
e−λτ = 0, (2.3)

where

a1 = −a11 − a22 − a33, a2 = a11a22 + a11a33 + a22a33 − a23a32 − a12a21,
a3 = a11a23a32 + a12a21a33 − a11a22a33 − a13a21a32,
a4 = −K(a11 + a22), a5 = K(a11a22 − a12a21).

The equilibrium E∗(x∗, y∗, z∗) is stable if all roots of (2.3) have negative real
parts. Thus, we need to investigate the distribution of roots of Eq. (2.3). Obviously,
iω(ω > 0) is a root of Eq. (2.3) if and only if ω satisfies

−iω3 − a1ω2 + a2iω + a3 +
(
−Kω2 + a4iω + a5

)
(cosωτ − i sinωτ) = 0. (2.4)

Separating the real and imaginary parts, we have−ω3 + a2ω = −Kω2sinωτ − a4wcosωτ + a5 sinωτ,

−a1ω2 + a3 = Kω2 cosωτ − a4ω cosωτ − a5 sinωτ,
(2.5)
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which implies

ω6 +
(
a21 − 2a2 −K2

)
ω4 +

(
a22 − 2a1a3 + 2a5K − a24

)
ω2 + a23 − a25 = 0. (2.6)

Let z = ω2 and denote

p = a21 − 2a2 −K2, q = a2 − 2a1a3 + 2a5K − a24, r = a23 − a25. (2.7)

Then, Eq. (2.6) becomes

z3 + pz2 + qz + r = 0. (2.8)

Denote

h(z) = z3 + pz2 + qz + r. (2.9)

Hence, we have the following lemma.

Lemma 2.1. For the polynomial Eq. (2.9), we have the following results.

(i) If r < 0, Eq. (2.9) has at least one positive root.

(ii) If r < 0, Eq. (2.9) has at least one positive root if and only if there exists a
z∗ > 0,such that h′(z∗) = 0 and h(z∗) ≥ 0.

Suppose that the Eq. (2.9) has positive roots. Without loss of generality, we
assume that it has three positive rootsdenoted by z1, z2, z3, respectively. Then

ω1 =
√
z1, ω2 =

√
z2, ω3 =

√
z3.

According to (2.5), we have

cosωτ =
a4ω

2(ω2 − a2) + (a1ω
2 − a3)(a5 −Kω2)

a24ω
2 + (Kω2 − a5)2

.

Thus, if we denote

τ
(j)
k =

1

ωk

{
cos−1

(
a4ω

2
k(ω2

k − a2) + (a1ω
2
k − a3)(a5 −Kω2

k)

a24ω
2
k + (Kω2

k − a5)2

)
+ 2πj

}
, (2.10)

where k = 1, 2, 3; j = 0, 1, 2, ..., then ±iωk is a pair of purely imaginary roots of Eq.
(2.3) with τ jk . Define

τ0 = τ
(0)
k0

= min
k∈{1,2,3}

{
τ (0)κ

}
, ω0 = ωκ0 . (2.11)

Note that when τ = 0, Eq. (2.3) becomes

λ3 + (K + a1)λ2 + (a2 + a4)λ+ a3 + a5 = 0. (2.12)

Till now, we can employ a result from Ruan and Wei [8] to analyze Eq. (2.3), which
is stated as follows.



688 S. Li & X. Tan

Lemma 2.2. Consider the exponential polynomial

P
(
λ, e−λτ

1

, e−λτ
2

, ..., e−λτ
m
)

=λn + P
(0)
1 λn−1 + · · ·+ P

(0)
n−1λ+ P (0)

n +
[
P

(1)
1 λn−1 + · · ·+ P

(1)
n−1λ+ P (1)

n

]
e−λτ1

+ · · ·+
[
P

(m)
1 λn−1 + · · ·+ P

(m)
n−1λ+ P (m)

n

]
e−λτm ,

where τi ≥ 0 (i = 1, 2, 3, ...,m) and P
(i)
j (i = 0, 1, 2, ...m; j = 1, 2, ..., n) are con-

stants.
As (τ1, τ2, ..., τm) vary, the sum of the order of the zeros of P (λ, e−λτ1 , ..., e−λτm)

on the open right half plane can change only if a zero appears on or crosses the
imaginary axis.

By Lemma 2.1 and 2.2, we can obtain the following results on the distribution
of roots of the transcendental Eq. (2.3).

Lemma 2.3. Suppose that zk = ω2
k and h′(zk) 6= 0, where h(z) is defined by (2.9).

Then,
d(Reλ(τ

(i)
k ))

dτ
6= 0 and

d(Reλ(τ
(j)
k ))

dτ
has the same sign with h′(zk).

Proof. Substituting λ(τ) into Eq. (2.3) and differentiating the resulting equation
in τ , we obtain{

3λ2 + 2a1λ+ a2 +
[
2Kλ+ a4 − τ

(
Kλ2 + a4λ+ a5

)]
e−λτ

} dλ
dτ

=λ
(
Kλ2 + a4λ+ a5

)
e−λτ ,

and then[
dλ

dτ

]−1
=

(
3λ2 + 2a1λ+ a2

)
eλτ

λ (Kλ2 + a4λ+ a5)
+

2Kλ+ a4
λ (Kλ2 + a4λ+ a5)

− τ

λ
. (2.13)

It follows from (2.5) that[
λ
(
Kλ2 + a4λ+ a5

)]
τ=τ

(j)
k

= −iKω3
k − a4ω2

k + ia5ωk,[(
3λ2 + 2a1λ+ a2

)
eλτ
]
τ=τ

(j)
k

=
(
a2 − 3ω2

k + 2a1iωk
) (

cosωkτ
(j)
k + i sinωωkτ

(j)
k

)
,

(2.14)

[2Kλ+ a4]
τ=τ

(j)
k

= a4 + 2Kiωk.

From (2.13), (2.14) and (2.7), we can obtain[
Re d(λ(τ))

dτ

]−1
τ=τ

(j)
k

=Re

[(
3λ2 + 2a1λ+ a2

)
eλτ

λ (Kλ2 + a4λ+ a5)

]
+ Re

[
2Kλ+ a4

λ (Kλ2 + a4λ+ a5)

]
=

1

Λ

{
a4ω

2
k(3ωk − a2) cosωkτ

(j)
k − (3ω2

k − a2)(a5ωk −Kω3
k) sinωkτ

(j)
k

−2ωk(a5ωk −Kω3
k)(a1 cosωkτ

(j)
k + 2K) + 2a1a4ω

3
k sinωkτ

(j)
k − a

2
4ω

2
k

}
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=
1

Λ

{
3ω6

k + 2(a21 − 2a2 −K2)ω4
k + (a22 − 2a1a3 + 2a5K − a24)ω2

k

}
=

1

Λ

{
3ω6

k + 2pω4
k + qω2

k

}
=
ω2
k

Λ

{
3ω4

k + 2pω2
k + q

}
=
zk
Λ
h′(zk),

where Λ = a24ω
4
k + (Kω3

k − a5ω)2. Thus, we have

sign

[
Re d(λ(τ))

dτ

]
τ=τ

(j)
k

= sign

[
Re d(λ(τ))

dτ

]−1
τ=τ

(j)
k

=
zk
Λ
h′(zk) 6= 0,

where Λ, zk > 0. We conclude that
Re d(λ(τ))

dτ
has the same sign with h′(zk). This

completes the proof.

Note that when τ = 0, Eq. (2.3) becomes Eq. (2.12), Routh-Hurwitz criterion
implies that

(H1) if K + a1 > 0, a3 + a5 > 0 and (K + a1)(a2 + a4)− (a3 + a5) > 0, all roots
of Eq. (2.3) with τ = 0 have negative real parts.

(H2) if K+a1 > 0, a3 +a5 > 0 and (K+a1)(a2 +a4)− (a3 +a5) < 0, Eq. (2.12)
have one negative real root and one pair of conjugate complex roots with positive
real parts.

3. Direction and stability of the Hopf bifurcation

In this section, we obtain the conditions under which a family of periodic solutions
bifurcate from the steady state at the critical value of τ . Following the ideals of
Hassard et al. ( [1,2,7,9,10]) by the normal form and the center manifold theory we
derive the explicit formula for determining the properties of the Hopf bifurcation
at the critical value of τ .

For the sake of simplicity of notation, we denote the critical values τ = τk = k
(k)
j ,

and denote the pair of purely imaginary roots of Eq. (2.3) as ±iωk.

Let X = x− x∗, Y = y − y∗, Z = z − z∗, then the system (2.1) can be written
as 

dX

dt
= (a− 2µx∗ − dz∗ − dy∗)X − dx∗(Z + Y ),

dY

dt
= c(z∗ + y∗)X − (m+ e)Y + cx∗(Z + Y ),

dZ

dt
= mY − bZ +K [Z − Z(t− τ)] .

(3.1)

Let µ = τ − τk, then µ = 0 is the Hopf bifurcation value of system (3.1). Let
t = τt, then the system (3.1) can be rewritten as a functional differential equation
in C

(
[−1, 0],R2

)
,

ẋ(t) = Lµ(xt) + f(µ, xt), (3.2)

where x(t) = (x1(t), x2(t), x3(t))
T
/∈ R3 and Lµ : C→ R3, f : R×C→ R3 are given



690 S. Li & X. Tan

respectively by

Lµ(Φ)

= (τ0 + µ)


a− 2µx∗ − dz∗ − dy∗ − dx∗ − dx∗

c(z∗ + y∗) cx∗ − (m+ e) cx∗

0 m − b+K



φ1(0)

φ2(0)

φ3(0)



+ (τ0 + µ)


0 0 0

0 0 0

0 0 −K



φ1(−1)

φ2(−1)

φ3(−1)


(3.3)

and

f(τ, φ) = (τ0 + µ)


−µφ21(0)− dφ1(0)(φ2(0) + φ3(0))

cφ1(0)(φ2(0) + φ3(0))

0

 .

From the discussions in Section 2, we know that if µ = 0 , then system (3.2)
undergoes a Hopf bifurcation at the positive equilibrium E∗ and the associated
characteristic equation of system (3.2) has a pair of simple imaginary roots ±iτ (j)ω0.

By the Riesz representation theorem, there exists a function ρ(θ, µ) of bounded
variation for θ ∈ [−1, 0], such that

Lµφ =

∫ 0

−1
dρ(θ, 0)φ(0), φ ∈ C.

That is to say

ρ(θ, µ) = (τ0 + µ)


a− 2µx∗ − dz∗ − dy∗ − dx∗ − dx∗

c(z∗ + y∗) cx∗ − (m+ e) cx∗

0 m − b+K

σ(θ)

+ (τ0 + µ)


0 0 0

0 0 0

0 0 −K

σ(θ + 1),

where σ is Dirac-delta function.
For φ ∈ C1([−1, 0],R3)

A(µ)φ =


dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1 dρ(µ, s)φ(s), θ = 0,

and

R(µ)φ =


0, θ ∈ [−1, 0),

f(µ, φ), θ = 0.
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Then, when θ ∈ [−1, 0) and xt(θ) = x(t+ θ), system (3.1) is is equivalent to

ẋ(t) = A(µ)xt +R(µ)xt. (3.4)

For ψ ∈ C1
(
[0, 1], (R3)∗

)
, define

A∗ψ(s) =


−dψ(s)

ds
, s ∈ [−1, 0),∫ 0

−1 dρT (t, 0)ψ(−t), s = 0,

and a bilinear inner product

〈ψ(s), φ(θ)〉 = ψ̇(0)φ(0)−
∫ 0

−1

∫ θ

ε=0

(ε− θ)dρ(θ)φ(ε)dε, (3.5)

where ρ(θ) = ρ(θ, 0). Denote A = A(0), then, A and A∗ are adjoint operators.
From the previous section, we know that ±ωτ0 are eigenvalues of A(0). Thus,

they are also eigenvalues of A∗.
Suppose that q(θ) = D(1, β∗, γ∗)T eisωτ0 is the eigenvector of A(0) corresponding

to iωτ0, then A(0)q(θ) = iωτ0q(θ). It follows from the definition of A(0) and ρ(θ, µ)
that

τ0


−a11 + iω − a12 − a13
−a21 iω − a22 − a23

0 − a32 iω − a33 +Keiωτ0

 q(0) =


0

0

0

 ,

which yields

q(θ) = (1, β, γ)T

=

(
1,−a11a23 − a12a21 − a23iω

a12(iω + a23 − a22)
,
iω − a11
a12

+
a11a23 − a12a21 − a23iω
a12(iω + a23 − a22)

)T
.

Similarly, it can be verified that q∗(0) = D(1, β∗, γ∗)T eisωτ0 is the eigenvector
of A∗ corresponding to −iωτ0, then

q∗(0) = D(1, β∗, γ∗)T = D

(
1,−a11 + iω

a21
,

(a11 + iω)(a22 + iω)− a12a21
a21a32

)T
.

By (3.5), we have

〈q(s), q(0)〉
=D̄(1, β̄∗, γ̄∗)(1, β, γ)T

−
∫ 0

−1

∫ θ

ξ=0

D̄(1, β̄∗, γ̄∗)e−i(ξ−θ)ωτ0dρ(θ)(1, β, γ)T e−i(ξ−θ)ωτ0dξ

=D̄

(
1 + ββ̄∗ + γγ̄∗ −

∫ 0

−1
(1, β̄∗, γ̄∗)θeiθωτ0dρ(θ)(1, β, γ)γ

)
=D̄

(
1 + ββ̄∗ + γγ̄∗ −Kγγ̄∗τ0e−iωτ0

)
.

Thus, we choose D̄ =
1

1 + ββ̄∗ + γγ̄∗ −Kγγ̄∗τ0e−iωτ0
, such that 〈q(s), q(θ)〉 = 1.
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In the following, we follow the ideas in Hassard et al. [2] and and by using the
same notations as there to compute the coordinates describing the center manifold
C0 at µ = 0.

On the center manifold C0, define

Z(t) = 〈q∗, xt〉, W (t, θ) = xt − 2Re{z(t)q(θ)}. (3.6)

We have

W (t, θ) = (z(t), z̄(t), θ)

and

W (z, z̄, θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · ·,

where z and z̄ are local coordinates for center manifold C0 in the direction of q∗

and q̄∗. Note that W is real if xt is real. We consider only real solutions. For the
solution xt ∈ C0 of (3.5), since µ = 0, we have

ż(t) =iτ0ωz + 〈q̄∗(0), f(0,W (z, z̄, θ)) + 2Re{zq(θ)}〉
=iτ0ωz + q̄∗(0)f(0,W (z, z̄, θ)) + 2Re{zq(θ)}
=iτ0ωz + q̄∗(0)f0(z, z̄),

where

g(z, z̄) = q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z̄2z̄

2
+ · · ·. (3.7)

From (3.6), we have

xt(θ) = (x1t(θ), x2t(θ), x3t(θ))
T = W (t, θ) + zq(θ) + zq̄(θ)

and

q(θ) = (1, β, γ)T eiθωτ0 ,

then, we have

x1t(0) = z + z̄ +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz̄ +W

(1)
02 (0)

z̄2

2
+ o

(
|z, z̄|3

)
,

x2t(0) = βz + β̄z̄ +W
(2)
20 (0)

z2

2
+W

(2)
11 (0)zz̄ +W

(2)
02 (0)

z̄2

2
+ o

(
|z, z̄|3

)
,

x3t(0) = γz + γ̄z̄ +W
(3)
20 (0)

z2

2
+W

(3)
11 (0)zz̄ +W

(3)
02 (0)

z̄2

2
+ o

(
|z, z̄|3

)
,
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together with (3.7) it follows that

g(z, z̄)

=q̄∗(0)f0(z, z̄) = τ0D̄(1, β̄∗, γ̄∗)


−µx21t(0)− dx1t(0)(x2t(0) + x3t(0))

cx1t(0)(x2t(0) + x3t(0))

0


=τ0D̄

[
−µ+ (β + γ)(cβ̄∗ − d)

]
z2 + τ0D̄

[
−2µ+ (β̄ + β + γ̄ + γ)(cβ̄∗ − d)

]
zz̄

+ τ0D̄
[
−µ+ (β̄ + γ̄)(cβ̄∗ − d)

]
z̄2

+ τ0D̄
{[

(β + γ)(cβ̄∗ − d)(cβ̄∗ − d)− 2µ
]
W

(1)
11 (0)

+
1

2

[
(β̄ + γ̄)(cβ̄∗ − d)− 2u

]
W

(1)
20 (0) + (cβ̄∗ − d)

[
W

(2)
11 (0) +W

(3)
11 (0)

]
+

1

2
(cβ̄∗ − d)

[
W

(2)
20 (0) +W

(3)
20 (0)

]}
z2z̄

=τ0D̄K1z
2 + τ0D̄K2zz̄ + τ0D̄K3z̄

2 + τ0D̄K4z
2z̄,

where

K1 = −µ+ (β + γ)(cβ̄∗ − d),

K2 = −2µ+ (β̄ + β + γ̄ + γ)(cβ̄∗ − d),

K3 = −µ+ (β̄ + γ̄)(cβ̄∗ − d),

K4 =
[
(β̄ + γ̄)(cβ̄∗ − d)− 2u

]
W

(1)
11 (0) +

1

2

[
(β̄ + γ̄)(cβ̄∗ − d)− 2u

]
W

(1)
20 (0)

+ (cβ̄∗ − d)
[
W

(2)
11 (0) +W

(3)
11 (0)

]
+

1

2
(cβ̄∗ − d)

[
W

(2)
20 (0) +W

(3)
20 (0)

]
.

Comparing the coefficients with (3.7), we have

g20 = 2τ0D̄K1, g11 = τ0D̄K2, g02 = 2τ0D̄K3, g21 = 2τ0D̄K4.

In order to determine g21, in the sequel, we need to compute W20(θ) and W11(θ).
From (3.4) and (3.7), we have

Ẇ = x0 − z̄q − z̄q̄

=


AW − 2Re {q̄∗(0)f0q(θ)} , θ ∈ [−1, 0),

AW − 2Re {q̄∗(0)f0q(θ)}+ f0, θ = 0,

, AW +H(z, z̄, θ), (3.8)

where

H(z, z̄, θ) = H20
z2

2
+H11(θ)zz̄ +H02(θ)

z̄2

2
+ · · · , (3.9)

Since the coefficients are equal, we can obtain

(A− 2iωτ0)W20(θ) = −H20(θ), AW11(θ) = −H11(θ) · · · ,
H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ) = −gq(θ)− ḡq̄(θ).

(3.10)
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Comparing the coefficients with (3.9) gives

H20(θ) = −g20q(θ)− ḡ02q̄(θ), H11(θ) = −g11q(θ)− ḡ11q̄(θ). (3.11)

From (3.11) and the definition of A, we can get

Ẇ20(θ) = 2iωτ0W20(θ) + g20q(θ) + ḡ02q̄(θ).

Notice that q(θ) = (1, β, γ)T eiθωτ0 , we have

W20(θ) =
ig20
ωτ0

q(0)eiθωτ0 +
iḡ20
2ωτ0

q̄(0)eiθωτ0 + E1e
2iθωτ0 , (3.12)

where E1 =
(
E

(1)
1 , E

(2)
1 , E

(3)
1

)
∈ R3 is a constant vector.

Similarly, we can also obtain

W11(θ) = − ig11
ωτ0

q(0)eiθωτ0 +
iḡ11
ωτ0

q̄(0)eiθωτ0 + E2, (3.13)

where E2 =
(
E

(1)
2 , E

(2)
2 , E

(3)
2

)
∈ R3 is also a constant vector.

In what follows, we will seek appropriate E1 and E2. From the definition of A
and (3.10), we obtain ∫ 0

−1
dρ(θ)W20(θ) = 2iωτ0W20(0)−H20(0)

and

∫ 0

−1
dρ(θ)W11(θ) = −H11(θ),

(3.14)

where ρ(θ) = ρ(0, θ).
From (3.8),we have

H20(0) = −g20q(0)− ḡ02q̄(0) + 2τ0


−µ− d(β + γ)

c(β + γ)

0

 (3.15)

and

H11(0) = −g11q(0)− ḡ11q̄(0) + 2τ0


−µ− Re(β + γ)

cRe(β + γ)

0

 . (3.16)

Substituting (3.12), (3.13), (3.15) and (3.16) into (3.14) and noticing that(
iτ0ωI −

∫ 0

−1
eiθωτ0dη(θ)

)
q(0) = 0 and

(
−iτ0ωI −

∫ 0

−1
e−iθωτ0dη(θ)

)
q̄(0) = 0,

we obtain

(
2iτ0ωI −

∫ 0

−1
e2iθωτ0dη(θ)

)
E1 = 2τ0


−µ− d(β + γ)

c(β + γ)

0

 .
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It follows that

E
(1)
1 =

2

M

∣∣∣∣∣∣∣
−µ− d(β + γ) dx∗ dx∗

c(β + γ) 2iω − cx∗ + (m+ e) − cx∗

0 −m 2iω + b−K +Ke−2iωτ0

∣∣∣∣∣∣∣ ,

E
(2)
1 =

2

M

∣∣∣∣∣∣∣
2iω − a+ 2µx∗ + dz∗ + dy∗ − µ− d(β + γ) dx∗

−c(z∗ + y∗) c(β + γ) − cx∗

0 0 2iω + b−K +Ke−2iωτ0

∣∣∣∣∣∣∣ ,

E
(3)
1 =

2

M

∣∣∣∣∣∣∣
2iω − a+ 2µx∗ + dz∗ + dy∗ − µ− dx∗ − µ− d(β + γ)

−c(z∗ + y∗) 2iω − cx∗ + (m+ e) c(β + γ)

0 −m 0

∣∣∣∣∣∣∣ ,
where

M =

∣∣∣∣∣∣∣
2iω − a+ 2µx∗ + dz∗ + dy∗ dx∗ dx∗

−c(z∗ + y∗) 2iω − cx∗ + (m+ e) − cx∗

0 −m 2iω + b−K +Ke−2iωτ0

∣∣∣∣∣∣∣ .
In the same way, we can obtain E2. Thus, we have

E
(1)
2 =

2

G

∣∣∣∣∣∣∣∣∣
−µ− Re(β + γ) dx∗ dx∗

cRe(β + γ) − cx∗ + (m+ e) − cx∗

0 −m b

∣∣∣∣∣∣∣∣∣ ,

E
(2)
2 =

2

G

∣∣∣∣∣∣∣∣∣
−a+ 2µx∗ + dz∗ + dy∗ − µ− Re(β + γ) dx∗

c(z∗ + y∗) cRe(β + γ) − cx∗

0 0 b

∣∣∣∣∣∣∣∣∣ ,

E
(3)
2 =

2

G

∣∣∣∣∣∣∣∣∣
−a+ 2µx∗ + dz∗ + dy∗ dx∗ − µ− Re(β + γ)

−c(z∗ + y∗) − cx∗ + (m+ e) cRe(β + γ)

0 −m 0

∣∣∣∣∣∣∣∣∣ ,
where

G =

∣∣∣∣∣∣∣∣∣
−a+ 2µx∗ + dz∗ + dy∗ dx∗ dx∗

−c(z∗ + y∗) − cx∗ + (m+ e) − cx∗

0 −m b

∣∣∣∣∣∣∣∣∣ .
Hence we can determine W20(θ) and W11(θ). Therefore, each gij is determined

by the parameters and delay in (2.1). Thus, we can compute the following values:

c1(0) =
i

2ωτ0

(
g11g20 − 2|g11|2 −

|g02|2

3

)
+
g21
2
, µ2 = − Re{c1(0)}

Re{λ′(τ0)}
,

T2 = − Im{c1(0)}+ Im{λ′(τ0)}
ωτ0

, β2 = 2Re{c1(0)},
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which determine the quantities of bifurcating periodic solutions in the center mani-
fold at the critical value τk, i.e., µ2 determines the directions of the Hopf bifurcation:
if µ2 > 0 (µ2 < 0), the Hopf bifurcation is supercritical (subcritical) and the bifur-
cation exist for τ > τ0(< τ0); β2 determines the stability of the bifurcation periodic
solutions: the bifurcating periodic solutions are stable (unstable) if β2 < 0(> 0); and
T2 determines the period of the bifurcating periodic solutions: the period increase
(decrease) if T2 > 0(< 0).

4. Numerical Simulation

In order to better understand the nature of the system, we perform the numerical
simulation and analyze the system. We choose a = 0.2; b = 0.15; c = 0.4; d = 0.2;
e = 0.4; m = 0.01; µ = 0.1; K = 0.2. By a simple calculation, we can easily get

ω0 = 0.191856479, τ0 = 6.05451339.

When τ = 5.46 < τ0, the system tends to be stable and after a period of
macroeconomic regulation and control, the numbers of the small and medium-sized
investment companies and large investment company will eventually tend to a e-
quilibrium E∗(0.9609, 0.4871, 0.0325), see Fig.4.1; when τ = 6.056 > τ0, we can get
the periodic solution of the system, see Fig.4.2.

100 200 300 400 500

0.9595

0.9600

0.9605

0.9610

0.9615

0.9620

100 200 300 400 500

0.4860

0.4865

0.4870

0.4875

0.4880

100 200 300 400 500

0.0322

0.0323

0.0324

0.0325

0.0326

0.0327

0.0328

Figure 1. The trajetctories and phase graphs of system (2.1) with τ = 5.46 < τ0, K = 0.2, E∗ become
local stable.

5. Conclusion

In this paper, we have proposed an enterprise competitive model with time delay in
the number of large investment company. We have discussed the local asymptotic
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100 200 300 400 500
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0.958

0.960

0.962

0.964

0.966

100 200 300 400 500

0.482

0.484

0.486

0.488

0.490

0.492

100 200 300 400 500

0.031

0.032

0.033

0.034

Figure 2. The trajetctories and phase graphs of system (2.1) with τ = 6.056 > τ0, K = 0.2, a stable
periodic solution bifurcate from the equilibrium E∗.

stability of this model, and further shown the macroeconomic control to the market
at different times will have different impacts on the entire market.

When the macroeconomic control to the market within the critical value of
time, it will promote the steady development of the market; otherwise, it will lead
to confusion in the market. In this paper, we provide the right time to carry on the
macroeconomic control to the market. And a guidance for the maintenance of the
stale development of the investment market is shown.
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