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THE CENTER-FOCUS PROBLEM AND
BIFURCATION OF LIMIT CYCLES IN A
CLASS OF 7TH-DEGREE POLYNOMIAL

SYSTEMS∗

Bo Sang†,1,2 and Qinlong Wang2,3

Abstract By computing singular point values, the center conditions are es-
tablished for a class of 7th-degree planar polynomial systems with 15 param-
eters. It is proved that such systems can have 13 small-amplitude limit cycles
in the neighborhood of the origin. To the best of our knowledge, this is the
first example of a 7th-degree system having non-homogeneous nonlinearities
with thirteen limit cycles bifurcated from a fine focus.
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1. Introduction

Consider a planar differential system

du

dt
= λu− v + Pn(u, v),

dv

dt
= u+ λ v +Qn(u, v), (1.1)

where Pn(u, v), Qn(u, v) ∈ R[u, v] are polynomials of degree n without constants and
linear terms. If λ = 0, it is well-known that the singularity at the origin is a fine
focus (surrounded by spirals) or a center (surrounded by closed trajectories). The
center-focus problem for system (1.1) is to determine conditions on the coefficients
of Pn and Qn, under which an open neighborhood of the origin is covered by closed
trajectories.
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For system (1.1), there exists a unique formal power series

H (u, v) = u2 + v2 +

∞∑
k=3

 k∑
j=0

Bk,ju
k−jvj

 = u2 + v2 +H3(u, v) +H4(u, v) + · · · ,

(1.2)
where Bk,k = 0 with k even and Hk(u, v) are homogeneous polynomials of degree
k, so that

dH

dt

∣∣∣
(1.1)

=

∞∑
n=0

Vn(u2 + v2)
(n+1)

, (1.3)

where Vn is called the n-th Poincaré-Liapunov constant of system (1.1) at the origin.
The origin is called a center if V0 = V1 = V2 = · · · = 0. The origin is said to be a
fine focus of order k if Vk is the first non-zero Poincaré-Liapunov constant. In this
case at most k small-amplitude limit cycles can bifurcate from the fine focus.

The classification of centers for system (1.1) starting from quadratic terms can
be found in the survey article [23]. The analysis for cubic systems without quadratic
terms is given in [17]. Some sufficient center conditions for quartic homogeneous
systems are obtained in [3].

Consider the following autonomous system

dx

dt
=x+

∞∑
α+β=2

aα,βx
αyβ = X(x, y),

dy

dt
=− y −

∞∑
α+β=2

bα,βy
αxβ = Y (x, y),

(1.4)

where X(x, y), Y (x, y) ∈ C∞, α ≥ 0, β ≥ 0, aα,β = bα,β , and x, y, t ∈ C. By means
of transformation

x = u+ iv, y = u− iv, t = it1, i =
√
−1, (1.5)

system (1.4) can be transformed into the following real system
du

dt1
=− v + h.o.t. = U(u, v),

dv

dt1
=u+ h.o.t. = V (u, v),

(1.6)

which is system (1.4)’s concomitant real system.
For system (1.4), we can derive a formal power series of the form

F (x, y) = xy +

∞∑
k=3

k∑
j=0

Bk,jx
k−jyj , (1.7)

with B2s,s = 0, s = 2, 3, · · · , such that

dF

dt

∣∣∣
(1.4)

=
∂F

∂x
X +

∂F

∂y
Y =

∞∑
n=1

Wn(xy)n+1, (1.8)
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where Wn is called the n-th singular point value (also known as 1:-1 resonant focus
number) of system (1.4) at the origin. The origin of system (1.4) is called a complex
center if and only if W1 = W2 = · · · = 0. The ideal B := 〈W1,W2, · · ·〉 is called the
Bautin ideal and its variety V (B) is called the center variety.

Lemma 1.1 (see [16]). Let Wn be the n-th singular point value of system (1.4) at
the origin, and Vn be the n-th Poincaré-Liapunov constant of system (1.6) at the
origin. Then we have

Wn ≡
Vn
i

mod 〈V1, V2, · · · , Vn−1〉.

From Lemma 1.1, we have the following result.

Lemma 1.2. The origin of system (1.4) is a complex center if and only if the origin
of system (1.6) is a center.

Żo la̧dek [34] generalized the notion of center to the case of a p : −q resonant
singular point of the following complex polynomial vector field

dx

dt
= p x+Xm(x, y),

dy

dt
= −q y + Ym(x, y),

(1.9)

in C2, where p, q ∈ N, p ≤ q, (p, q) = 1, and

Xm(x, y) =

m∑
k=2

k∑
j=0

ak,jx
k−jyj , Ym(x, y) =

m∑
k=2

k∑
j=0

bk,jx
k−jyj .

Definition 1.1 (see [20]). System (1.9) is said to have a p : −q resonant center at
the origin if it admits a formal first integral of the form

F (x, y) = xq yp +

∞∑
k=p+q+1

k∑
j=0

Bk,jx
k−jyj . (1.10)

For system (1.9), we can derive a formal power series of the form (1.10) with
Bs(p+q),sp = 0, s = 2, 3, · · · , such that

dF

dt

∣∣∣
(1.9)

=
∂F

∂x
(px+Xm) +

∂F

∂y
(−qy + Ym) =

∞∑
n=1

Wn(xqyp)n+1, (1.11)

where Wn is called the nth order p : −q resonant focus number (or generalized
singular point value). For some algorithms to compute these numbers, see [16, 18,
21]. According to Theorem 3.1 of Wang [25], the algorithm of Sang [21] based on
pseudo-divisions can be generalized to the situation of three-dimensional polynomial
differential systems with two purely imaginary eigenvalues.

A stable limit cycle is the one which attracts all neighboring trajectories. Stable
limit cycles model systems that exhibit self-sustained oscillations. Finding limit cy-
cles is of great importance in the theory of nonlinear oscillations and the qualitative
theory of dynamical systems, see [9, 14,27,29].
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The second part of Hilbert’s 16th problem is to find an upper bound, called
Hilbert number H(n), on the number of limit cycles of all polynomial vector fields
with degree n. This problem has not been completely solved even for quadratic
systems. The maximum number of bifurcating limit cycles from singular points or
from periodic orbits is known for a reduced classes of systems (e.g. see [7,10–13,24,
26,28,30–33]).

For a 7th-degree planar system with homogeneous nonlinearities, Giné [7] found
a system with 13 small limit cycles by using center bifurcation. In this paper we will
use multiple Hopf bifurcation rather than center bifurcation to find the same number
of small limit cycles in a 7th-degree system with non-homogeneous nonlinearities. In
general for a family of polynomial differential systems, finding the same number of
limit cycles by multiple Hopf bifurcation is much more complicated than by center
bifurcations, especially for system with non-homogeneous nonlinearities. Consider
a class of Z4-equivariant 7th-degree systems in C2, i.e.,

dx

dt
=(1− iλ)x+ (a1 + ib1)x5 + (a2 + ib2)y2x3 + (a3 + ib3)y4x

+ (a4 + ib4)yx6 + (a5 + ib5)y3x4 + (a6 + ib6)y5x2 + (a7 + ib7)y7,

dy

dt
=− (1 + iλ)y − (a1 − ib1)y5 − (a2 − ib2)x2y3 − (a3 − ib3)x4y

− (a4 − ib4)xy6 − (a5 − ib5)x3y4 − (a6 − ib6)x5y2 − (a7 − ib7)x7,

(1.12)

which has 15 independent real parameters. For the definition of Zn-equivariant
complex system, see [6,15]. By means of transformation (1.5), system (1.12) can be
transformed into the real system

du

dt1
=λu− v + (−b1 − b2 − b3)u5 + (−5 a1 − a2 + 3 a3)vu4

+ (10 b1 − 2 b2 + 2 b3)v2u3 + (10 a1 − 2 a2 + 2 a3)v3u2

+ (−5 b1 − b2 + 3 b3)v4u+ (−a1 − a2 − a3)v5 + (−b5 − b6 − b7 − b4)u7

+ (−5 a4 − a5 + 3 a6 + 7 a7)vu6 + (9 b4 − 3 b5 + b6 + 21 b7)v2u5

+ (5 a4 − 3 a5 + 5 a6 − 35 a7)v3u4 + (5 b4 − 3 b5 + 5 b6 − 35 b7)v4u3

+ (9 a4 − 3 a5 + a6 + 21 a7)v5u2 + (−5 b4 − b5 + 3 b6 + 7 b7)v6u

+ (−a4 − a5 − a6 − a7)v7,

dv

dt1
=u+ λv + (−b1 − b2 − b3)v5 + (5 a1 + a2 − 3 a3)uv4

+ (10 b1 − 2 b2 + 2 b3)u2v3 + (−10 a1 + 2 a2 − 2 a3)u3v2

+ (−5 b1 − b2 + 3 b3)u4v + (a1 + a2 + a3)u5 + (−b5 − b6 − b7 − b4)v7

+ (5 a4 + a5 − 3 a6 − 7 a7)uv6 + (9 b4 − 3 b5 + b6 + 21 b7)u2v5

+ (−5 a4 + 3 a5 − 5 a6 + 35 a7)u3v4 + (5 b4 − 3 b5 + 5 b6 − 35 b7)u4v3

+ (−9 a4 + 3 a5 − a6 − 21 a7)u5v2 + (−5 b4 − b5 + 3 b6 + 7 b7)u6v

+ (a5 + a6 + a7 + a4)u7.

(1.13)

Let

I1 = 〈b3 + 5 b1, a3 − 5 a1, b4 +
1

3
b6, a4 −

1

3
a6, b2, b5〉,
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I2 = 〈a1b3 + a3b1,
1

5
b1b4 −

3

5
b1b6 + b3b4 +

1

5
b3b6,−

1

5
a1b4 +

3

5
a1b6 + a3b4 +

1

5
a3b6,

a4b6 + a6b4,
1

5
a4b1 + a4b3 +

3

5
a6b1 −

1

5
a6b3,−

1

5
a1a4 −

3

5
a1a6 + a3a4 −

1

5
a3a6,

b7, a7, b2, b5〉,

I3 = 〈1
2
a1

2b7 + a1a7b1 −
1

2
b1

2b7, a1b6 + a6b1, a1a6b7 − 2 a1a7b6 + b1b6b7,

a6
2b7 − 2 a6a7b6 − b62b7, a1b3 + a3b1, a1a3b7 − 2 a1a7b3 + b1b3b7, a3b6 − a6b3,

a3a6b7 − 2 a3a7b6 − b3b6b7, a32b7 − 2 a3a7b3 − b32b7,−a1b4 + a4b1,

a1a4b7 + 2 a1a7b4 − b1b4b7, a4b6 + a6b4, a4a6b7 − 2 a4a7b6 + b4b6b7, a3b4 + a4b3,

a3a4b7 − 2 a4a7b3 + b3b4b7, a4
2b7 + 2 a4a7b4 − b42b7, b2, b5〉.

Theorem 1.1. For system (1.12)λ=0, the center variety V (B) has three irreducible
components:

V (B) = V (B15) = V (I1) ∪ V (I2) ∪ V (I3).

Lemma 1.3. Suppose that

a1 = −7 a3, b1 = 7 b3,

a2 = −4

(
2

57

) 1
2

(a23 + b23)
1
2 ,

a4 = 10

(
2

57

) 1
4

b3(a23 + b23)
1
4 ,

a6 = −57
3
4 2

5
4 b3(a23 + b23)

1
4

19
,

a7 =
16

3
a3b3

[
2

57
(a23 + b23)

]− 1
4

,

b4 = 10

(
2

57

) 1
4

a3(a23 + b23)
1
4 ,

b6 =
57

3
4 2

5
4 a3(a23 + b23)

1
4

19
,

b7 = −8

3

(
57

2

) 1
4

(a23 − b23)(a23 + b23)−
1
4 , λ = a5 = b2 = b5 = 0,

(1.14)

then the origin of system (1.13) is a fifteenth order weak focus.

Remark 1.1. From the proof of Theorem 1.1 in the next section, it follows that the
essential focal basis (see [1]) of Poincaré-Liapunov constants for (1.13) is V0, V2, V3, · · · ,
V15, hence the highest order of weak focus is fifteen.

Theorem 1.2. If condition (1.14) holds, then there are perturbations of system
(1.13) yielding 13 small-amplitude limit cycles bifurcating from the origin.

2. Proofs of the results

Using the algorithm of [21], we compute the first fifteen singular point values W1 =
iU1,W2 = iU2, · · · ,W15 = iU15 of system (1.12)λ=0, where the quantity Uk is
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reduced w.r.t. the Gröbner basis of {Uj : j < k}, and

U1 = 0, U2 = 2 b2, U3 = 2 b5, U4 = −2 a1b3 − 2 a3b1,

U5 =
1

2
(b4 − 3 b6)a1 +

1

2
(−5 b4 − b6)a3 +

1

2
(−a4 − 3 a6)b1 +

1

2
(−5 a4 + a6)b3,

U6 = −2 a4b6 − 2 a6b4,

U7 =
5 a1

2b7
16

+
17 a1a3b7

8
+

5

8
a1a7b1 −

7 a3
2b7

16
+

17 a3a7b1
4

+
7 a3a7b3

8

−5 b1
2b7

16
+

17 b1b3b7
8

+
7 b3

2b7
16

,

U8 =
5

8
a1a4b7 +

15 a1a6b7
8

+ 2 a1a7b4 − 6 a1a7b6 +
23 a3a4b7

8
− 11 a3a6b7

8
− 4 a3a7b4

−3

4
a4a7b1 −

39 a4a7b3
4

− 9

4
a6a7b1 +

11

4
a6a7b3 −

5

8
b1b4b7 +

15 b1b6b7
8

+
23 b3b4b7

8
+

11 b3b6b7
8

.

The other polynomials for Uj , 9 ≤ j ≤ 15 are too long to be presented in this
paper. However, the interested reader can compute them with the help of computer
algebra system Maple. According to Lemma 1.1, the first fifteen Poincaré-Liapunov
constants of system (1.13)λ=0 are Vj = −Uj , 1 ≤ j ≤ 15.

Proof of Theorem 1.1. By the Hilbert Basis Theorem V (B) = V (Bk) for some
k ∈ N. Using the Radical Membership Test one can verify that

W2 /∈
√
〈W1〉, · · · ,W15 /∈

√
〈W1,W2, · · · ,W14〉,W16,W17 ∈

√
〈W1,W2, · · · ,W15〉,

which leads us to expect that V (B15) = V (B). To verify that this is the case we
compute the minimal decomposition of the variety of the ideal B15 with Singular

routine minAssGTZ (see [8]) and find that

V (B15) = V (I1) ∪ V (I2) ∪ V (I3),

thus we have
V (B) ⊆ V (B15) = V (I1) ∪ V (I2) ∪ V (I3).

Now to prove the inclusion in the other direction, we verify that each point of
V (Ik), k = 1, 2, 3 corresponds to a system with a complex center at the origin.

System (1.12)λ=0 that corresponds to component V (I1) can be written as

dx

dt
=x+ (a1 + ib1)x5 + a2y

2x3 + (5 a1 − 5 ib1)y4x+ (a4 + ib4)yx6 + a5y
3x4

+ (3 a4 − 3 ib4)y5x2 + (a7 + ib7)y7,

dy

dt
=− y − (a1 − ib1)y5 − a2x2y3 − (5 a1 + 5 ib1)x4y − (a4 − ib4)xy6 − a5x3y4

− (3 a4 + 3 ib4)x5y2 − (a7 − ib7)x7.

(2.1)

System (2.1) is Hamiltonian with Hamiltonian function

Φ(x, y) = xy + (a1 + ib1)yx5 + 1/3 a2x
3y3 + (a1 − ib1)y5x+ (−i/8b7 + 1/8 a7)x8

+(i/2b4 + 1/2 a4)y2x6 + 1/4 a5x
4y4 + (−i/2b4 + 1/2 a4)y6x2

+(i/8b7 + 1/8 a7)y8,



Center-focus problem and bifurcation of limit cycles 823

thus the origin of it is a complex center.
The zero set of the ideal I2 consists of four solutions:

(i) a3 = −3a1, b3 = 3b1, a4 = a7 = b2 = b4 = b5 = b7 = 0. In this case, system
(1.12)λ=0 admits an integrating factor of the form µ(x, y) = (xy)−2,

(ii) a6 = 5a4, b6 = −5b4, a1 = a7 = b1 = b2 = b5 = b7 = 0. In this case, system
(1.12)λ=0 admits an integrating factor of the form µ(x, y) = (xy)−1,

(iii) b3 = (3a6+a4)b1
a6−5a4 , b4 = −a4b6a6

, a1 = a3 = a7 = b2 = b5 = b7 = 0. In this
case, system (1.12)λ=0 admits an integrating factor of the form µ(x, y) =

(xy)
2(a6−3a4)

a4−a6 ,

(iv) b6 = (5b3+b1)b4
3b1−b3 , a1 = a3 = a4 = a6 = a7 = b2 = b5 = b7 = 0. In this

case, system (1.12)λ=0 admits an integrating factor of the form µ(x, y) =

(xy)−
b3+5b1
b1+b3 .

According to Theorem 4.13 of [5], for any system that corresponds to component
V (I2), there exists a Lyapunov first integral on a neighborhood of the origin, which
is thus a center.

For the component V (I3), using the algorithm from [19], we find that the Zariski
closure of all time-reversible systems in the family (1.12)λ=0, denoted by R̄, is the
variety of the ideal J3, where

J3 = 〈2 ib2, 2 ib5, i(2 a3b6 − 2 a6b3), i(2 b7(a3
2 − b32)− 4 a3a7b3),

i(2 a3a6b7 − 2 a3a7b6 − 2 a6a7b3 − 2 b3b6b7), i(2 b7(a6
2 − b62)− 4 a6a7b6),

i(−2 a1b3 − 2 a3b1), i(−2 a1b6 − 2 a6b1),

i(−2 a1a3b7 + 2 a1a7b3 − 2 a3a7b1 − 2 b1b3b7),

i(−2 a1a6b7 + 2 a1a7b6 − 2 a6a7b1 − 2 b1b6b7),

i(2 b7(a1
2 − b12) + 4 a7a1b1), i(2 a1b4 − 2 a4b1),

i(−2 a3b4 − 2 a4b3), i(−2 a4b6 − 2 a6b4),

i(−2 a3a4b7 − 2 a3a7b4 + 2 a4a7b3 − 2 b3b4b7),

i(−2 a4a6b7 + 2 a4a7b6 − 2 a6a7b4 − 2 b4b6b7),

i(2 a1a4b7 + 2 a1a7b4 + 2 a4a7b1 − 2 b1b4b7), i(2 b7(a4
2 − b42) + 4 a4a7b4)〉.

Because J3 and I3 have the same reduced Gröbner basis, then J3 = I3. Thus every
system from V (I3) admits a first integral of the form (1.7), and therefore has a
center.

Proof of Lemma 1.3. Let condition (1.14) be satisfied, then the first fifteenth
order Poincaré-Liapunov constants of system (1.13) are as follows:

V0 = V1 = · · · = V14 = 0,

V15 = 213920
( 2

57

) 3
4

(a23 + b23)
15
4 6= 0,

and thus the origin of the system is a fifteenth order fine focus.

Proof of Theorem 1.2. Under condition (1.14), the Jacobian matrix of Poincaré-
Liapunov constants V0, V2, · · · , V13 of system (1.13) with respect to λ, a5, a2,
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b5, b2, a4, b4, a6, b6, a7, b7, a1, b1 has full rank, i.e.,

rank

[
∂(V0, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13)

∂(λ, a5, a2, b5, b2, a4, b4, a6, b6, a7, b7, a1, b1)

]
(1.14)

= 13.

Furthermore, we have

rank

[
∂(V0, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13, V14)

∂(λ, a5, a2, b5, b2, a4, b4, a6, b6, a7, b7, a1, b1)

]
(1.14)

= 13,

which implies that the linear parts of V0, V2, · · · , V13 at the critical values (1.14) are
independent in the parameters and hence by Theorem 1 of [4] only 13 limit cycles
can be bifurcated from the origin.

Acknowledgements

The authors are grateful to Prof. V. G. Romanovski for his warmful discussions
about his algorithm in [19]. The authors are also grateful to the referees for the
valuable remarks which helped to improve the manuscript.

References

[1] T.R. Blows and N.G. Lloyd, The number of limit cycles of certain polynomial
differential equations, Proc. Roy. Soc. Edinburgh Sect. A, 98(1984)(3-4), 215–
239.

[2] J. Carr, Applications of centre manifold theory, Applied Mathematical Sciences,
Vol. 35, Springer-Verleg, New York, 1981.
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