
Journal of Applied Analysis and Computation Website:http://jaac-online.com/

Volume 6, Number 3, August 2016, 851–864 DOI:10.11948/2016054

LOCAL EXACT CONTROLLABILITY OF
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LIOUVILLE BOUNDARY VALUE PROBLEMS∗
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Abstract In this paper, we investigate the controllability of 1D bilinear
Schrödinger equation with Sturm-Liouville boundary value condition. The
system represents a quantumn particle controlled by an electric field. K.
Beauchard and C. Laurent have proved local controllability of 1D bilinear
Schrödinger equation with Dirichlet boundary value condition in some suit-
able Sobolev space based on the classical inverse mapping theorem. Using
a similar method, we extend this result to Sturm-Liouville boundary value
proplems.
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1. Introduction

The controllability of a finite dimensional quantum system has been well explored
[1, 2, 18, 21, 23]. For 1D infinite dimensional bilinear Schrödinger equation, it has
been considered as non-controllability for a long time since last century, largely
because there were negative results by Ball, Marsden and Slemrod [3] and Turini-
ci [22]. In this century, there was a breakthrough on the controllability of bilinear
Schrödinger equation by Beauchard [4, 5]. She investigated local exact controlla-
bility of 1D Schrödinger equation in H7

(0) space. Almost global results have been

proved by Beauchard and Coron [6]. Their proof relied on the Nash-Moser implicit
function theorem in order to deal with a priori loss of regularity. In [7], Beauchard
and Laurent proposed an important simplification of the above proofs with a more
general dipole moment, and they got the controllability in H3

(0) space by classical
inverse mapping theorem under a hidden regularizing effect. Some results on con-
trollability of 1D infinite dimensional Schrödinger equation with Dirichlet boundary
value condition in potential well V (x) are obtained by Nersesyan [16,17]. For other
work about controllability of Schrödinger equation, we refer to [8,9,12,14,15,19,24].

Sturm-Liouville boundary value condition is the basic definite condition in the
physical world. It is quite revelent to consider different kinds of Sturm-Liouville
boundary value problems [20]. We find that H2

(0) regularity is enough to prove
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well-posedness of bilinear Schrödinger equation with Neumann boundary value con-
dition, Dirichlet-Neumann boundary value condition, and general boundary value
condition. We get local controllability of 1D infinite dimensional Schrödinger e-
quation in potential V (x) with Sturm-Liouville boundary value condition in which
Dirichlet boundary value condition is not included. Our proof relies on the lineariza-
tion principle, by applying the classical inverse mapping theorem to the end-point
map. Controllability of the linearized system around the ground state is the conse-
quence of classical results about trigonometric moment problems.

1.1. Preliminaries

We consider 1D infinite dimensional Schrödinger equation

iyt = −yxx + V (x)y − u(t)µ(x)y, x ∈ (0, π), t ∈ [0, T ], (1.1)

with Sturm-Liouville boundary value condition

a1y(t, 0)− b1y′(t, 0) = 0, a2y(t, π) + b2y
′(t, π) = 0, (1.2)

where a2i +b2i 6= 0, i = 1, 2. Such an equation arise in the modelization of a quantum
particle in potential V (x) with Sturm-Liouville boundary value condition, coupled
to an external electric field u(t). The system (1.1) is a bilinear control system, in
which the state is y(t, x) : R+ × R→ C and the control is the real valued function
u : [0, T ]→ R, acting on dipole moment µ : (0, π)→ R.

We define by 〈·, ·〉 the Hermitian product of L2((0, π),C):

〈η, ξ〉 :=

∫ π

0

η(t, x)ξ(t, x)dx, η, ξ ∈ L2((0, π),C),

and introduce the operator

Aϕ := −ϕxx + V (x)ϕ,

with domain

D(A) =
{
ϕ ∈ H2((0, π),C); a1ϕ(0)− b1ϕx(0) = 0, a2ϕ(π) + b2ϕx(π) = 0

}
.

It is well known that the eigenvectors of A construct an orthonormal basis (ϕk)k∈N
in L2((0, π),C):

Aϕk = λkϕk, k = 0, 1, 2, · · · ,

where (λk)k∈N is convergent increasingly to +∞ as k → +∞. Obviously, ψk(t, x) :=
ϕk(x)e−iλkt is a solution of (1.1)-(1.2) with u(t) ≡ 0, which is called ground state
when k = 0 and excited state when k = 1, 2, · · · . Every solution of (1.1-1.2) has the
following form

y(t, x) =

+∞∑
k=0

αkψk(t, x), αk ∈ C.

For any 1 < s ≤ 2, we define

Hs
(0)((0, π),C) := {ϕ ∈ Hs(0, π), a1ϕ(0)− b1ϕx(0) = 0, a2ϕ(π) + b2ϕx(π) = 0} ,



Local exact controllability of Schrödinger equation 853

equipped with the norm

‖η‖Hs
(0)

((0,π),C) :=

( ∞∑
k=0

λsk|〈η, ϕk〉|2
)1/2

.

Denote the unit sphere in L2((0, π),C) by

S :=
{
ϕ ∈ L2((0, π),C); ‖ϕ‖L2((0,π),C) = 1

}
.

1.2. Main results

Hypothesis

(H1) Let V (x) ∈ L2((0, π),R), satisfying ρ := ess inf V (x) > 0,

(H2) Let µ ∈W 2,∞((0, π),R), ∃C > 0 such that |〈µϕ0, ϕk〉| ≥ C
λk
, ∀k ∈ N.

Theorem 1.1. Let T > 0, H1 and H2 hold. If there exists δ > 0, such that for
every y0, yf ∈ S ∩H2

(0)((0, π),C) with

‖y0 − ψ0(0)‖H2 + ‖yf − ψ0(T )‖H2 ≤ δ.

Then, there exists a control u(t) ∈ L2([0, T ],R), such that the solution of (1.1)-(1.2)
with initial condition y(0) = y0 satisfies the terminal condition y(T ) = yf .

Remark 1.1. Our results exclude Dirichlet boundary value condition (b1 = b2 =
0), in which the operator w(t)µ(x) maps H2

(0)((0, π),C) into H2
(0)((0, π),C). By

Ball, Marsden and Slemrod’s theorem in [3], we know that system (1.1)-(1.2) is not
local exact controllable in H2

(0)((0, π),C) with Dirichlet boundary value condition.

Indeed, let µ ∈W 2,∞, we have

λk〈µϕ0, ϕk〉 = 〈A(µϕ0), ϕk〉 → 0, k →∞,

which conflicts with H2.

The organization of this article is the following. In section 2, we recall some
properties of linear operator with Sturm-Liouville boundary value condition. In
section 3, we study on the well-posedness of Cauchy problem for our control system
(1.1)-(1.2). In section 4, we give the proof of the main results.

2. Properties of linear operator

In this section, we consider linear operator

− ϕ′′n + V (x)ϕn(x) = λnϕn(x), n ∈ N, (2.1)

with Sturm-Liouville boundary value condition

a1ϕn(0)− b1ϕ′n(0) = 0, a2ϕn(π) + b2ϕ
′
n(π) = 0, (2.2)

where ai ≥ 0, bi ≥ 0, a2i + b2i 6= 0, i = 1, 2, and ϕ′(x) = d
dxϕ(x).
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Lemma 2.1 ( [13]). Let H1 hold. Denote by λ0 < λ1 < λ2 < · · · the eigenvalues of
Sturm-Liouville problem (2.1)-(2.2). Then we have λn ≥ ρ, n ∈ N. In particular,
λn > ρ, provided that a21 + a22 6= 0.

Remark 2.1. ρ > 0 in H1 ensures every eigenvalue λk (k ∈ N) is positive.

Let ρ1 = 2
π

∫ π
0
V (x)dx. For different kinds of boundary value conditions, the

eigenvalue λn and the eigenfunction ϕn have different forms. We are mainly inter-
ested into the following three kinds of boundary value condition:

(1) Neumann boundary value condition:

a1 = 0, b1 > 0, a2 = 0, b2 > 0. (2.3)

Lemma 2.2 ( [10]). Let H1 hold. Let λ0 < λ1 < · · · and ϕ0, ϕ1, · · · be the
eigenvalues and the orthonormal functions of system (2.1)-(2.3) respectively. Then,
we have following asymptotic formula

λn = n2 + c1 +
c2
n2

+O

(
1

n3

)
, n ≥ 1,

where ρ ≤ c1 ≤ ρ1, −ρ
2
1

4 ≤ c2 ≤
ρ2

4 , when n→∞. Furthermore,

ϕn(x) = κ−1n

(
cosnx+

sinnx

2n

∫ x

0

V (s)ds+ ϕ̃n(x)

)
,

where κn = π
2 + O

(
1
n2

)
, ϕ̃n(x) = O

(
1
n2

)
and ϕ̃′n(x) = O

(
1
n

)
uniformly for x ∈

[0, π], n ∈ N.

(2) Dirichlet-Neumann boundary value conditions:

a1 > 0, b1 = 0, a2 = 0, b2 > 0 (2.4)

or

a1 = 0, b1 > 0, a2 > 0, b2 = 0.

Here, we only discuss y(t, 0) = yx(t, π) = 0. In the case of yx(t, 0) = y(t, π) = 0,
similar results can be obtained by the transform x̃ = π − x.

Lemma 2.3 ( [10]). Let H1 hold. Let λ0 < λ1 < · · · and ϕ0, ϕ1, · · · be the
eigenvalues and the orthonormal functions of system (2.1)-(2.4) respectively. Then,
we have following asymptotic formula

λn =

(
n+

1

2

)2

+ c1 +
c2(

n+ 1
2

)2 +O(
1(

n+ 1
2

)3 ),

where ρ ≤ c1 ≤ ρ1, −ρ
2
1

4 ≤ c2 ≤
ρ2

4 , when n→∞. Furthermore,

ϕn(x) = κ−1n

(
sin

(
n+

1

2

)
x+

cos(n+ 1
2 )x

2n+ 1

∫ x

0

V (s)ds+ ϕ̃n(x)

)
,

where κn = π
2 + O

(
1
n2

)
, ϕ̃n(x) = O

(
1

(n+ 1
2 )

2

)
, and ϕ̃′n(x) = O

(
1

n+ 1
2

)
uniformly

for x ∈ [0, π].
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(3) General boundary value condition:

a1 > 0, b1 > 0, a2 > 0, b2 > 0. (2.5)

Lemma 2.4 ( [10]). Let H1 hold. Let λ0 < λ1 < · · · and ϕ0, ϕ1, · · · be the
eigenvalues and the orthonormal functions of system (2.1)-(2.5) respectively. Then,
we have following asymptotic formula

λn = n2 + Θn, n ∈ N.

Furthermore, there exists an N0 such that when n ≥ N0,

Θn = c1 +
c2
n2

+O

(
1

n3

)
,

where ρ
2 ≤ c1 ≤ ρ2, ρ2

16 ≤ c2 ≤ ρ22
4 , with ρ2 = 2

π (a1b1 + a2
b2

+ ε +
∫ π
0
V (s)ds). when

n ≥ 1, we have

ϕn(x) = κ−1n

(
cos λ̃nx+

sin λ̃nx

λ̃n

(
a1
b1

+
1

2

∫ x

0

V (s)ds

)
+ ϕ̃n(x)

)
,

where κn = π
2 + O

(
1
n2

)
, λ̃n = n + O( 1

n ) (when n → +∞) satisfies tan λ̃nπ =
λ̃n(a1b2+a2b1)

b1b2λ̃2
n−a1a2

, and ϕ̃n(x) = O
(

1
n2

)
, ϕ̃′n(x) = O

(
1
n

)
uniformly for x ∈ [0, π].

3. Well posedness of Cauchy problem

In this section, we consider existence, uniqueness and regularity results, and bounds
for the weak solution of the Cauchy problem iyt = −yxx + V (x)y − u(t)µ(x)y + f(t, x), (t, x) ∈ [0, T ]× (0, π),

y(0, x) = y0(x),
(3.1)

with Sturm-Liouville boundary value conditions (exclude Dirichlet boundary value
condition).

Operator A and space H2
(0)((0, π),C) have been defined in Section 1. e−iAt is

an isometry semigroup generated by infinitesimal generator

e−iAtϕ =

∞∑
k=0

〈ϕ,ϕk〉e−iλktϕk,∀ϕ ∈ L2((0, π),C).

Thus, the weak solution of (3.1) can be expressed by

y(t, x) = e−iAty0(x) + i

∫ t

0

e−iA(t−s)[u(s)µ(x)y(s, x)− f(s, x)]ds.

To prove the wellposedness of (3.1), we need the following lemma.

Lemma 3.1 ( [7]). Let (ωk)k∈N be an increasing sequence of [0,+∞) such that
ω0 = 0, and

ωk+1 − ωk > γ > 0.
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There exists a nondecreasing function,

C : [0,+∞)→ R∗+, T 7→ C(T ),

such that, for every T > 0 and for every g ∈ L2(0, T ), we have:( ∞∑
k=0

∣∣∣ ∫ T

0

g(t)eiωktdt
∣∣∣2) 1

2 ≤ C(T )‖g‖L2(0,T ).

We denote by H the space correspondence to different kinds of Sturm-Liouville
boundary value condition:

1. Neumann boundary value condition (a1 = 0, b1 > 0, a2 = 0, b2 > 0):

H((0, π),C) := H2((0, π),C);

2. Dirichlet-Neumann boundary value condition (a1 > 0, b1 = 0, a2 = 0, b2 > 0):

H((0, π),C) :=
{
ϕ ∈ H2((0, π),C), ϕ(0) = 0

}
,

and (a1 = 0, b1 > 0, a2 > 0, b2 = 0):

H((0, π),C) :=
{
ϕ ∈ H2((0, π),C), ϕ(π) = 0

}
;

3. General boundary value condition (a1 > 0, b1 > 0, a2 > 0, b2 > 0):

H((0, π),C) := H2((0, π),C).

Proposition 3.1. Let T > 0 and f ∈ L2([0, T ],H((0, π),C)). Then
∫ t
0
e−iAsf(s)ds

belongs to C([0, T ], H2
(0)((0, π),C)). Furthermore,∥∥∥∥∫ t

0

e−iAsf(s)ds

∥∥∥∥
L∞([0,T ],H2

(0)
)

≤ C1(T )‖f‖L2([0,T ],H),

where the constant C1(T ) is uniformly bounded for T .

Proof. We expand
∫ t
0
e−iAsf(s)ds with respect to ϕk,∫ t

0

e−iAsf(s)ds =

∞∑
k=0

∫ t

0

e−iλks〈f(s), ϕk〉ϕkds.

For almost every s ∈ [0, T ], f(s) ∈ H((0, π),C), we have

〈f(s), ϕk〉 =
1

λk
〈f(s), Aϕk〉 =

1

λk
〈f(s),−ϕ′′k + V (x)ϕk〉

=
1

λk

(
〈f(s)V (x), ϕk〉 − f(s)ϕ′k

∣∣∣π
0

+ 〈f ′(s), ϕ′k〉
)

=
1

λk

(
〈f(s)V (x), ϕk〉 − f(s)ϕ′k

∣∣∣π
0

+ f ′(s)ϕk

∣∣∣π
0
− 〈f ′′(s), ϕk〉

)
=

1

λk

(
〈Af(s), ϕk〉 − f(s)ϕ′k

∣∣∣π
0

+ f ′(s)ϕk

∣∣∣π
0

)
. (3.2)

Here, we divide it into three cases:
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1. Neumann boundary value condition (a1 = 0, b1 > 0, a2 = 0, b2 > 0): Since

ϕ′k(0) = ϕ′k(π) = 0, we have f(s, x)ϕ′k(x)
∣∣∣π
0

= 0. By Lemma 2.2, ϕk(x) is

uniformly bounded with respect to k.

2. Dirichlet-Neumann boundary value condition (a1 > 0, b1 = 0, a2 = 0, b2 > 0):

Since ϕk(0) = ϕ′k(π) = 0, f(s, 0) = 0, we have f(s, x)ϕ′k(x)
∣∣∣π
0

= 0. (a1 = 0,

b1 > 0, a2 > 0, b2 = 0): Since ϕ′k(0) = ϕk(π) = 0, f(s, π) = 0, we have

f(s, x)ϕ′k(x)
∣∣∣π
0

= 0. By Lemma 2.3, ϕk(x) is uniformly bounded with respect

to k.

3. General boundary value condition (a1 > 0, b1 > 0, a2 > 0, b2 > 0): By Lemma
2.4, ϕk(x) is uniformly bounded with respect to k. Since ϕ′k(0) = a1

b1
ϕk(0),

ϕ′k(π) = −a2b2 ϕk(π), we have that both ϕ′k(0) and ϕ′k(π) are bounded.

By Lemma 3.1, we have∥∥∥∥∫ t

0

e−iAsf(s)ds

∥∥∥∥
H2

(0)
((0,π),C)

=

( ∞∑
k=0

λk

∣∣∣∣〈∫ t

0

e−iλksf(s)ds, ϕk

〉∣∣∣∣2
) 1

2

≤
∥∥∥∥∫ t

0

[f(s, x)ϕ′k(x)]
∣∣∣π
0
e−iλksds

∥∥∥∥
l2

+

∥∥∥∥∫ t

0

[f ′(s, x)ϕk(x)]
∣∣∣π
0
e−iλksds

∥∥∥∥
l2

+

( ∞∑
k=0

∣∣∣∣∫ t

0

〈Af(s), ϕk〉e−iλksds
∣∣∣∣2
) 1

2

≤ C2

∥∥∥∥∫ t

0

[f(s, x)]
∣∣∣π
0
e−iλksds

∥∥∥∥
l2

+ C3

∥∥∥∥∫ t

0

[f ′(s, x)]
∣∣∣π
0
e−iλksds

∥∥∥∥
l2

+

(
π∑
k=0

t

∫ t

0

|〈Af(s), ϕk〉|2ds

) 1
2

≤ C(t)(C2

∥∥∥[f(s, x)]
∣∣∣π
0

∥∥∥
L2[0,t]

+ C3

∥∥∥[f ′(s, x)]
∣∣∣π
0

∥∥∥
L2[0,t]

) +
√
t‖f(s)‖L2([0,t],H)

≤ C1(t)‖f(s)‖L2((0,t),H),

where C1(t) is uniformly bounded on [0, t]. Thus∥∥∥∥∫ t

0

e−iAsf(s)ds

∥∥∥∥
L∞([0,T ],H2

(0)
)

≤ C1(T )‖f‖L2([0,T ],H),

where C1(T ) is uniformly bounded for fixed T .

Proposition 3.2. Let T > 0, y0(x) ∈ H2
(0)((0, π),C), u(t) ∈ L2([0, T ],R), µ(x) ∈

W 2,∞((0, π),R) and f ∈ L2([0, T ],H). There exists a unique weak solution of
(3.1), i.e. a function y ∈ C([0, T ], H2

(0)) such that the following equality holds

in H2
(0)((0, π),C) for every t ∈ [0, T ],

y(t, x) = e−iAty0(x) + i

∫ t

0

e−iA(t−s)[u(s)µ(x)y(s, x)− f(s, x)]ds.
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Moreover, for every R > 0, if ‖u‖L2([0,T ],R) < R, there exists C = C(T, µ,R) > 0
such that the weak solution satisfies:

‖y(t, x)‖C0([0,T ],H2
(0)

) ≤ C(‖y0(x)‖H2
(0)

((0,π),C) + ‖f(t, x)‖L2([0,T ],H)). (3.3)

Proof. We construct the map,

F : C([0, T ], H2
(0)((0, π),C)) → C([0, T ], H2

(0)((0, π),C)),

y 7→ ξ,

where ξ := F (y) is defined by

ξ(t, x) := e−iAty0(x) + i

∫ t

0

e−iA(t−s)(u(s)µ(x)y(s, x)− f(s, x))ds, ∀t ∈ [0, T ].

Since y(t, x) ∈ C([0, T ], H2
(0)), u(t) ∈ L2([0, T ],R), f ∈ L2([0, T ],H), and µ(x) ∈

W 2,∞((0, π),C), we have

(u(t)µ(x)y(t, x)− f(t, x)) ∈ L2([0, T ],H((0, π),C)).

Proposition 3.1 ensures that F takes values in C([0, T ], H2
(0)((0, π),C)). For every

t ∈ [0, T ], we have

‖F (y1)(t)− F (y2)(t)‖H2
(0)

((0,π),C) =

∥∥∥∥∫ t

0

e−iAs[u(s)µ(x)(y1 − y2)(s)]ds

∥∥∥∥
H2

(0)
((0,π),C)

≤ C1(t)‖uµ(y1 − y2)‖L2([0,t],H)

≤ C1(t)‖u‖L2([0,t],R)‖µ(y1 − y2)‖L∞([0,t],H)

≤ C1(t)‖u‖L2([0,t],R)Cµ‖y1 − y2‖L∞([0,t],H2
(0)

).

Thus,

‖F (y1)− F (y2)‖L∞([0,T ],H2
(0)

) ≤ C4(T, µ)‖u‖L2([0,T ],R)‖y1 − y2‖L∞([0,T ],H2
(0)

).

If ‖u‖L2([0,T ],R) is small enough, then F is a contraction. By Banach fixed point
theorem, there exists y ∈ C([0, T ], H2

(0)) such that F (y) = y. Thus,

‖y‖L∞([0,T ],H2
(0)

) ≤‖y0‖H2
(0)

+ C4(T, µ)‖u‖L2([0,T ],R)‖y‖L∞([0,T ],H2
(0)

)

+ C3(T )‖f‖L2([0,T ],H).

If C4(T, µ)‖u‖L2([0,T ],R) ≤ 1
2 , we have (3.3). If it is not the case, one may consider

0 = T0 < T1 < · · · < TN = T such that ‖u‖L2(Ti,Ti+1) is small, and apply the
previous result, we get (3.3) for every R > 0.

Remark 3.1. If we assume that µ′(0) = µ′(π) = 0 in Neumann boundary value
problem or µ′(π) = 0 (µ′(0) = 0) in Dirichlet-Neumann boundary value problem
with f(t, x) ∈ L2([0, T ], H2

(0)), we have u(t)µ(x)y(t, x)+f(t, x) ∈ L2([0, T ], H2
(0)). It

is easier to apply Banach fixed point theorem in such space. But λk〈µϕ0, ϕk〉 → 0
when k → ∞ by (3.2), which conflicts with H2. Thus, we can not take the above
assumption in Proposition 3.1
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Now, we state the conversation law of Schrödinger equation with Sturm-Liouville
boundary value condition.

Lemma 3.2. If y(t, x) is the solution of (1.1)-(1.2) with y0 ∈ S ∩H2
(0)((0, π),C),

we have that y(t, x) ∈ S ∩H2
(0)((0, π),C) on [0, T ].

Proof.

d

dt
‖y(t, x)‖2L2((0,π),C) = 2R

〈
dy

dt
(t, x), y(t, x)

〉
= 2R[−i〈yx, yx〉 − i〈V (x)y, y〉+ iu(t)〈µy, y〉]
= −2= 〈yx, yx〉 − 2= 〈V (x)y, y〉+ u(t)2= 〈µy, y〉
= 0.

4. Controllability of bilinear Schrödinger equation

4.1. C1-regularity of the end-point map

Firstly, we consider the linearized equation around reference trajectory (y, u):
izt = −zxx + V (x)z − u(t)µ(x)z − v(t)µ(x)y,

a1zx(t, 0)− b1zx(t, 0) = 0, a2z(t, π) + b2zx(t, π) = 0,

z(0, x) = 0,

(4.1)

where y is the solution of (1.1)-(1.2) with the initial value y(0, ·) = ϕ1. For T > 0,
we introduce the tangent space of S at ψ0(T ),

VT := {ξ ∈ L2((0, π),C);R〈ξ, ψ0(T )〉 = 0},

and the orthogonal projection

PT : L2((0, π),C)→ VT .

By Proposition 3.2, the weak solution of (1.1)-(1.2) with the initial value y(0, ·) = ϕ1

at T is

y(T, x) = e−iATϕ0(x) + i

∫ T

0

e−iA(t−s)u(s)µ(x)y(s, x)ds. (4.2)

Consider the map

ΘT : L2([0, T ],R)→ VT ∩H2
(0)((0, π),C) (4.3)

u 7→ PT (y(T, ·)).

Proposition 4.1. Let T > 0, H1 and H2 hold. The map ΘT defined by (4.3) is
C1. Moreover, for every u, v ∈ L2([0, T ],R), we have

dΘT (u) · v = PT (z(T, ·)), (4.4)

where z is the weak solution of (4.1).
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Proof. Let U be an open set in L2([0, T ],R) defined by

U := {u ∈ L2([0, T ],R); ‖u‖L2[0,T ] < R}.

Firstly, we prove that ΘT is continuous in U . Let u+ v ∈ U , we have

ΘT (u+ v) = PT (y(T ) + ζ(T )),

where y(t), y(t) + ζ(t) ∈ VT ∩H2
(0)((0, π),C). Thus,

PT (ζ(T )) = ΘT (u+ v)−ΘT (u).

Obviously,

〈ζ(T ), ϕk〉 = i

∫ T

0

(u(t)〈µζ(t), ϕk〉+ v(t)〈µy(t), ϕk〉+ v(t)〈µζ(t), ϕk〉)e−iλk(T−t)dt.

By Proposition 3.2, we have

‖ζ(T )‖H2
(0)
≤ C5‖v‖L2 ,

where C5 = C(T, µ, ‖u‖L2).
Secondly, we prove that ΘT is differentiable in U . If (4.4) holds, we have

PT (ξ(T )) = ΘT (u+ v)−ΘT (u)− dΘT (u)v,

where ξ := ζ − z is the weak solution of:
iξt = −ξxx + V (x)ξ − (u+ v)(t)µ(x)ξ − v(t)µ(x)z

a1ξ(t, 0)− b1ξx(t, 0) = 0, a2ξ(t, π) + b2ξx(t, π) = 0,

ξ(0, x) = 0.

Obviously,

〈ξ(T ), ϕk〉 = i

∫ T

0

((u+ v)(t)〈µξ(t), ϕk〉+ v(t)〈µz, ϕk〉)e−iλk(T−t)dt.

By Proposition 3.2, we obtain that

‖ξ‖H2
(0)
≤ C6‖v‖L2 ,

where C6 = C(T, µ, ‖u+ v‖L2).
Finally, we prove that dΘT is continuous. Actually, we prove that this map is

locally Lipschitz. We assume that ũ ∈ U with ‖ũ − u‖L2 < 1. Let ỹ and z̃ be the
weak solution of:

iỹt = −ỹxx + V (x)ỹ − ũ(t)µ(x)ỹ,

a1ỹ(t, 0)− b1ỹx(t, 0) = 0, a2ỹ(t, π) + b2ỹx(t, π) = 0,

ỹ(0, x) = ϕ0,
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and 
iz̃t = −z̃xx+ V (x)z̃ − ũ(t)µ(x)z̃ − v(t)µ(x)ỹ,

a1z̃(t, 0)− b1z̃x(t, 0) = 0, a2z̃(t, π) + b2z̃x(t, π) = 0,

z̃(0, x) = 0,

respectively. We obtain that

[dΘT (u)− dΘT (ũ)] · v = PT (Ξ(T )),

where Ξ := z − z̃ is the weak solution of:
iΞt = −Ξxx + V (x)Ξ− u(t)µ(x)Ξ− (u− ũ)µ(x)z̃ − v(t)µ(x)(y − ỹ),

a1Ξ(t, 0)− b1Ξx(t, 0) = 0, a2Ξ(t, π) + b2Ξx(t, π) = 0,

Ξ(0, x) = 0.

Obviously, for every k ∈ N, we have that

〈Ξ(T ), ϕk〉 = i

∫ T

0

(u(t)〈µΞ(t), ϕk〉+ (u− ũ)(t)〈µz̃, ϕk〉

+v(t)〈µ(y − ỹ)(t), ϕk〉)e−iλk(T−t)dt,

since

‖y − ỹ‖C([0,T ],H2
(0)

) ≤ C7‖(u− ũ)µỹ‖L2([0,T ],H) ≤ C8‖u− ũ‖L2‖ỹ‖C([0,T ],H2
(0)

),

and
‖z̃‖C([0,T ],H2

(0)
) ≤ C9‖vµỹ‖L2([0,T ],H) ≤ C10‖v‖L2‖ỹ‖C([0,T ],H2

(0)
),

by Proposition 3.2, we have

‖Ξ‖C([0,T ],H2
(0)

) ≤ C11‖(u− ũ)µz̃ + vµ(y − ỹ)‖L2([0,T ],H)

≤ C12[‖u− ũ‖L2‖z̃‖C([0,T ],H) − ‖v‖L2‖y − ỹ‖C([0,T ],H2
(0)

)]

≤ C13‖u− ũ‖L2‖v‖L2 ,

where Ci = C(T, µ, ‖u‖L2) > 0, i = 7, · · · , 13.

4.2. Controllability of the linearized system

Consider the following map

dΘT (0) : L2([0, T ],R)→ VT ∩H2
(0)((0, π),C),

v 7→ PT (z(T, x)),

which is equivalent to linearize (1.1)-(1.2) with respect to the reference trajectory
(ψ0(t, x), u(t) ≡ 0):

izt = −zxx + V (x)z(x)− v(t)µ(x)ψ0,

a1z(t, 0)− b1zx(t, 0) = 0, a2z(t, π) + b2zx(t, π) = 0,

z(0, x) = 0.

(4.5)

To prove the controllability of linearized system, we present a lemma on trigono-
metric moment problem.
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Lemma 4.1 ( [11]). Let T > 0 and (ωk)k∈N be an increasing sequence of [0,+∞)
such that ω0 = 0, and

ωk+1 − ωk → +∞ when k → +∞.

There exists a continuous linear map,

L : l2r(N,C)→ L2((0, T ),R),

d 7→ L(d),

such that, for every d = (dk)k∈N ∈ l2r(N,C), the function v := L(d) solves∫ T

0

v(t)eiωktdt = dk, ∀k ∈ N.

Proposition 4.2. Let T > 0 and H1, H2 hold. The linear map dΘT (0) has a
continuous right reverse dΘT (0)−1 : VT ∩H2

(0)((0, π),C)→ L2([0, T ],R).

Proof. We give the formal solution of (4.5):

z(T, x) =

∞∑
k=0

i〈µϕ0, ϕk〉

(∫ T

0

v(t)ei(λk−λ0)tdt

)
e−iλkTϕk.

Define ωk := λk − λ0, dk(zf ) :=
〈zf ,ϕk〉eiλkT
i〈µϕ0,ϕk〉 , ∀k ∈ N. If z is the solution of (4.5)

for some v(t) ∈ L2([0, T ],R), then, the equality z(T, x) = zf (x) is equivalent to the
trigonometric moment problem:∫ T

0

v(t)e−iωktdt = dk(zf ), ∀k ∈ N.

By Lemma 2.2, Lemma 2.3 and Lemma 2.4, we get

ωk+1 ≥ ωk, k ∈ N and ωk+1 − ωk → +∞, k → +∞,

with different kinds of boundary value conditions. By Lemma 4.1, the sufficient
condition of this equation can be controlled by v(t) ∈ L2 is dk(zf ) ∈ l2. Since H2

holds, we know that ∣∣∣∣ 〈zf , ϕk〉eiλkTi〈µϕ0, ϕk〉

∣∣∣∣ ≤ Cλk〈zf , ϕk〉.
Since zf ∈ VT ∩H2

(0)((0, π),C), we have dk(zf ) ∈ l2(N,C) by definition.

4.3. Controllability of the end-point map

We denote

VT,δ := {yf ∈ S ∩H2
(0)((0, π),C); ‖yf − ψ0(T )‖H2

(0)
< δ}.

Theorem 4.1. Let T > 0, H1 and H2 hold. There exists δ > 0 and a C1 map

Γ : VT,δ → L2([0, T ],R),

yf 7→ Γ(yf ),

such that Γ(ψ0(T )) = 0 and for every yf ∈ VT,δ, system (1.1)-(1.2) with initial
condition y(0, ·) = ϕ0 and control u = Γ(yf ) satisfies y(T ) = yf .
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Proof. Let R1 > 0 and δ1 > 0 be such that

1. ∀u ∈ BR1 [L2((0, T ),R)], the solution of (1.1)-(1.2) satisfies R〈y(T ), ψ0(T )〉 > 0,
2. ∀yf ∈ VT,δ1 , we have R〈yf , ψ0(T )〉 > 0.

Obviously, BR1 [L2((0, T ),R)] and VT ∩H2
(0)((0, π),C) are Banach spaces. Thus,

the map
ΘT : BR1

[L2([0, T ],R)]→ VT ∩H2
(0)((0, π),C),

is C1, and the differential at zero point has a continuous right inverse:

dΘT (0)−1 : VT ∩H2
(0)((0, π),C)→ L2([0, T ],R).

Thanks to the inverse mapping theorem, there exists δ ∈ (0, δ1) and C1 map,

Θ−1T : Bδ[VT ∩H2
(0)((0, π),C)]→ BR1

[L2([0, T ],R)],

such that ΘT (Θ−1T (ỹf )) = ỹf for every ỹf ∈ Bδ[VT ∩H2
(0)((0, π),C)].

For yf ∈ VT,δ, we have ‖PT yf‖H2
(0)

((0,π),C) < δ. Thus, we can define

Γ(yf ) := Θ−1T [PT yf ],

such that

y(T ) = PT (y(T )) +
√

1− ‖PT y(T )‖2L2ψ0(T )

= PT (yf ) +
√

1− ‖PT yf‖2L2ψ0(T )

= yf .

Remark 4.1. Thanks to the time reversibility, Theorem 1.1 is a corollary of The-
orem 4.1.
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Linéaire, 27(2010)(3), 901–915.

[18] V. Ramakrishna and H. Rabitz, Control of molecular dynamics, Systems mod-
elling and optimization[Res. Notes Math. 396], Chapman & Hall/CRC, 1999.

[19] L. Rosier and B. Y. Zhang, Local exact controllability and stabilizability of
the nonlinear Schrödinger equation on a bounded interval, SIAM J. Control
Optim., 48(2009)(2), 972–992.
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