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Abstract This paper intends to develop a new method to obtain the thresh-
old of an impulsive stochastic chemostat model with saturated growth rate in a
polluted environment. By using the theory of impulsive differential equations
and stochastic differential equations, we obtain conditions for the extinction
and the permanence of the microorganisms of the deterministic chemostat
model and the stochastic chemostat model. We develop a new numerical com-
putation method for impulsive stochastic differential system to simulate and
illustrate our theoretical conclusions. The biological results show that a s-
mall stochastic disturbance can cause the microorganism to die out, that is,
a permanent deterministic system can go to extinction under the white noise
stochastic disturbance. The theoretical method can also be used to explore
the threshold of some impulsive stochastic differential equations.
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1. Introduction

The chemostat is an important laboratory apparatus to investigate the growth of
microorganism in a deterministic environment. Chemostat models are always used
to study the continuous culture of microorganism in laboratory [2, 10, 21]. More-
over, the chemostat is also a common model of waste-treatment or fermentation
process [3,4,23]. Industrial environmental pollution is a socio-ecological focus prob-
lem in the world today. The toxicant in the environment is a serious threat to
the survival of the exposed biology. Consequently, it is essential to investigate the
effects of toxicants on the ecological system and to obtain a theoretical threshold
which governs the extinction and permanence of the biology a polluted environ-
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ment. This arouses many biologists, chemists and mathematicians’s research inter-
ests [5, 6, 13]. Many authors have investigated the effects of toxicant on biological
population. Hallam etal. initially proposed a deterministic toxicant-population
model. The waste water with toxicant is always input impulsively to a ecological
environment. Afterwards, population models with impulsive toxicant input were
further researched [14, 19, 20, 25]. Moreover, population system in the real world is
inevitably affected by environmental noise [3,4,7,8,22,24]. Recently, some authors
have introduced environmental noise into polluted population systems to study the
effects of environmental noise on the persistence and extinction of single-species,
see e.g. [15–17].

The bilinear growth rate means that the more microorganism individuals is, the
larger number of microorganism individuals yields. As the number of microorganis-
m individuals is large, owing to the density-dependent population growth, there is a
saturation effect which makes the number of individuals constant. Comparing with
bilinear growth rate, saturated growth rate may be more suitable for many cases for
example, [11,20]. To the best of our knowledge, the research on stochastic chemostat
model with saturated growth rate and pulsed toxicant input in a polluted environ-
ment is not too much yet. Therefore, based on a deterministic chemostat model,
we shall propose a new model by taking the white noise into account. For this new
system, we will investigate the influences of noise stochastic disturbance and impul-
sive toxicant input on system dynamics and explore the threshold which governs the
extinction and permanence of the microorganism. A deterministic chemostat model
with saturated growth rate and pulsed toxicant input in a polluted environment is
described by the following impulsive differential equation:

Ṡ(t) = Q(S0 − S(t))− µS(t)x(t)

δ(a+ x(t))
,

ẋ(t) =
µS(t)x(t)

a+ x(t)
−Qx(t)− rc0(t)x(t),

ċ0(t) = kce(t)− gc0(t)−mc0(t),

ċe(t) = −hce(t),


t 6= nτ, n ∈ Z+,

∆S(t) = 0,∆x(t) = 0,∆c0(t) = 0,∆ce(t) = u, t = nτ, n ∈ Z+,

(1.1)

where S(t) represents the concentration of the unconsumed nutrient at time t, x(t)
represents the biomass of the population of microorganism at time t, c0(t) and ce(t)
denote the concentrations of the toxicant in the organism and in the environment at
time t, respectively. S0 and Q are positive constants and denote, respectively, the
concentration of the growth-limiting nutrient and the flow rate of the chemostat.
µ is the maximum specific growth rate of the microorganism, δ is the yield of the
microorganism x(t) per unit mass of substrate, a is the so-called half-saturation
constant, r > 0 is the rate of decrease of the intrinsic growth rate, k represents
environmental toxicant uptake rate per unit mass organism, g and m are organis-
mal net ingestion and depuration rates of toxicant, respectively, h denotes the loss
rate of toxicant from the environment itself by volatilization, u is the amount of
pulsed input concentration of the toxicant at each τ , and all the coefficients are pos-

itive. The function µS(t)x(t)
a+x(t) represents saturated growth rate of the microorganism

population.
We assume that fluctuations in the environment will manifest themselves main-

ly as fluctuations in the saturated response rate, so that µS(t)x(t)
a+x(t) →

µS(t)x(t)
a+x(t) +
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σS(t)x(t)
a+x(t) Ḃ(t), where B(t) is a standard Brownian motion with intensity σ2 > 0.

Then a stochastic version takes the following form:

dS(t) =

(
Q(S0 − S(t))− µS(t)x(t)

δ(a+ x(t))

)
dt− σS(t)x(t)

δ(a+ x(t))
dB(t),

dx(t) =

(
µS(t)x(t)

a+ x(t)
−Qx(t)− rc0(t)x(t)

)
dt+

σS(t)x(t)

a+ x(t)
dB(t),

dc0(t) = (kce(t)− gc0(t)−mc0(t))dt,

dce(t) = −hce(t)dt,


t 6= nτ, n ∈ Z+,

∆S(t) = 0,∆x(t) = 0,∆c0(t) = 0,∆ce(t) = u, t = nτ, n ∈ Z+,

(1.2)
where σ is the environmental noise disturbance coefficient.

This paper will study the stochastic chemostat model with a saturated growth response
rate and pulsed toxicant input in a polluted environment. The main objective of this
paper is to investigate the extinction and permanence of the microorganism population
and explore the threshold of the above two chemostat systems.

2. Preliminary results

In the section, we will give some notations, definitions and some lemmas which will be
used for our main results. To this end, we throughout this paper assume that S(t), x(t)
and c0(t) are continuous at t = nT , and ce(t) is left continuous at t = nT and ce(nT

+) =
limt→nT+ ce(t) and let (Ω,F , {F}t≥0,P) be a complete probability space with a filtration
{Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and right continuous while F0

contains all P-null sets). Further assume that B(t) is a scalar Brownian motion defined
on the complete probability space Ω. Also let R4

+ = {z = (z1, z2, z3, z4) ∈ R4|zi > 0, i =
1, 2, 3, 4}. If f is an integrable function on [0,+∞), define 〈f(t)〉 = 1

t

∫ t
0
f(θ)dθ.

Definition 2.1. (i) The microorganism x(t) is said to be extinctive if limt→+∞ x(t) =
0.

(ii) The species x(t) is said to be permanent in the mean if there exists a positive
constant λ such that lim inft→+∞〈x(t)〉 ≥ λ.

Now we give some basic properties of the following subsystem of systems (1.1) and
(1.2), 

dc0(t) = (kce(t)− gc0(t)−mc0(t))dt,

dce(t) = −hce(t)dt,

 t 6= nτ, n ∈ Z+,

∆c0(t) = 0,∆ce(t) = u, t = nτ, n ∈ Z+.

(2.1)

Lemma 2.1. ( [14]) System (2.1) has a unique positive τ -periodic solution (c∗0(t), c∗e(t))
T

and for each solution (c0(t), ce(t))
T of (2.1), c0(t) → c∗0(t), ce(t) → c∗e(t) as t → +∞.

Moreover, c0(t) > c∗0(t), ce(t) > c∗e(t) for all t ≥ 0 if c0(0) > c∗0(0), ce(0) > c∗e(0), where

c∗0(t) = c∗0(0)e−(g+m)(t−nτ) +
ku
(
e−(g+m)(t−nτ) − e−h(t−nτ)

)
(h− g −m) (1− e−hτ )

,

c∗e(t) =
ue−h(t−nτ)

1− e−hτ ,

c∗0(0) =
ku
(
e−(g+m)τ − e−hτ

)
(h− g −m) (1− e−(g+m)τ ) (1− e−hτ )

,

c∗e(0) =
u

1− e−hτ ,

(2.2)
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for t ∈ (nτ, (n+ 1)τ ] and n ∈ Z+.

Lemma 2.2. For any positive solution (S(t), x(t), c0(t), ce(t)) of system (1.1) or (1.2) with
initial value (S(0), x(0), c0(0), ce(0

+)) ∈ R4
+, we have

lim sup
t→+∞

S(t) ≤ S0, lim sup
t→+∞

x(t) ≤ δS0, lim
t→+∞

〈c0(t)〉 =
ku

h(g +m)τ
, c0.

Proof. From the first two equations of system (1.1) or (1.2), we have

d
(
S(t) + 1

δ
x(t)

)
dt

≤ Q
[
S0 −

(
S(t) +

1

δ
x(t)

)]
.

This implies that limt→+∞
(
S(t) + 1

δ
x(t)

)
≤ S0, then lim supt→+∞ S(t) ≤ S0, lim supt→+∞ x(t) ≤

δS0. By Lemma 2.1, we have

lim
t→+∞

1

t

∫ t

0

c0(s)ds = lim
t→+∞

1

t

∫ t

0

c∗0(s)ds =
1

τ

∫ τ

0

c∗0(t)dt =
ku

h(g +m)τ
.

This completes the proof of Lemma 2.2.
Let

R =
µS0

a(Q+ rc0)
.

Then we can prove

Lemma 2.3. For system (1.1), we have

(a) if R < 1, then the microorganism goes to extinction and the system has a unique
stable ‘microorganism-extinction’ periodic solution (S0, 0, c

∗
0(t), c∗e(t)); and

(b) if R > 1, then the microorganism of the system is permanent.

Proof. By Lemma 2.1, we can see that system (1.1) has a unique ‘microorganism-
extinction’ periodic solution (S0, 0, c

∗
0(t), c∗e(t)). The stability of the periodic solution

(S0, 0, c
∗
0(t), c∗e(t)) is determined by the eigenvalues of

M =


exp(−Qτ) ∗ 0 0

0 exp
(∫ τ

0
µS0
a
−Q− rc∗0(t)dt

)
0 0

0 0 exp(−(g +m)τ) k

0 0 0 exp(−hτ)

 ,

which are

λ1 = exp(−Qτ) < 1, λ2 = exp

(∫ τ

0

µS0

a
−Q− rc∗0(t)dt

)
,

λ3 = exp(−(g +m)τ) < 1, λ4 = exp(−hτ) < 1.

Then according to Floquet theory [1], (S0, 0, c
∗
0(t), c∗e(t)) is stable if λ2 < 1, i.e., R < 1,

which gives the first conclusion.
Next let us prove the permanence of system (1.1) when R > 1. Integrating from 0 to

t and dividing by t on both sides of the first two equations of (1.1) yields

ε(t) , δ
S(t)− S(0)

t
+
x(t)− x(0)

t
≥ δQS0 − δQ〈S(t)〉 − (Q+ rc∗0(0))〈x(t)〉,

then we get

〈S(t)〉 ≥ S0 −
(

1

δ
+
rc∗0(0)

δQ

)
〈x(t)〉 − ε(t)

δQ
. (2.3)
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Define V (t) = a lnx(t) + x(t). It is easy to check V (t) is bounded. Then we have

D+V (t) = µS(t)− a(Q+ rc0(t))−Qx(t)− rc0(t)x(t)

≥ µS(t)− a(Q+ rc0(t))− (Q+ rc∗0(0))x(t). (2.4)

Integrating from 0 to t and dividing by t on both sides of (2.4) yields

V (t)

t
− V (0)

t
≥ µ〈S(t)〉 − a(Q+ r〈c0(t)〉)− (Q+ rc∗0(0))〈x(t)〉

≥ µS0 − a(Q+ r〈c0(t)〉)−
[
µ

(
1

δ
+
rc∗0(0)

δQ

)
+ (Q+ rc∗0(0))

]
〈x(t)〉 − µε(t)

δQ

= a(Q+ r〈c0(t)〉)
[

µS0

a(Q+ r〈c0(t)〉) − 1

]
−
[
µ

(
1

δ
+
rc∗0(0)

δQ

)
+ (Q+ rc∗0(0))

]
〈x(t)〉 − µε(t)

δQ
. (2.5)

Noticing that 0 < S ≤ S0 and 0 < x(t) ≤ δS0, then we obtain limt→+∞
V (t)
t

= 0 and
limt→+∞ ε(t) = 0. Finally, taking the inferior limit of both sides of (2.5) leads to

lim inf
t→+∞

〈x(t)〉 ≥ aδQ(Q+ rc0)

(µ+ δQ)(Q+ rc∗0(0))
(R− 1) > 0.

This completes the proof.

3. Main results

3.1. Extinction

In this section, we explore the condition for the extinction of the microorganism, which
implies microculture failed. Let

R∗ =
µS0

a(Q+ rc0)
− σ2S2

0

2a2(Q+ rc0)
= R− σ2S2

0

2a2(Q+ rc0)
, (3.1)

be the threshold of the deterministic system (1.1), where c0 , ku
h(g+m)τ

, R = µS0
a(Q+rc0)

.
Then we obtain the following theorem.

Theorem 3.1. Let (S(t), x(t), c0(t), ce(t)) be the solution of system (1.2) with initial value
(S(0), x(0), c0(0), ce(0

+)) ∈ R4
+. Then if one of the following holds

(i) σ > µ√
2(Q+rc0)

, or

(ii) R∗ < 1 and σ ≤
√

aµ
S0

,

the microorganism goes to extinction almost surely, i.e. limt→+∞ x(t) = 0, moreover,
limt→+∞ S(t) = S0, limt→+∞ c0(t) = c∗0(t), limt→+∞ ce(t) = c∗e(t).

Proof. Applying Itô’s formula to system (1.2) yields

d lnx(t) =

(
µS(t)

a+ x(t)
−Q− rc0(t)− σ2S2(t)

2(a+ x(t))2

)
dt+

σS(t)

a+ x(t)
dB(t). (3.2)

It then gives two cases to discuss.
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Case (i)

Integrating with respective to t from 0 to t on both sides of (3.2) leads to

lnx(t) = −σ
2

2

∫ t

0

(
µ

σ2
− S(t)

a+ x(t)

)2

dt−Qt− r
∫ t

0

c0(θ)dθ +
µ2

2σ2
t+M(t) + lnx(0)

≤ −Qt− r
∫ t

0

c0(θ)dθ +
µ2

2σ2
t+M(t) + lnx(0), (3.3)

where M(t) =
∫ t
0

σS(θ)
a+x(θ)

dB(θ) is a local continuous martingale with M(0) = 0 and its
quadratic variation given by

〈M(t),M(t)〉 =

∫ t

0

σ2S2(θ)

(a+ x(θ))2
dθ.

Noticing that 0 < S
a+x
≤ S0

a
gives

lim sup
t→+∞

〈M(t),M(t)〉
t

≤ σ2S2
0

a2
<∞, a.s.

Then by the strong law of large numbers for martingales [9, 18], we have

lim
t→+∞

M(t)

t
= 0, a.s.

Dividing both sides of (3.3) by t, one obtains

lnx(t)

t
≤ −

(
Q+ r〈c0(t)〉 − µ2

2σ2

)
+
M(t)

t
+

lnx(0)

t
. (3.4)

Since σ > µ√
2(Q+rc0)

implies −
(
Q+ r〈c0(t)〉 − µ2

2σ2

)
< 0, taking the limit superior of both

sides of (3.4) gives

lim sup
t→+∞

lnx(t)

t
≤ −

(
Q+ r〈c0(t)〉 − µ2

2σ2

)
< 0,

which means limt→+∞ x(t) = 0, a.s.

Case (ii)

Integrating this from 0 to t and dividing by t on both sides of (3.2) yields

lnx(t)

t
=

1

t

∫ t

0

(
µS(θ)

a+ x(θ)
−Q− rc0(θ)− σ2S2(θ)

2(a+ x(θ))2

)
dθ +

M(t)

t
+

lnx(0)

t

≤
(
µS0

a
− (Q+ r〈c0(t)〉)− σ2S2

0

2a2

)
+
M(t)

t
+

lnx(0)

t
(3.5)

= (Q+ r〈c0(t)〉)
(

µS0

a(Q+ r〈c0(t)〉) −
σ2S2

0

2a2(Q+ r〈c0(t)〉) − 1

)
+
M(t)

t
+

lnx(0)

t
.

Taking the limit superior of both sides of (3.5) leads to

lim sup
t→+∞

lnx(t)

t
≤ (Q+ rc0)(R∗ − 1) < 0,

which implies limt→+∞ x(t) = 0, a.s.
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Finally, since the limit system of (1.2) is

dS(t) = [Q(S0 − S(t))] dt,

dc0(t) = [kce(t)− gc0(t)−mc0(t)]dt,

dce(t) = −hce(t)dt,

 t 6= nτ, n ∈ Z+,

∆S(t) = 0,∆c0(t) = 0,∆ce(t) = u, t = nτ, n ∈ Z+,

(3.6)

by Lemma 2.1, it is clear that limt→+∞ S(t) = S0, limt→+∞ c0(t) = c∗0(t), limt→+∞ ce(t) =
c∗e(t).

3.2. Permanence in mean

Theorem 3.2. If R∗ > 1, then for any initial value (S(0), x(0), c0(0), ce(0
+)) ∈ R4

+,
system (1.2) is permanent in the mean; moreover, the solution (S(t), x(t), c0(t), ce(t)) of
system (1.2) satisfies

lim inf
t→+∞

〈x(t)〉 ≥ aδQ(Q+ rc0)

(µ+ δQ)(Q+ rc∗0(0))
(R∗ − 1). (3.7)

Proof. Integrating from 0 to t and dividing by t on both sides of the first two equations
of (1.2) yields

ε(t) , δ
S(t)− S(0)

t
+
x(t)− x(0)

t
≥ δQS0 − δQ〈S(t)〉 − (Q+ rc∗0(0))〈x(t)〉,

then one can get

〈S(t)〉 ≥ S0 −
(

1

δ
+
rc∗0(0)

δQ

)
〈x(t)〉 − ε(t)

δQ
. (3.8)

Applying Itô’s formula gives

d (a lnx(t) + x(t))

=

[
µS(t)− a(Q+ rc0(t))−Qx(t)− rc0(t)x(t)− aσ2S2(t)

2(a+ x(t))2

]
dt+ σS(t)dB(t)

≥
[
µS(t)− a(Q+ rc0(t))− (Q+ rc∗0(0))x(t)− σ2S2

0

2a

]
dt+ σS(t)dB(t), (3.9)

from which one can get

a (lnx(t)− lnx(0))

t
+
x(t)− x(0)

t

≥ µ〈S(t)〉 − a(Q+ r〈c0(t)〉)− (Q+ rc∗0(0))〈x(t)〉 − σ2S2
0

2a
+
M(t)

t

≥ µS0 − a(Q+ r〈c0(t)〉)− σ2S2
0

2a
−
[
µ

(
1

δ
+
rc∗0(0)

δQ

)
+(Q+ rc∗0(0))] 〈x(t)〉 − µε(t)

δQ
+
M(t)

t

= a(Q+ r〈c0(t)〉)
[

µS0

a(Q+ r〈c0(t)〉) −
σ2S2

0

2a2(Q+ r〈c0(t)〉) − 1

]
−
[
µ

(
1

δ
+
rc∗0(0)

δQ

)
+ (Q+ rc∗0(0))

]
〈x(t)〉 − µε(t)

δQ
+
M(t)

t
, (3.10)
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where M(t) =
∫ t
0
σS(θ)dB(θ). The inequality (3.10) can be rewritten as

〈x(t)〉 ≥ 1

∆

[
a(Q+ r〈c0(t)〉)

(
µS0

a(Q+ r〈c0(t)〉) −
σ2S2

0

2a2(Q+ r〈c0(t)〉) − 1

)
−µε(t)

δQ
+
M(t)

t
−
(
a (lnx(t)− lnx(0))

t
+
x(t)− x(0)

t

)]

≥



1

∆

[
a(Q+ r〈c0(t)〉)

(
µS0

a(Q+ r〈c0(t)〉) −
σ2S2

0

2a2(Q+ r〈c0(t)〉) − 1

)
−µε(t)

δQ
+
M(t)

t
+
a lnx(0)

t
− x(t)− x(0)

t

]
, 0 < x(t) < 1,

1

∆

[
a(Q+ r〈c0(t)〉)

(
µS0

a(Q+ r〈c0(t)〉) −
σ2S2

0

2a2(Q+ r〈c0(t)〉) − 1

)
−µε(t)

δQ
+
M(t)

t
− a (lnx(t)− lnx(0))

t
− x(t)− x(0)

t

]
, 1 ≤ x(t),

(3.11)

where ∆ =
(Q+rc∗0(0))(µ+δQ)

δQ
. Note that 0 < S ≤ S0, then

lim sup
t→+∞

〈M(t),M(t)〉
t

≤ σ2S2
0 <∞, a.s.

By the strong law of large numbers for martingales [9, 18], we have limt→+∞
M(t)
t

=

0. According to Lemma 2.2, one sees that x(t) ≤ δS0. Thus one has limt→+∞
x(t)
t

=

0, limt→+∞
ln x(t)
t

= 0 and limt→+∞ ε(t) = 0. Taking the inferior limit of both sides of
(3.11), one can derive that

lim inf
t→+∞

〈x(t)〉 ≥ a(Q+ rc0)

∆

[
µS0

a(Q+ rc0)
− σ2S2

0

2a2(Q+ rc0)
− 1

]
=

aδQ(Q+ rc0)

(µ+ δQ)(Q+ rc∗0(0))
(R∗ − 1) > 0.

This completes the proof of Theorem 3.2.

4. Simulation and Conclusion

In this section, our numerical method for impulsive stochastic differential equations is
adapted from the Euler Maruyama (EM) method in [12]. In our simulations for systems
(1.1) and (1.2), we set

S0 = 4, Q = 0.4, δ = 0.5, a = 10, µ = 1.25, r = 0.1,

k = 1, g = 0.8, h = 1, u = 0.1, τ = 1,

and take parameter values σ = 0 or σ = 1.5 to investigate the effect of stochastic distur-
bance on the dynamics of stochastic system. Fig.1 shows that the persistent microorganism
of a deterministic system maybe go to extinction under the white noise stochastic distur-
bance, thus the simulation is consistent with the theoretical results of Lemma 2.3 and

Theorem 3.1. If R∗ = R − σ2S2
0

2a2(Q+rc)
< 1 < R, then a persistent deterministic system

becomes extinct due to the white noise disturbance. Therefore, the white noise stochastic
effect is disadvantage for the persistence of system.

Keeping all parameters unchanged as in Fig.1, except u, the pulsed input concentration
of the toxicant. When it is large, u = 1 say, we have R∗ = 0.928 < 1. Thus, the
microorganism x goes to extinction, please see Fig.2 (a). Conversely, when it is small, say
u = 0.1, we have R∗ = 1.1811 > 1. Thus, the microorganism x is persistent, see Fig.2 (b).
This supports our theoretical results obtained in Theorem 3.1 and Theorem 3.2 as well.



A nonlinear impulsive stochastic chemostat system 873

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 t

 S

(a)

 

 

 σ=1.5
 σ=0

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 t

 x

(b)

 

 
 σ=1.5
 σ=0

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 t

 c
0

(c)

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

 t

 c
e

(d)

Figure 1. Numerical simulation of the paths S(t), x(t), c0(t), ce(t) for deterministic chemostat system
(1.1) and stochastic chemostat system (1.2), where black curves and red curves in (a) and (b) represent
the deterministic system and the stochastic systems, respectively, (c) and (d) represent the concentrations
of the toxicant in the organism and in the environment. Black curves (deterministic system): σ = 0,R =
1.2121 > 1; red curves (stochastic system): σ = 1.5,R∗ = 0.9212 < 1.
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Figure 2. Numerical simulation of the paths S(t), x(t), c0(t), ce(t) for the chemostat stochastic system
(1.2), where (a) u = 1,R∗ = 0.928 < 1; (b) u = 0.1,R∗ = 1.1811 > 1.

It is clear from the sample paths plots that the concentration of the unconsumed
nutrient will stabilize at an equilibrium state when the microorganism tends to extinction
eventually as demonstrated in Figs. 1(a) and 1(b). However, the concentration of the
unconsumed nutrient displays much more vibrations when the microorganism is persistence
in random environments, see demonstration in Figs. 2(b). To see the differences between a
random and a deterministic environment, we also plot the component-wise sample paths of
the microorganism in Fig. 1(b). Note that in the stochastic environment, the population
size of the microorganism approaches zero very quickly.



874 X. Meng, L Wang & T. Zhang

This paper explores an impulsive stochastic chemostat model with saturated growth
in a polluted environment. The threshold of the impulsive stochastic system which gov-
erns the extinction and permanence of the microorganism is obtained. From Lemma 2.3,
Theorems 3.1 and 3.2, we can see that, there is a significant difference compared with
the threshold of system (1.1), that is, the conditions for the microorganism to become
extinct in the stochastic system (1.2) are weaker than in the corresponding deterministic

model (1.1). When R∗ = R− σ2S2
0

2a2(Q+rc0)
< 1 < R, a permanent deterministic system can

go to extinction under the white noise stochastic disturbance. Therefore, the biological
results show the white noise stochastic disturbance is disadvantage for the permanence of
system. Our theoretical conclusions are validated and illustrated by the above numerical
simulations. The theoretical method can also be used to explore the threshold of some
impulsive stochastic differential equations.

Some interesting questions deserve further investigation. One could study more re-
alistic but more complex models, for example, impulsive stochastic systems with Lévy
jumps. The motivation is that the population may suffer sudden-environmental shocks,
e.g., severe weather, earthquakes, floods, epidemics and so on. Moreover, it is interest-
ing to investigate the effects of impulsive and stochastic perturbations on the probability
of extinction of certain population. Also it is interesting to study adaptive dynamics of
stochastic evolutionary model, and we leave these for future work.
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