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A NESTED MODEL ON HIV/AIDS,
ANTIRETROVIRAL THERAPY AND DRUG
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Abstract A coupled within- (immunological) and between-host (epidemio-
logical) dynamic model was developed which is about the spreading of drug-
sensitive HIV strain and drug-resistant HIV strain in men who have sex with
men (MSM) population. The within-host model was nested within the between-
host model by linking the dynamics of the within-host model to the additional
host mortality and transmission rate of the infection. The existences of e-
quilibria and their stabilities were found, as well as the thresholds RS and
RR for the two different strains of the nested model. Some simulations about
the spreading of the two HIV strains in Beijing MSM population were given.
Our results show that the drug-resistant strain will increase quite fast in this
population and both strains can coexist, which will make a big pressure for
China’s “Four-Free-One-Care Policy”.

Keywords Within-host, between-host, nested model, HIV/AIDS, drug-sensitive
strain, drug-resistant strain.
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1. Introduction

Men who have sex with men (frequently shortened to MSM) have emerged as a
high-risk group for HIV in China in recently years. The proportion of nationally
reported HIV/AIDS cases among MSM increased from 0.7% in 2005 [1] to 21.4%
in 2013 in some cities in China [2]. In China, HIV infected patients are receiving
free treatments (“Four-Free-One-Care Policy”) on combined antiretroviral therapy
that are provided by the government. Resistance of HIV to antiretroviral drugs is
a widespread problem that limits the efficacy of antiretroviral treatment.

There are two main cause for the emergence of drug-resistant HIV variants:
suboptimum treatment or incomplete adherence to therapy (secondary drug resis-
tance); and the pre-existence of drug-resistant variants within HIV quasispecies,
and the transmission of HIV-resistant variants at the time of the infection (primary
drug resistance) [24]. There is increasing evidence to suggest the transmission of
drug-resistant strains of HIV is becoming more widespread in most countries where
Highly Active Anti-Retroviral Therapy (HAART) is being used [5]. What is less
well understood is the prevalence of primary drug resistance and the variation of this
prevalence over time and population risk groups. Several mathematical models have
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Figure 1. Flow diagram of the transmission dynamics of an HIV epidemic in the presence of combination
antiretroviral therapy (ART); for model equations see system (2.4).

been developed to determine the effect of ART on HIV transmission by estimating
the basic reproductive number, which represents the number of individuals that a
single infectious person will infect when introduced into a completely susceptible
population [4,5,9,21]. They provide a theoretical framework for tracking simultane-
ously the transmission of wild-type drug-sensitive and drug-resistant strains of HIV,
in which, a few studies have modeled the impact of both primary and secondary
drug resistance [5,12]. To predict the effectiveness of ART in the San Francisco gay
community, authors in literature [5] developed and analyzed a mathematical model,
which is about effects of ART on the transmission dynamics of both drug-sensitive
and drug-resistant HIV strains. The model is specified by five ordinary differential
equations and allowed for drug-resistant strains to emerge during treatment, i.e.,
secondary resistance, which is modeled by parameter r. The potential treatment
effects of ART is assumed by assuming that ART reduces infectivity and increases
average survival time, and that drug-resistant strains will be less responsive to ther-
apy than drug-sensitive strains. Treatment was assumed to have three outcomes. A
patient can respond to ART and remain as a nonprogressor for a specified amount
of time, experience clinical failure and death without developing drug resistance, or
virologically fail treatment and develop drug resistance. Individuals can go on and
off ART, and drug-resistant infections can revert to drug-sensitive infections if the
selective pressure of treatment is removed (Figure 1).

From another point of view, competition models have been formulated in the
context of the dynamics of virus-host interactions over the last two decades [7, 10,
13,16,19,20,22]. In [13], an impulsive system of differential equations is developed
to describe the within-host virus dynamics of both wild-type and drug-resistant
strains when a combination of antiretroviral drugs is used to induce instantaneous
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drug effects at a sequence of dosing times equally spaced while drug concentrations
decay exponentially after the dosing time.

The importance of linking mathematical immunology and mathematical epi-
demiology was recognized in recent years [3, 6, 8, 14, 15, 17]. One important goal
of the evolutionary epidemiology of infectious diseases is to understand how such
nested processes affect the epidemiological and evolutionary dynamics of host-
pathogen interactions. There have been several efforts directed toward nesting mod-
els of within-host dynamics into models of between-host dynamics when studying
pathogen evolution. Linking within- and between-host levels of disease dynamics,
literatures [6, 14,15,17] studied the evolution of HIV and HCV.

In this paper, a nested within- and between-host dynamic model of HIV was
proposed. First an ordinary differential system of HIV dynamics within an infected
host was introduced, which is the special situation of the model in literature [13].
Then an age-structured between-host HIV model was considered to describe the
dynamics of host birth and death and the transmission of HIV within the host pop-
ulation, which will use the model of literature [5] for reference. We nest within-host
model within the epidemiological model by linking the dynamics of the within-host
model to the additional host mortality, treatment rate, and transmission rate of the
infection. We theoretically analyze our mathematical models. Simulations further
show the influence of the within-host dynamics on the between-host dynamics.

This paper is organized as follows. In section 2 we build the two models. In
section 3 we show some preliminary work for theory analysis. In section 4 we discuss
the existence of endemic stationary steady states and in section 5 we discuss their
stability. Finally, section 6 is devoted to simulations about the spreading of drug-
sensitive strain and drug-resistant strain of HIV in MSM population in Beijing,
China.

2. Nested model

2.1. A micro-HIV model [13]

In this micro model, all variables are functions of time τ . Let T denote the number
of the susceptible cells, Iw and Ir be numbers of the cells infected with the drug-
sensitive virus and cells infected with the drug-resistant virus, Vw and Vr represent
the respective concentrations of wild and drug-resistant virus. The virus dynamics
is described by the following system of ordinary differential equations:

dT (τ)
dt = λ− dT (τ)− βwHw

rt(τ)T (τ)Vw(τ)− βrHr
rt(τ)T (τ)Vr(τ),

dIw(τ)
dt = δβwH

w
rt(τ)T (τ)Vw(τ)− αwIw(τ),

dIr(τ)
dt = (1− δ)βwHw

rt(τ)T (τ)Vw(τ) + βrH
r
rt(τ)T (τ)Vr(τ)− αrIr(τ),

dVw(τ)
dt = pnwH

w
p (τ)αwIw(τ)− dwVw(τ),

dVr(τ)
dt = (1− p)nwHw

p (τ)αwIw(τ) + nrH
r
p(τ)αrIr(τ)− drVr(τ),

(2.1)

for τ 6= τk (see impulsive conditions below).
According to literature [13], this model assumes that the susceptible cells are

produced at a constant rate λ from a pool of precursor cells, and die at the con-
stant rate d. Susceptible cells become infected at rates βwH

w
rt(τ)T (t)Vw(t) and
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βrT (t)Hr
rt(τ)Vr(t) by sensitive and resistant virus respectively, where βw and βr

characterize the infectivity of drug-sensitive and drug-resistant virus strains, Hw
rt(τ)

and Hr
rt(τ) describe the effects of reverse transcriptase inhibitors on the wild-type

and drug-resistant strains. We assume that βw > βr, so the wild-type virus is more
infectious than the drug-resistant strain in the absence of the drug [22]. We assume
that during the course of wild-type viral-cell infection, virus variants that are resis-
tant to the drug arise with probability (1 − δ). In this model, αw and αr denote
the death rates of the two different kinds of the infected cells respectively. Virions
Vw and Vr are assumed to be cleared at rates dw and dr by the immune system,
but are also assumed to be generated by the two types of the infected cells at rates
nwαw and nrαr, respectively, with nwαw ≥ nrαr, i.e., the drug-sensitive virus is
assumed to have higher replication rate [10]. We further assume that drug-resistant
variants arise with probability (1 − p) during the course of wild-type viral replica-
tion. The effects of protease inhibitors for wild-type and drug-resistant strains are
characterized by Hw

p (τ) and Hr
p(τ), respectively.

The drug effects are described by the time-varying parameters Hw
rt(τ), Hr

rt(τ),
Hw
p (τ) and Hr

p(τ). The subscript ”rt” indicates reverse transcriptase inhibitors
which block the translation of viral RNA into DNA for incorporation into the host
genome, thus preventing the infection of new cells. In contrast, the subscript ”p”
denotes protease inhibitors which interfere with essential steps of protein cleavage
in new virions, thus preventing infected cells from producing infectious viral par-
ticles [13]. As noted earlier, the superscripts ”w” and ”r” reflect the wild-type
virus and drug-resistant virus, respectively. We now describe these time varying
parameters. Assuming that drugs are taken at time τk and the effects of drugs are
instantaneous. Therefore, we follow literature [20] and describe the evolution of
drug concentration by impulsive differential equations. At the dosing time τ = τk ,
the drug concentration for a specific drug is

D(τ+k ) = D(τ−k ) +Di, (2.2)

where Di is the drug dose that is used every time. D can be either of drugs
Zidovudine (AZT), Lamivudine (3TC), Nevirapine (NVP) or ritonavir (RTV). For
τ 6= τk, the dynamic of the drug are given by (2.3).

dD(τ)

dt
= −gD(τ), τ 6= τk, (2.3)

where g is the rate at which drug (3TC, AZT, NVP or RTV) is cleared.

In this paper, we suppose that infected individuals can accept optimum treat-
ment and fully adhere to therapy, which put an end to the arising of drug resistance
strain, i.e., p = δ = 1. Such as, we suppose the drugs are taken every ζ period
and no dose is missed, reflecting regular dosing periods. The detail description of
anti-viral effect coefficients (Hw

rt(τ), Hr
rt(τ), Hw

p (τ) and Hr
p(τ)) corresponding to

two different treatment programs in China can be found in literature [13].
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2.2. A macro-HIV model [5]



dX(t)
dt = π − [cλS(t) + cλR(t) + µ]X(t),(
∂
∂t + ∂

∂τ

)
Y US (t, τ) = gSY

T
S (t, τ)− (σS + vUS (τ) + µ)Y US (t, τ),

Y US (t, 0) = cλS(t)X(t),(
∂
∂t + ∂

∂τ

)
Y TS (t, τ) = σSY

U
S (t, τ)− (gS + vTS (τ) + µ)Y TS (t, τ),

Y TS (t, 0) = 0,(
∂
∂t + ∂

∂τ

)
Y UR (t, τ) = gRY

T
R (t, τ)− (eσR + vUR(τ) + µ)Y UR (t, τ),

Y UR (t, 0) = cλR(t)X(t),(
∂
∂t + ∂

∂τ

)
Y TR (t, τ) = eσRY

U
R (t, τ)− (gR + vTR(τ) + µ)Y TR (t, τ),

Y TR (t, 0) = 0.

(2.4)

According to literature [5], model (2.4) keeps track of the temporal dynamic-
s of five groups men who have sex with men (gay): susceptible individuals (X),
untreated individuals infected with either drug-sensitive (Y US ) or drug-resistant s-
trains (Y UR ), and ART-treated individuals infected with either drug-sensitive (Y TS )
or drug-resistant strains (Y TR ). The parameter’s subscript specifies whether the in-
fection is drug-sensitive (S) or drug-resistant (R); the superscript identifies whether
the individuals are treated with ART (T ) or untreated (U). Parameter definitions
are as follows: π: rate at which gay men join the sexually active community; 1/µ:
average time during which a gay man acquires new sex partners; c: average number
of new receptive anal sex partners per year; p: probability of a drug-resistant case
(relative to a drug-sensitive case) transmitting drug-sensitive viruses; 1/q: average
time for an untreated drug-resistant infection to revert to a drug-sensitive infection;
σ: per capita effective treatment rate; e: relative efficacy of ART in treating drug-
resistant infections; r: rate of emergence of resistance due to acquired resistance; g:
proportion of cases that give up ART per year; and v: average disease progression
rate. λ: specifics the per capita force of infection for drug-sensitive (λS) and drug-
resistant (λR) HIV; λS and λR are calculated from Eqs. (2.6), and are a function of
the number of infected people at any particular time (Y US , Y UR , Y TS , and Y TR ) and
the infectiousness (as specified by the transmissibility coefficients (βUS , βTS , βUR , and
βTR) of each of the four types of infected people.

2.3. The crossover of the two HIV models

In system (2.4), define the total MSM population as

N(t) = X(t) +

∫ ∞
0

[Y US (t, τ) + Y TS (t, τ) + Y UR (t, τ) + Y TR (t, τ)]dτ, (2.5)

and define the infectious force functions λS(t) and λR(t) of system (2.4) as:

λS(t) =
1

N(t)

∫ ∞
0

[βUS (τ)Y US (t, τ) + βTS (τ)Y TS (t, τ)]dτ,

λR(t) =
1

N(t)

∫ ∞
0

[βUR (τ)Y UR (t, τ) + βTR(τ)Y TR (t, τ)]dτ,

(2.6)
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in which, βUS (τ), βTS (τ), βUR (τ) and βTR(τ) are defined as functions of variables Vw(t), Vr(t)
of system (2.1) which are shown as follows:

βUS (τ) = βUS (Vw(τ), Vr(τ)) = β̃US ·
(

Vw(τ) + Vr(τ)

Vw(τ) + Vr(τ) + Ω

)
,

βTS (τ) = βTS (Vw(τ), Vr(τ)) = β̃TS ·
(

Vw(τ) + Vr(τ)

Vw(τ) + Vr(τ) + Ω

)
,

βUR (τ) = βUR (Vw(τ), Vr(τ)) = β̃UR ·
(

Vw(τ) + Vr(τ)

Vw(τ) + Vr(τ) + Ω

)
,

βTR(τ) = βTR(Vw(τ), Vr(τ)) = β̃TR ·
(

Vw(τ) + Vr(τ)

Vw(τ) + Vr(τ) + Ω

)
.

(2.7)

Also, we define disease progression rate in system (2.4), vUS (τ), vTS (τ), vUR(τ) and
vTR(τ), as functions of invariables Tw(t), Vw(t), Ir(t), Vr(t) in system (2.1):

vUS (τ) = vUS (Tw, Vw, Ir, Vr) = ṽUS ·
(

Vw + Vr
Vw + Vr + Θ1

)
·
(

Θ2

Iw + Ir + Θ2

)
,

vTS (τ) = vTS (Tw, Vw, Ir, Vr) = ṽTS ·
(

Vw + Vr
Vw + Vr + Θ1

)
·
(

Θ2

Iw + Ir + Θ2

)
,

vUR(τ) = vUR(Tw, Vw, Ir, Vr) = ṽUR ·
(

Vw + Vr
Vw + Vr + Θ1

)
·
(

Θ2

Iw + Ir + Θ2

)
,

vTR(τ) = vTR(Tw, Vw, Ir, Vr) = ṽTR ·
(

Vw + Vr
Vw + Vr + Θ1

)
·
(

Θ2

Iw + Ir + Θ2

)
.

(2.8)

3. Preliminary work

Consider system 

dx1(τ)
dτ = (f1(τ)− ω)x1(τ) + gRx2(τ),

x1(0) = x01,

dx2(τ)
dτ = eσRx1(τ) + (f2(τ)− ω)x2(τ),

x2(0) = 0.

(3.1)

Let ~x(τ) = (x1(τ), x2(τ))
T

. Now we investigate the solutions of the following
equations:

d~x(τ)

dτ
= A(τ)~x(τ), (3.2)

where

A(τ, ω) =

 f1(τ)− ω gR

eσR f2(τ)− ω

 .
Obviously, matrix A(τ, ω) have two different eigenvalues:

λ1,2(τ, ω) =
1

2

[
f1(τ) + f2(τ)− 2ω ±

√
(f1(τ)− f2(τ))2 + 4egRσR

]
, (3.3)
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with λ1(τ, ω) > λ2(τ, ω), which imply that matrix A(τ, ω) can be diagonalized.
Easy to get a reversible matrix P(τ, ω) as follows:

P(τ, ω) =

 λR1 (τ)−(f2(τ)−ω)
eσR

λR2 (τ)−(f2(τ)−ω)
eσR

1 1

 ,
in which,

(
λ1(τ)−(f2(τ)−ω)

eσR
, 1
)T

and
(
λ2(τ)−(f2(τ)−ω)

eσR
, 1
)T

are eigenvectors of eigen-

values λ1(τ, ω) and λ2(τ, ω) respectively.

Through transforms ~x(τ) = P(τ, ω)~y(τ), ~y(τ) = (y1(τ), y2(τ))T , we get that ẏ1(τ)

ẏ2(τ)

 = P(τ, ω)−1A(τ, ω)P(τ, ω) =

λ1(τ, ω) 0

0 λ2(τ, ω)

 ,
which imply that the above differential equation have general solutions: y1(τ)

y2(τ)

 =

C1e
∫ τ
0
λ1(σ,ω)dσ

C2e
∫ τ
0
λ2(σ,ω)dσ

 .
So system (3.1) have general solutions as follows:x1(τ)

x2(τ)

 = P(τ, ω)~y(τ) = C1

 λ1(τ,ω)−(f2(τ)−ω)
eσR

1

 e∫ τ0 λ1(σ,ω)dσ

+C2

 λ2(τ,ω)−(f2(τ)−ω)
eσR

1

 e∫ τ0 λ2(σ,ω)dσ.

Under initial conditions of x1(τ) and x2(τ) in system (3.1), it is easy to get that
constants C1 and C2 should satisfy:

C1 + C2 = 0,

x01 = C1
λ1(0,ω)−(f2(0)−ω)

eσR
+ C2

λ2(0,ω)−(f2(0)−ω)
eσR

.

(3.4)

So C1 = −C2 =
eσRx

0
1

λ1(0, ω)− λ2(0, ω)
. In this situation, the solution of system (3.1)

is:

x1(τ) =
x01

λ1(0, ω)− λ2(0, ω)
[(λ1(τ, ω)− (f2(τ)− ω))e

∫ τ
0
λ1(σ,ω)dσ

+ (f2(τ)− ω − λ2(τ, ω))e
∫ τ
0
λ2(σ,ω)dσ],

x2(τ) =
eσRx

0
1

λ1(0, ω)− λ2(0, ω)
[e

∫ τ
0
λ1(σ,ω)dσ − e

∫ τ
0
λ2(σ,ω)dσ].
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Similarly, for system

dx1(τ)
dτ = (g1(τ)− ω)x1(τ) + gSx2(τ),

x1(0) = x01,

dx2(τ)
dτ = σSx1(τ) + (g2(τ)− ω)x2(τ),

x2(0) = 0,

(3.5)

the two different eigenvalues are as follows:

λ∗1,2(τ, ω) =
1

2

[
g1(τ) + g2(τ)− 2ω ±

√
(g1(τ)− g2(τ))2 + 4gSσS

]
,

(λ∗1(τ, ω) > λ∗2(τ, ω)). Then the solution of system (3.5) should be:

x1(τ) =
x01

λ∗1(0, ω)− λ∗2(0, ω)
[(λ∗1(τ, ω)− (g2(τ)− ω))e

∫ τ
0
λ∗
1(σ,ω)dσ

+ (g2(τ)− ω − λ∗2(τ, ω))e
∫ τ
0
λ∗
2(σ,ω)dσ],

x2(τ) =
σSx

0
1

λ∗1(0, ω)− λ∗2(0, ω)
[e

∫ τ
0
λ∗
1(σ,ω)dσ − e

∫ τ
0
λ∗
2(σ,ω)dσ]. (3.6)

4. The existences of equilibria

For simplify, we suppose parameter r = 0. It is easy to calculate that system (2.4)
has one disease-free equilibrium ε0 = (X0, 0, 0, 0, 0), where X0 = π

µ . In the follow-
ing, we study the existence of the boundary endemic equilibria and the endemic
equilibrium.

4.1. The existence of boundary endemic equilibria

The system can have two boundary endemic equilibria. One is εbS = (Xb
S , Y

Ub
S (τ),

Y TbS (τ), 0, 0) and the other is εbR = (Xb
R, 0, 0, Y

Ub
R (τ), Y TbR (τ)). In this subsection,

we give details of the existence for the boundary equilibrium εbR. For boundary
equilibrium εbS we can get its existence by similar method.

4.1.1. The existence of boundary equilibrium εbR

For simplicity, denote

− (eσR + vUR(τ) + µ) = f1(τ), −(gR + vTR(τ) + µ) = f2(τ). (4.1)

Then the boundary equilibrium εbR, if it exists, should satisfy

π − µXb
R − Y UbR (0) = 0,

dY UbR (τ)
dτ = f1(τ)Y UbR (τ) + gRY

Tb
R (τ),

Y UbR (0) =
Xb
R

N b
R

∫ ∞
0

c[βUR (τ)Y UbR (τ) + βTR(τ)Y TbR (τ)]dτ,

dY TbR (τ)
dτ = eσRY

Ub
R (τ) + f2(τ)Y TbR (τ),

Y TbR (0) = 0,

(4.2)
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where N b
R = Xb

R +
∫∞
0

(
Y UbR (τ) + Y TbR (τ)

)
dτ .

Obviously, the last four equations (the second to the fifth equations) of system
(4.2) are similar to system (3.1) in section 3. Hence the solution of the initial
problem of the last four equations of system (4.2) should be:

Y UbR (τ) =
Y UbR (0)

λ1(0, 0)− λ2(0, 0)
[(λ1(τ, 0)− f2(τ))e

∫ τ
0
λ1(σ,0)dσ

+(f2(τ)− λ2(τ, 0))e
∫ τ
0
λ2(τ,0)dσ],

Y TbR (τ) =
eσRY

Ub
R (0)

λ1(0, 0)− λ2(0, 0)
[e

∫ τ
0
λ1(σ,0)dσ − e

∫ τ
0
λ2(σ,0)dσ].

(4.3)

Notice that

λ1(0, 0)− λ2(0, 0) =
√

(f1(0)− f2(0))2 + 4egRσR > 0

and λ1(τ, 0) > λ2(τ, 0)), so λ1(τ, 0) > f2(τ). Since parameters’ relations eσR > gR
and vUR(τ) > vTR(τ) always hold, which imply that f1(τ) < f2(τ) holds, then we

have λ2(τ, 0) < f1(τ)+f2(τ)
2 < f2(τ). Then from equations (4.3) we get that Y UbR (τ)

and Y TbR (τ) are both positive if and only if Y UbR (0) has meaning. In the following
we prove this point.

Substituting N b
R by Xb

R +
∫∞
0

(
Y UbR (τ) + Y TbR (τ)

)
dτ in the third equation in

(4.2), we get:

Y UbR (0) =
Xb
R

Xb
R +

∫∞
0

(Y UbR (τ) + Y TbR (τ))dτ

∫ ∞
0

c[βUR (τ)Y UbR (τ) + βTR(τ)Y TbR (τ)]dτ,

which can be rewritten as:
XbR

Y Ub
R

(0)

Xb
R

Y Ub
R

(0)
+
∫∞
0

Y Ub
R

(τ)

Y Ub
R

(0)
dτ +

∫∞
0

Y Tb
R

(τ)

Y Ub
R

(0)
dτ

∫ ∞
0

c

[
βUR (τ)

Y UbR (τ)

Y UbR (0)
+ βTR(τ)

Y TbR (τ)

Y UbR (0)

]
dτ = 1. (4.4)

From equations (4.3) we have:

Y UbR (τ)

Y UbR (0)
=

[λ1(τ, 0)− f2(τ)] e
∫ τ
0
λ1(σ,0)dσ + [f2(τ)− λ2(τ, 0)] e

∫ τ
0
λ2(σ,0)dσ

λ1(0, 0)− λ2(0, 0)

and

Y TbR (τ)

Y UbR (0)
=
eσR

(
e
∫ τ
0
λ1(σ,0)dσ − e

∫ τ
0
λ2(σ,0)dσ

)
λ1(0, 0)− λ2(0, 0)

.

Then in the following we simply define∫ ∞
0

Y UbR (τ)

Y UbR (0)
dτ = ρ1R,

∫ ∞
0

Y TbR (τ)

Y UbR (0)
dτ = ρ2R,

and denote ∫ ∞
0

c

[
βUR (τ)

Y UbR (τ)

Y UbR (0)
+ βTR(τ)

Y TbR (τ)

Y UbR (0)

]
dτ = RbR.

Substituting above relations in equation 4.4, we can rewrite the equation 4.4 in the
following form:

Xb
RRbR

Xb
R + (ρ1R + ρ2R)Y UbR (0)

=
Xb
RRbR
N b
R

= 1. (4.5)
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Since
π − µXb

R − Y UbR (0) = 0 (4.6)

and considering both (4.5) and (4.6), we get

Xb
R =

π(ρ1R + ρ2R)

RbR − 1 + µ(ρ1R + ρ2R)
, Y UbR (0) =

π(RbR − 1)

RbR − 1 + µ(ρ1R + ρ2R))
, (4.7)

which are both positive when RbR > 1 holds.
In brief, there is a boundary endemic equilibrium given by εbR = (Xb

R, 0, 0, Y
Ub
R (τ),

Y TbR (τ))) when the basic reproduction number RbR > 1 holds.

4.1.2. The existence of boundary equilibrium εbS

For the existence of boundary equilibrium εbS =
(
Xb
S , Y

Ub
S (τ), Y TbS (τ), 0, 0

)
, define

g1(τ) = −(σS + vUS (τ) + µ), g2(τ) = −(gS + vTS (τ) + µ).

Then the boundary equilibrium εbS , if it exists, should satisfy

π − µXb
S − Y UbS (0) = 0,

dY UbS (τ)
dτ = g1(τ)Y UbS (τ) + gSY

Tb
S (τ),

Y UbS (0) =
XbS
NbS

∫∞
0
c[βUS (τ)Y UbS (τ) + βTS (τ)Y TbS (τ)]dτ,

dY TbS (τ)
dτ = σRY

Ub
S (τ) + g2(τ)Y TbS (τ),

Y TbS (0) = 0,

(4.8)

where N b
S = Xb

S +
∫∞
0

(
Y UbS (τ) + Y TbS (τ)

)
dτ .

The last four equations (the second to the fifth equations) of system (4.8) are
similar to system (3.5) in section 3. Hence the solution of the initial problem of the
last four equations of system (4.8), if it exists, should be:

Y UbS (τ) =
Y UbS (0)

λ∗
1(0,0)−λ∗

2(0,0)
[(λ∗1(τ, 0)− g2(τ))e

∫ τ
0
λ∗
1(σ,0)dσ

+(g2(τ)− λ∗2(τ, 0))e
∫ τ
0
λ∗
2(σ,0)dσ],

Y TbS (τ) =
σSY

Ub
S (0)

λ∗
1(0,0)−λ∗

2(0,0)
[e

∫ τ
0
λ∗
1(σ,0)dσ − e

∫ τ
0
λ∗
2(σ,0)dσ].

(4.9)

Then from the relations of Y UbS (τ), Y TbS (τ) and Y UbS (0) respectively in (4.9), we
can simply define the following symbols:∫∞

0
Y UbS (τ)

Y UbS (0)
dτ = ρ1S ,

∫∞
0

Y TbS (τ)

Y UbS (0)
dτ = ρ2S ,∫∞

0
c
[
βUS (τ)

Y UbS (τ)

Y UbS (0)
+ βTS (τ)

Y TbS (τ)

Y UbS (0)

]
dτ = RbS .

Following the methods in the subsection 4.1.1, we get

Xb
S =

π(ρ1S + ρ2S)

RbS − 1 + µ(ρ1S + ρ2S)
, Y UbS (0) =

π(RbS − 1)

RbS − 1 + µ(ρ1S + ρ2S))
, (4.10)

which both positive when RbS > 1 holds. Hence from (4.9) we get Y UbS (τ) > 0 and
Y TbS (τ) > 0 under RbS > 1. So there is a boundary endemic equilibrium given by
εbS =

(
Xb
S , Y

Ub
S (τ), Y TbS (τ), 0, 0

)
when the basic reproduction number RbS > 1.
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5. The stabilities of the equilibria

5.1. The stability of disease-free equilibrium

The system has one disease-free equilibrium ε0 = (X0, 0, 0, 0, 0), where X0 = N0 =
π
µ . We consider the local stability of ε0. First, we derive the linearized equations
of the disease-free equilibrium. For this purpose, we introduce the following no-
tation for the perturbations X(t) = X0 + x(t), Y U0

S (t, τ) = yUS (t, τ), Y T0
S (t, τ) =

yTS (t, τ), Y U0
R (t, τ) = yUR(t, τ), Y T0

R (t, τ) = yTR(t, τ), N(t) = N0 + n(t). Then the
linearized system at the disease-free equilibrium ε0 becomes:

dx(t)
dt = −µx(t)− yUS (t, 0)− yUR(t, 0),(
∂
∂t + ∂

∂τ

)
yUS (t, τ) = g1(τ)yUS (t, τ) + gSy

T
S (t, τ),

yUS (t, 0) =
∫∞
0
c[βUS (τ)yUS (t, τ) + βTS (τ)yTS (t, τ)]dτ,(

∂
∂t + ∂

∂τ

)
yTS (t, τ) = σSy

U
S (t, τ) + g2(τ)yTS (t, τ),

yTS (t, 0) = 0,(
∂
∂t + ∂

∂τ

)
yUR(t, τ) = f1(τ)yUR(t, τ) + gRy

T
R(t, τ),

yUR(t, 0) =
∫∞
0
c[βUR (τ)yUR(t, τ) + βTR(τ)yTR(t, τ)]dτ,(

∂
∂t + ∂

∂τ

)
yTR(t, τ) = eσRy

U
R(t, τ) + f2(τ)yTR(t, τ),

yTR(t, 0) = 0.

(5.1)

Looking for solutions of the form

x(t) = xeωt, yUS (t, τ) = yUS (τ)eωt, yTS (t, τ) = yTS (τ)eωt,

yUR(t, τ) = yUR(τ)eωt, yTR(t, τ) = yTR(τ)eωt,

then we can obtain the following eigenvalue problem:

ωx = −µx− yUS (0)− yUR(0),

dyUS (τ)

dτ
= (g1(τ)− ω)yUS (τ) + gSy

T
S (τ),

yUS (0) =
∫∞
0
c[βUS (τ)yUS (τ) + βTS (τ)yTS (τ)]dτ,

dyTS (τ)

dτ
= σSy

U
S (τ) + (g2(τ)− ω)yTS (τ),

yTS (0) = 0,

dyUR(τ)

dτ
= (f1(τ)− ω)yUR(τ) + gRy

T
R(τ),

yUR(0) =
∫∞
0
c[βUR (τ)yUR(τ) + βTR(τ)yTR(τ)]dτ,

dyTR(τ)

dτ
= eσRy

U
R(τ) + (f2(τ)− ω)yTR(τ),

yTR(0) = 0.

(5.2)

First, we discuss the solution of the second and the fourth equations in the above
system (5.2), which have the same form as system (3.5). Then from the results in
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section 3 we get the unique solution of the second and the forth equations of system
(5.2) under initial values yUS (0) and yTS (0) as: yUS (τ)

yTS (τ)

 =
σSy

U
S (0)

λ∗1(0, ω)− λ∗2(0, ω)

×

([
λ∗
1(τ,ω)−(g2(τ)−ω)

σS

1

]
e
∫ τ
0
λ∗
1(σ,ω)dσ −

[
λS∗
2 (τ,ω)−(g2(τ)−ω)

σS

1

]
e
∫ τ
0
λ∗
2(σ,ω)dσ

)
.

Substituting yUS (τ) and yTS (τ) in the third equation of system (5.2) by the above
equation respectively, we have

yUS (0) =
∫∞
0
c[βUS (τ)yUS (τ) + βTS (τ)yTS (τ)]dτ

= yUS (0)
cσS

λ∗1(0, ω)− λ∗2(0, ω)

×
∫∞
0

[βUS (τ)
(λ∗

1(τ,ω)−g2(τ)+ω
σS

e
∫ τ
0
λ∗
1(σ,ω)dσ − λS∗

2 (τ,ω)−g2(τ)+ω
σS

e
∫ τ
0
λ∗
2(σ,ω)dσ

)
+βTS (τ)

(
e
∫ τ
0
λ∗
1(σ,ω)dσ − e

∫ τ
0
λ∗
2(σ,ω)dσ

)
]dτ.

Cancel the same yUS (0) in the above equation, we obtain the following characteristic
equation:

GS(ω) = 1,

where

GS(ω) =
cσS

λ∗1(0, ω)− λ∗2(0, ω)

∫ ∞
0

[
βUS (τ)

(λ∗1(τ, ω)− g2(τ) + ω

σS
e
∫ τ
0
λ∗
1(σ,ω)dσ

− λ∗2(τ, ω)− g2(τ) + ω

σS
e
∫ τ
0
λ∗
2(σ,ω)dσ

)
+ βTS (τ)

(
e
∫ τ
0
λ∗
1(σ,ω)dσ − e

∫ τ
0
λ∗
2(σ,ω)dσ

)]
dτ.

(5.3)

Now we prove that GS(ω) is a decreasing function. Easy to get that

λ∗1(0, ω)− λ∗2(0, ω) =
√

(g1(0)− g2(0))2 + 4gsσs,

λ∗1(τ, ω)− g2(τ) + ω

σS
=
g1(τ)− g2(τ) +

√
(g1(τ)− g2(τ))2 + 4gsσs

2σs
,

λ∗2(τ, ω)− g2(τ) + ω

σS
=
g1(τ)− g2(τ)−

√
(g1(τ)− g2(τ))2 + 4gsσs

2σs
,

e
∫ τ
0
λ∗
1,2(σ,ω)dσ = e

1
2

∫ τ
0
g1(σ)+g2(σ)±

√
(g1(τ)−g2(τ))2+4gsσsdσe−ωτ .

Define

Λ = λ∗1(0, ω)− λ∗2(0, ω),

A(τ) =
(g1(τ)− g2(τ)) +

√
(g1(τ)− g2(τ))2 + 4gsσs
2σS
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× e 1
2

∫ τ
0
g1(σ)+g2(σ)+

√
(g1(τ)−g2(τ))2+4gsσsdσ

−
(g1(τ)− g2(τ)) +

√
(g1(τ)− g2(τ))2 + 4gsσs
2σS

× e 1
2

∫ τ
0
g1(σ)+g2(σ)−

√
(g1(τ)−g2(τ))2+4gsσsdσ,

B(τ) = e
1
2

∫ τ
0
g1(σ)+g2(σ)+

√
(g1(τ)−g2(τ))2+4gsσsdσ

− e 1
2

∫ τ
0
g1(σ)+g2(σ)−

√
(g1(τ)−g2(τ))2+4gsσsdσ.

Then

GS(ω) =
cσs
Λ

∫ ∞
0

e−ωτ
[
βUS (τ)A(τ) + βTS (τ)B(τ)

]
dτ.

Obviously, GS(ω) is a decreasing function. Also, it is easy to verify that

GS(0) = RS .

Similarly, we have the following characteristic equation: GR(ω) = 1 for the sixth
to the ninth equations of system (5.2) where

GR(ω) =
ceσR

λ1(0, ω)− λ2(0, ω)

∫ ∞
0

[
βUR (τ)

(λ1(τ, ω)− f2(τ) + ω

eσR
e
∫ τ
0
λ1(σ,ω)dσ

− λ2(τ, ω)− f2(τ) + ω

eσR
e
∫ τ
0
λ2(σ,ω)dσ

)
+ βTR(τ)

(
e
∫ τ
0
λ1(σ,ω)dσ − e

∫ τ
0
λ2(σ,ω)dσ

)]
dτ.

(5.4)

Similarly we have GR(ω) is a decreasing function and

GR(0) = RR.

In the following, we discuss the stability of the disease-free equilibrium.

1. When max{RS ,RR} < 1 holds.
Assume that ω = a + bi is a complex solution of Gj(ω) = 1 (j = S,R) with
a ≥ 0. Then for such ω and each j and considering that Gj(ω) is a decreasing
function, we have

‖Gj(ω)‖ ≤ Gj(a) ≤ Gj(0) = Rj < 1,

which build contradiction. Hence, the equation Gj(ω) = 1 has solutions with
only negative real part and the disease-free equilibrium ε0 is locally asymp-
totically stable under max{RS ,RR} < 1 holds.

2. When max{RS ,RR} > 1 holds.
Suppose max{RS ,RR} = Rk > 1, for k = S or R. Then for the fixed k, we
have Rk = Gk(0) > 1. Furthermore, limω→∞ Gk(ω) = 0. Hence, according to
the intermediate value theorem, the equation Gk(ω) = 1 has a real positive
root. Therefore, the disease-free equilibrium ε0 is unstable.
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5.2. The stability of boundary endemic equilibria

From Theorem 1 we know that the boundary equilibrium εbR =
(
Xb
R, 0, 0, Y

Ub
R (τ),

Y TbR (τ)
)

exists if and only if RR > 1 hold. Now we consider the local stability of
the boundary equilibrium εbR. For this purpose, we derive the linearized equations
of εbR and introduce the following notation for the perturbations:

X(t) = Xb
R + xb(t),

Y UbS (t, τ) = yUbS (t, τ), Y TbS (t, τ) = yTbS (t, τ),

Y UbR (t, τ) = Y UbR (τ) + yUbR (t, τ), Y TbR (t, τ) = Y TbR (τ) + yTbR (t, τ),

N(t) = N b
R + nb(t).

During this process, we use the Taylor Approximation:

1

N b
R + nb(t)

=
1

N b
R

(
1 + nb(t)

NbR

) =
1

N b
R

(
1− nb(t)

N b
R

+ · · ·
)
≈ 1

N b
R

(
1− nb(t)

N b
R

)

and define

Q =

∫ ∞
0

c[βUR (τ)Y UbR (τ) + βTR(τ)Y TbR (τ)]dτ,

then the linearized system of (2.4) at εbR becomes:



dxb(t)
dt = −µxb(t)− yUbS (t, 0)− yUbR (t, 0),(
∂
∂t + ∂

∂τ

)
yUbS (t, τ) = g1(τ)yUbS (t, τ) + gSy

Tb
S (t, τ),

yUbS (t, 0) =
XbR
NbR

∫∞
0
c[βUS (τ)yUbS (t, τ) + βTS (τ)yTbS (t, τ)]dτ,(

∂
∂t + ∂

∂τ

)
yTbS (t, τ) = σSy

Ub
S (t, τ) + g2(τ)yTbS (t, τ),

yTbS (t, 0) = 0,(
∂
∂t + ∂

∂τ

)
yUbR (t, τ) = f1(τ)yUbR (t, τ) + gRy

Tb
R (t, τ),

yUbR (t, 0) =
XbR
NbR

∫∞
0
c[βUR (τ)yUbR (t, τ) + βTR(τ)yTbR (t, τ)]dτ − Q

NbR

(
XbR
NbR

nb(t)− xb(t)
)
,(

∂
∂t + ∂

∂τ

)
yTbR (t, τ) = eσRy

Ub
R (t, τ) + f2(τ)yTbR (t, τ),

yTR(t, 0) = 0.

(5.5)

We look for solutions of the form

xb(t) = xbeωt,

yUbS (t, τ) = yUbS (τ)eωt, yTbS (t, τ) = yTbS (τ)eωt,

yUbR (t, τ) = yUbR (τ)eωt, yTbR (t, τ) = yTbR (τ)eωt,

nb(t) = nbeωt,
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then we obtain the following eigenvalue problem:

ωxb = −µxb − yUbS (0)− yUbR (0),

dyUbS (τ)
dτ = (g1(τ)− ω)yUbS (τ) + gSy

Tb
S (τ),

yUbS (0) =
XbR
NbR

∫∞
0
c[βUS (τ)yUbS (τ) + βTS (τ)yTbS (τ)]dτ,

dyTbS (τ)
dτ = σSy

Ub
S (τ) + (g2(τ)− ω)yTbS (τ),

yTbS (0) = 0,

dyUbR (τ)
dτ = (f1(τ)− ω)yUbR (τ) + gRy

Tb
R (τ),

yUbR (0) =
XbR
NbR

∫∞
0
c[βUR (τ)yUbR (τ) + βTR(τ)yTbR (τ)]dτ − Q

NbR

(
XbR
NbR

nb − xb
)
,

dyTbR (τ)
dτ = eσRy

Ub
R (τ) + (f2(τ)− ω)yTbR (τ),

yTbR (0) = 0.

(5.6)

In the following, we discuss the stability of εbR by two steps:

1. First, we discuss the solution of the second and the fourth equations in system
(5.6), which have the same form as system (3.5). Hence we get the unique
solution of the second and the forth equations of system (5.6) under initial
values yUbS (0) and yTbS (0) as follows: yUbS (τ)

yTbS (τ)

 =
σSy

Ub
S (0)

λ∗1(0, ω)− λ∗2(0, ω)
·

( λ∗
1(τ,ω)−(g2(τ)−ω)

σS

1

 e∫ τ0 λ∗
1(σ,ω)dσ −

 λ∗
2(τ,ω)−(g2(τ)−ω)

σS

1

 e∫ τ0 λ∗
2(σ,ω)dσ

)
.

Substituting yUbS (τ) and yTbS (τ) in the third equation of system (5.6) by the
above equation respectively and let

ΩS(ω) =

∫ ∞
0

βUS (τ)

(
λ∗1(τ, ω)− g2(τ) + ω

σS
e
∫ τ
0
λ∗
1(σ,ω)dσ

)
dτ

−
∫ ∞
0

βUS (τ)

(
λ∗2(τ, ω)− g2(τ) + ω

σS
e
∫ τ
0
λ∗
2(σ,ω)dσ

)
dτ

+

∫ ∞
0

βTS (τ)
(
e
∫ τ
0
λ∗
1(σ,ω)dσ − e

∫ τ
0
λ∗
2(σ,ω)dσ

)
dτ, (5.7)

then we have

yUbS (0) =
Xb
R

N b
R

·
∫ ∞
0

c[βUS (τ)yUbS (τ) + βTS (τ)yTbS (τ)]dτ

=yUbS (0)
cσS

λ∗1(0, ω)− λ∗2(0, ω)
· X

b
R

N b
R

· ΩS(ω). (5.8)

Cancel the same yUbS (0) in the above equation, we obtain the following char-
acteristic equation:

GbS(ω) = 1,
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where

GbS(ω) =
cσS

λ∗1(0, ω)− λ∗2(0, ω)
· X

b
R

N b
R

· ΩS(ω) =
Xb
R

N b
R

· GS(ω), (5.9)

which implies that GbS(ω) is also a decreasing function with limω→∞ GbS(ω) = 0.

Note that
Xb
R

N b
R

=
1

RR
, then

GbS(0) =
Xb
R

N b
R

· GS(0) =
Xb
R

N b
R

· RS =
RS
RR

.

(a) Suppose RS > RR > 1 holds, i.e., GbS(0) > 1, then equation GbS(ω) = 1
has at least one positive root according to the intermediate value theo-
rem, and therefore εbR is unstable.

(b) Suppose RS < 1 < RR. Under this situation, for ω with <(ω) > 0, we
have

‖GbS(ω)‖ < ‖GS(ω)‖ < GS(0) = RS < 1.

Hence, the equation GbS(ω) = 1 has no solution with positive real part
and all the eigenvalues of this equation have negative real part.

So in the following, we consider the situation RS < 1 < RR holds, under
which, the boundary equilibrium εbS does not exist.

2. Therefore, the stability of the boundary equilibrium εbR depends on the eigen-
values of the following system when RS < 1 < RR holds:

ωxb = −µxb − yUbR (0),

dyUbR (τ)
dτ = (f1(τ)− ω)yUbR (τ) + gRy

Tb
R (τ),

yUbR (0) =
XbR
NbR

∫∞
0
c[βUR (τ)yUbR (τ) + βTR(τ)yTbR (τ)]dτ − Q

NbR

(
XbR
NbR

nb − xb
)
,

dyTbR (τ)
dτ = eσRy

Ub
R (τ) + (f2(τ)− ω)yTbR (τ),

yTR(0) = 0.

(5.10)

Similar to the discussion of system (3.1) in section 3, we get the unique solution
of the second and the fourth equations of system (5.10) under initial values
yUbR (0) and yTbR (0): yUbR (τ)

yTbR (τ)

 =
eσRy

Ub
R (0)

λ1(0, ω)− λ2(0, ω)
·

( λ1(τ,ω)−(f2(τ)−ω)
eσR

1

 e∫ τ0 λ1(σ,ω)dσ −

 λ2(τ,ω)−(f2(τ)−ω)
eσR

1

 e∫ τ0 λ2(σ,ω)dσ
)
.

From the first equation in (5.10) we obtain

xb = −y
Ub
R (0)

ω + µ
. (5.11)
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Linearizing the equation for the total population size

N(t) = X(t) +

∫ ∞
0

[Y US (t, τ) + Y TS (t, τ) + Y UR (t, τ) + Y TR (t, τ)]dτ,

we obtain

nb = xb +

∫ ∞
0

[yUbR (τ) + yTbR (τ)]dτ. (5.12)

Also define

ΩR(ω) =
ceσR

λ1(0, ω)− λ2(0, ω)
·
∫ ∞
0

(
cβUR (τ)− Q

N b
R

)
×
(
λ1(τ,ω)−f2(τ)+ω

eσR
e
∫ τ
0
λ1(σ,ω)dσ − λ2(τ,ω)−f2(τ)+ω

eσR
e
∫ τ
0
λ2(σ,ω)dσ

)
dτ

+

∫ ∞
0

(
cβTR(τ)− Q

N b
R

)(
e
∫ τ
0
λ1(σ,ω)dσ − e

∫ τ
0
λ2(σ,ω)dσ

)
dτ

< GR(ω),

which is a decreasing function.
Substituting the expressions of yUbR (τ), yTbR (τ) and equation (5.12) respectively
into the third equation of system (5.10), we get

yUbR (0) =
Xb
R

N b
R

∫ ∞
0

c[βUR (τ)yUbR (τ) + βTR(τ)yTbR (τ)]dτ − Q

N b
R

(
Xb
R

N b
R

nb − xb
)

=
Xb
R

N b
R

∫ ∞
0

c[βUR (τ)yUbR (τ) + βTR(τ)yTbR (τ)]dτ +
Qxb

N b
R

(
1− Xb

R

N b
R

)
− QXb

R

(N b
R)2

∫ ∞
0

[yUbR (τ) + yTbR (τ)]dτ

=
Xb
R

N b
R

[∫ ∞
0

(
cβUR (τ)− Q

N b
R

)
yUbR (τ) +

(
cβTR(τ)− Q

N b
R

)
yTbR (τ)

]
dτ

+
Qxb

N b
R

(
1− Xb

R

N b
R

)
= yUbR (0) · X

b
R

N b
R

· ΩR(ω)− yUbR (0)

ω + µ
· Q
N b
R

(
1− Xb

R

N b
R

)
.

Cancelling yUbR (0) from both sides of the resulting equation, we obtain the
following characteristic equation for ω: GbR(ω) = 1, where

GbR(ω) =
Xb
R

N b
R

· ΩR(ω)− 1

ω + µ
· Q
N b
R

(
1− Xb

R

N b
R

)
. (5.13)

Substituting
Xb
R

N b
R

=
1

RR
in equation (5.13), we can rewrite the characteristic

equation GbR(ω) = 1 in the following form:

ΩR(ω)

RR
= 1 +

1

ω + µ
· Q
N b
R

(
1− 1

RR

)
.
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Considering GbR(ω) < ΩR(ω) < GR(ω), which are all decreasing functions, and
GR(0) = RR. So for ω with <ω ≥ 0 we have∣∣∣∣ΩR(ω)

RR

∣∣∣∣ ≤ 1.

On the other hand, the following inequality holds since RR > 1:∣∣∣∣1 +
1

ω + µ
· Q
N b
R

(
1− 1

RR

)∣∣∣∣ > 1.

Hence, the characteristic equation GbR(ω) = 1 has only solutions with negative
real parts. Thus, the equilibrium εbR is locally asymptotically stable when
RR > 1 and RS < RR both hold.

Similarly, we can get that the equilibrium εbS is locally asymptotically stable
when RS > 1 and RR < 1 both hold.

5.3. Conclusion

In short, we can summarize the discussions of stabilities of equilibria in the following
Theorem 5.1:

Theorem 5.1. Define the basic reproduction numbers

RS = RbS , RR = RbR.

1. When RS < 1 and RR < 1 both hold, the disease-free equilibrium ε0 is locally
asymptotically stable. No boundary equilibrium and endemic equilibrium exist
under this situation. Otherwise, ε0 is unstable.

2. When RS > 1 holds, the boundary equilibrium εbS exists, and

(a) when RR < 1 holds, the boundary equilibrium εbR does not exist and the
boundary equilibrium εbS is locally asymptotically stable.

(b) when RR > RS, εbS is unstable.

3. When RR > 1 holds, the boundary equilibrium εbR exists, and

(a) when RS < 1 holds, the boundary equilibrium εbS does not exist and the
boundary equilibrium εbR is locally asymptotically stable.

(b) when RS > RR, εbR is unstable.

6. Simulations

We predicted the effectiveness of a high usage of ART in Beijing MSM community
by analyzing our model with time-dependent uncertainty analyses. Some values of
the parameters necessary for prediction are known, however, the values of other
parameters are less certain. For each uncertainty analysis we used Latin hypercube
sampling [5], a type of stratified Monte Carlo sampling. To make predictions,
we assigned each uncertain parameter a probability density function (pdf). By
perturbing individual parameters, we investigated their influence on estimates of
RS and RR. Suppose that an individual is invaded by HIV virus and the initial
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value is (300, 1, 0.001, 1000, 0.001). Then the immune system (such as CD4+ T
cells) and HIV virus will evolve according to system (2.1). The individual has
two possibilities: be infected by HIV, or not. If the individual is infected, then
he (or she) will transfer HIV virus to his (or her) sexual partners during sexual
behavior. The force of infection depends on HIV virus’ concentration during the
sexual behavior, which are denoted by expressions (2.7) and (2.8).

Suppose our target population is MSM in Beijing. The current HIV prevalence
among MSM in Beijing was 12.7%, which was estimated from cross-sectional survey
among 3588 participants from March 2013 to March 2014. In order to set the initial
conditions, we had to estimate the target population of MSM living in Beijing in
2013. According the national census in 2013, there were about 15.4 million of
people living in Beijing and 50.63% of them were male, in which 3% of males were
MSM and 79% of them lived in the city. For parameter π, the rate at which MSM
joined the sexually active community, we used the data of Beijing in 2013 [18] and
supposed that recruitment rate into target population per year ranged from 2% to
6.4% [11]. We assume 10% HIV infected individuals carry drug-resistant strains
and the other 90% carry drug-sensitive strains. Also, we assume 30% HIV positive
individuals who carry drug-sensitive strain are going on ART treatment and the
others no. Considering that ∫ ∞

0

Y US (0, τ)dτ = Y U0
S

and the life curve that surveyed from blood donor of Anhui Province [23]

y = e−0.023×(τ/365)
2.39

,

we can get the initial values of HIV positive individuals who have been infected for
τ long time.

The meaning of function βUS (τ) (in equations 2.7) is similar to that of parameter
βUS in literature [5]. In [5], βUS = 0.1. To keep the same level, we suppose that
coefficient σS in function βUS (τ) ranges from 0.3 to 0.5. At that in literature [5],

here suppose coefficients β̃TS = α1β̃
U
S , β̃

U
R = α2β̃

U
S and β̃TR = α3β̃

U
R . Coefficients

α1, α2 and α3 are the same as that in literature [5]. In literature [5], the average
survival time of untreated drug-sensitive individuals was 12 years (1/vUS ). They
modeled uncertainty in the treatment effect of ART on the average survival time of
drug-sensitive patients (1/vTS ) by using LHS to sample 1000 values of 1/vTS from a
pdf that ranged from 18 to 36 years. They also assumed that the average survival
times could range from 12 to 36 years for both treated (1/vTR) and untreated (1/vUR)
drug-resistant patients. So for coefficients ṽUS , ṽ

T
S , ṽ

U
R and ṽTR in functions (2.8) in our

model, we suppose they choose the same level distributions as their corresponding
coefficients (Table 1). For parameters gs (or gr), proportion of cases of drug-sensitive
(or drug-resistant) MSM+ that give up ART are estimated from the data base of
HIV treatment of Henan province. For parameters σS and σR, the ART rate of drug-
sensitive and drug-resistant MSM+, we suppose they have the same distribution.
In general, meaning and value range of all parameters in the micro model are the
same as that in literature [13] and parameters in the macro model are shown in
Table 1.

First, we show the effect of the course of disease (age-since-infection) τ to HIV
spreading in MSM in Beijing. The kernels of the two thresholds RS and RR are
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Table 1. Parameter of Macro model

Para Meaning Range Distribution Reference

π
Rate at which MSM

join the sexually
active community

(2000, 5000, 6600) Triangular [11]

c
average number of
new receptive anal

sex partners per year
(1, 3, 5) Triangular [5]

µ1
Rate of quit from
this community

1/(65-18) Constant

gS

Proportion of cases of
drug-sensitive MSM+

that give up ART
(0.1, 0.15, 0.3) Triangular Estimated

gR

Proportion of cases of
drug-resistant MSM+

that give up ART
(0.2, 0.3, 0.4) Triangular Estimated

σS
ART rate of

drug-sensitive MSM+
(0.3, 0.4, 0.5) Triangular Estimated

σR
ART rate of

drug-resistant MSM+
(0.3, 0.4, 0.5) Triangular Estimated

ṽUS Proportionality coefficient 1/12 [5]

ṽTS Proportionality coefficient (1/36, 1/18) Uniform [5]
ṽUR Proportionality coefficient (1/36, 1/12) Uniform [5]

ṽTR Proportionality coefficient (1/36, 1/12) Uniform [5]

β̃US Proportionality coefficient (0.3, 0.4, 0.5) Triangular Estimated
α1 Proportionality coefficient (0.01, 0.5) Uniform [5]

α2 Proportionality coefficient (0, 1) Uniform [5]

α3 Proportionality coefficient (0, 1) Uniform [5]

functions of the course of disease τ . It embodies the force of infection of HIV positive
with course of disease τ . Figure 2 show the influence of course of disease, τ , to the
kernels of RS and RR. Both of the two kernels show a high force of infection at the
beginning of infection and then tend to stable. In long time, the force of infection
of the drug resistant strain is higher than that of the sensitive strain.

Second, we show the prevalence of HIV/AIDS in MSM in Beijing (Figure 3).
Figure 3 (A) shows the total prevalence of HIV in MSM in Beijing in the next 10
years from 2013 and Figure 3 (B) shows the prevalence of HIV drug resistant strain
in Beijing. Both of the two prevalence show fast increase tends in the next 10 years.
At the end of 10 years later, the total prevalence could arrive at 38.8% in MSM in
Beijing, among which, HIV drug resistant strain occupies about 20%.

Finally, we see that the effects of parameters σr, σs, gr, gs, c and π change with
respect to the whole HIV prevalence over time ( Figure 4). As the average number
of new receptive anal sex partners per year (c) change, it has positive correlated
with strong PRCCs during the prediction ( Figure 4 (E) ). On the other hand, as
the rate of gay men that join the susceptible community (π) change, it is negatively
correlated with small PRCCs ( Figure 4 (F) ). Similarly, treatment rate of drug-
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Figure 2. The kernel of RS and RR range along with course of disease τ .
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Figure 3. Total prevalence and rate of drug resistant strain.

resistant strain MSM+ (σr), proportions of give up ART in infected MSM (gs
and gr) have positive correlated with small PRCCs (Figure 4 (A, C and D) ) but
treatment rate of drug-sensitive strain MSM+ (σs) is negatively correlated with
small PRCCs ( Figure 4 (B) ) during the prediction. However, the effects of these
parameters on the prevalence of the drug-resistant strain are slightly different (Fig.
5). Such as, treatment rate of drug-resistant strain MSM+ (σr, Figure 5 (A)) is
negatively correlated with small PRCCs ( Figure 5 (B) ) but treatment rate of drug-
sensitive strain MSM+ (σs) is positively correlated with large PRCCs ( Figure 5
(B) ) during the prediction of drug-resistant strain spreading. Also, the effect of
the average number of new receptive anal sex partners per year (c) increases at
the beginning but then decrease ( Figure 5 (E) ), but has smaller correlated to the
drug-resistant strain spreading comparing to the whole HIV prevalence.
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Figure 4. PRCCs of total prevalence for parameters σr, σs, gs, gr, c and π.
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Figure 5. PRCCs of prevalence of drug-resistant strain for parameters σr, σs, gs, gr, c and π.

7. Discussions

In this paper, a coupled within- (immunological) and between-host (epidemiologi-
cal) dynamic model of HIV was proposed. first an ordinary differential system of
HIV dynamics within an infected host [13] was introduced. Then an age-structured
between-host HIV model was considered to describe the dynamics of host birth
and death and the transmission of HIV within the host population [5]. We nest
the within-host model within the epidemiological model by linking the dynamics of
the within-host model to the additional host mortality, treatment rate, and trans-
mission rate of the infection. The developed multi-scale model of HIV describes
the joint affections of the immunological process and the epidemiological process,
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which linked through age-since-infection and through the epidemiological param-
eters which depend on the within-host viral load and number of CD4+ T cells.
Thresholds RS and RR for the between-host model were found.

Some simulations were given about the spreading of drug-sensitive strain and
drug-resistant strain of HIV in Beijing MSM population. Simulations further show
the influence of the within-host dynamics on the between-host dynamics. Our
results show that the drug-resistant strain will increase quite fast in this population
or both strains coexist, which indicates the importance of implementing the second-
line treatment program as soon as possible. Our result hints that it will make a big
pressure for China’s “Four-Free-One-Care Policy”.
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