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Abstract The main purpose of this article is to study the periodicity of a
Lotka-Volterra’s competition system with feedback controls. Some new and
interesting sufficient conditions are obtained for the global existence of pos-
itive periodic solutions. Our method is base on combining matrix’s spectral
theory and inequality |x(t)| ≤ x(t0) +

∫ ω

0
|ẋ(t)|dt. Some examples and their

simulations show the feasibility of our main result.
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1. Introduction

The application of the differential equations to mathematical ecology has developed
rapidly. One of the famous population models is the Lotka-Volterra (L-V for short)
model, which has been studied extensively (see, e.g., [1–16]). A fundamental model
is multi-species population dynamic.

ẏi(t) = yi(t)[bi(t)−
n∑
j=1

aij(t)yj(t)], i = 1, 2, ...n. (1.1)

Based on Mawhin’s coincidence degree theory, Xia and Han [15] studied the exis-
tence and stability of periodic solution for (1.1).

However, in the real-world, the biological systems are affected by unpredictable
forces which can change the biological parameters. The most important question
from biological view is whether or not an ecosystem can withstand those unpre-
dictable perturbations which persist for a finite period of time. In the language of
control variables, we call the perturbed functions as control variables. For instance,
in some situation, people may wish to change the position of the existing equilibri-
um but to keep its stability. This is of significance in the control of ecology balance.
To tackle this problem, feedback control variables can be introduced to the system.
By such feedback control, we can change the system structurally in order to get a
population stabilizing at another equilibrium. Some biological control schemes have
been proposed in the literature (e.g. see [7, 16,17]).
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Recently, a set of criteria were established for the global existence of positive
periodic solution of a n-species competition system with feedback controls in [4].
The qualitative theory of differential equations has been widely applied to study
the real world phenomenon (e.g. [3–6, 9, 11–14, 18–20]. In particular, one of the
powerful tool to study the existence of periodic solutions to differential equations is
based on the coincidence degree. However, different estimation techniques for the
priori bounds of unknown solutions to the equation Lx = λNx may lead to different
results. They obtained the priori bounds by only employing the inequality

|x(t)| ≤ x(t0) +

∫ ω

0

|ẋ(t)|dt, (1.2)

which resulted in that they obtained a set of algebraic conditions.
Different from the standard arguments in the literature [4], in this paper, we

combine matrix’s spectral theory and inequality (1.2) to obtain the priori bound-
s. Some novel and interesting results for the existence of periodic solutions were
obtained (see Theorem 2.1). In this paper, we consider the following L-V type
competition system with feedback controls of the form

dyi(t)

dt
= yi(t)

[
(ri(t)−

n∑
j=1

aij(t)yj(t)
]
− di(t)ui(t)yi(t),

dui(t)

dt
= −αi(t)ui(t) + βi(t)yi(t), i = 1, 2, ..., n,

(1.3)

where ui, 1 ≤ i ≤ n denote indirect feedback control variables. It is assumed that
ri(t), aij(t), di(t), αi(t), βi(t) are continuous, real-valued, ω-periodic functions on R

such that

∫ ω

0

ri(t)dt > 0, aij(t) ≥ 0, di(t) ≥ 0, αi(t) ≥ 0, βi(t) ≥ 0. System (1.3) is

associated with IVP
yi(0) > 0, ui(0) > 0, i = 1, 2...n.

It is not difficult to see that solutions of (1.3) with IVP are well defined for all t ≥ 0
and satisfy

yi(t) > 0, ui(t) > 0, i = 1, 2...n.

In order to study (1.3), we introduce a lemma which is a special case of Lemma 2.2
in [4].

Lemma 1.1. (y1(t), ..., yn(t), u1(t), ...un(t))T is a ω-periodic solution of (1.3) if
and only if it is also a ω-periodic solution of

dyi(t)

dt
= yi(t)

[
ri(t)−

n∑
j=1

aij(t)yj(t)
]
− di(t)ui(t)yi(t), (1.4)

where

ui(t) =

∫ t+ω

t

[βi(s)yi(s)]Gi(t, s)ds := (φiyi)(t), Gi(t, s) =
e
∫ s
t
αi(θ)dθ

e
∫ ω
0
αi(θ)dθ − 1

. (1.5)

Remark 1.1. The estimation techniques used in [15] are not valid for system (1.3)
due to the term (φiyi)(t) in (1.5). To explain this, we recall the idea in [15], there
exists xi(ti) = max

t∈[0,ω]
xi(t) such that

bi(ti)−
n∑
j=1

aij(ti)e
xj(ti) = 0, i = 1, 2, ..., n,
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then, we can easily get

aii(ti)e
xi(ti) = bi(ti)−

n∑
j=1,j 6=i

aij(xi)e
xj(ti), i = 1, 2, ..., n.

However, in this paper, we can not get xi(ti) directly due to the term (φiyi)(t).
Therefore, we need new techniques to handle this problem. To see how to overcome
this difficulty, one can see (2.8)-(2.24).

The structure of this paper is as follows. In section 2, some new and interesting
sufficient conditions for the existence of periodic solution of system (1.3) are ob-
tained. Section 3 is devoted to examining the stability of this periodic solution. In
section 4, two examples and their simulations are given to show the feasibility of
our results.

2. Existence of periodic solutions

In this section, first, we introduce some notations, definitions and lemmas. If f(t)
is a continuous ω-periodic function defined on R, denote

f l = min
t∈R

f(t) = min
t∈[0,ω]

f(t), fu = max
t∈R

f(t) = max
t∈[0,ω]

f(t), f =
1

ω

∫ ω

0

f(t)dt.

We use x = (x1, · · · , xn)T ∈ Rn to denote a column vector, D = (dij)n×n is a n×n
matrix, DT denotes the transpose of D, and En is the identity matrix of size n. A
matrix or vector D > 0 (resp. D ≥ 0) means that all entries of D are positive (resp.
nonnegative). For matrices or vectors D and E, D > E (resp. D ≥ E) means that
D − E > 0 (resp. D − E ≥ 0). We also denote the spectral radius of the matrix D
by ρ(D).

Lemma 2.1 (continuation theorem, see [5]). Let Ω ⊂ X be an open and bounded
set. Let L : DomL ⊂ X → Z be a linear mapping, N : X → Z be a continuous
mapping, and P : X → X, and Q : Z → Z are two continuous projectors. Let L be
a Fredholm mapping of index zero(see [8]) and N be L-compact on Ω (i.e., QN(Ω)
is bounded and KP (I −Q)N : Ω→ X is compact). Assume

(i) for each λ ∈ (0, 1), x ∈ ∂Ω ∩DomL, Lx 6= λNx;

(ii) for each x ∈ ∂Ω ∩ KerL, QNx 6= 0 and deg{JQN, Ω ∩ KerL, 0} 6= 0, where
J : ImQ→ KerL is an isomorphism.
Then Lx = Nx has at least one solution in Ω ∩DomL.

Definition 2.1 (see [2,10]). A real n×n matrix A = (aij) is said to be a M -matrix
if aij ≤ 0, i, j = 1, 2, · · · , n, i 6= j, and A−1 ≥ 0.

Denote ∆1
i (t) := di(t)(φi1)(t), where (φi1)(t) =

∫ t+ω

t

βi(s)Gi(t, s)ds, Gi(t, s)

has been defined in (1.5).

Lemma 2.2. Assume that

(A1) ri >
n∑

j=1,j 6=i

aij

ajj + ∆
1

j

rj .
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Then the algebraic equations

ri −
n∑
j=1

aije
vj −∆

1

i e
vi = 0 (2.1)

has a unique solution v∗ = (v∗1 , v
∗
2 ...v

∗
n)T ∈ R.

Proof. Details of the proof are similar to that of Lemma 4.1.1 in [6].

Lemma 2.3 (see [2, 10]). Let A ≥ 0 be an n × n matrix and ρ(A) < 1, then
(En −A)−1 ≥ 0, where En denotes the identity matrix of size n.

In what follows, we shall introduce some function spaces and their norms, which
are valid throughout this paper. Denote

X = {x(t) = (x1(t), x2(t), ..., xn(t))T ∈ C1(R,Rn)|x(t+ ω) = x(t) for all t ∈ R},
Z = {x(t) = (x1(t), x2(t), ..., xn(t))T ∈ C(R,Rn)|x(t+ ω) = x(t) for all t ∈ R}.

2.1. Result on the existence of periodic solutions.

Denote Aljj = aljj + dljβ
l
jωe
−

∫ ω
0
αj(θ)dθ, Bujj = aujj + duj β

u
j ω

e
∫ ω
0
αj(θ)dθ

e
∫ ω
0
αj(θ)dθ − 1

.

Theorem 2.1. In addition to (A1), assume that

(A2) ρ(K1) < 1, where K1 = (Γij)n×n and Γij =


0, i = j,

−
alij
Aljj

, i 6= j.

(A3) ρ(K2) < 1, where K2 = (Γ̃ij)n×n and Γ̃ij =


0, i = j,

−
auij
Bujj

, i 6= j.

Then system (1.3) has at least one positive ω-periodic solution.

Proof. System (1.4) can be reformulated as

dyi(t)

dt
= yi(t)

[
(ri(t)−

n∑
j=1

aij(t)yj(t)
]
− di(t)yi(t)(φiyi)(t). (2.2)

Let

xi(t) = ln yi(t), i = 1, 2, . . . , n.

Then system (2.2) can be changed to

ẋi(t) = ri(t)−
n∑
j=1

aij(t)e
xj(t) − di(t)(φiexi)(t), i = 1, 2, . . . , n. (2.3)

Similar arguments to Step 1 in [15], we can construct the operators (i.e., L, N , P
and Q) appearing in Lemma 2.1. It is easy to verify that they satisfy the conditions
of Lemma 2.1. Now we are in a position to search for an appropriate open bounded
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subset Ω satisfying condition (i) of Lemma 2.1. Corresponding to the operator
equation Lx = λNx, λ ∈ (0, 1), we have

ẋi(t) = λ
[
ri(t)−

n∑
j=1

aij(t)e
xj(t) − di(t)(φiexi)(t)

]
, i = 1, 2, . . . , n. (2.4)

Suppose x(t) = (x1(t), ..., xn(t)) ∈ X is a solution of (2.4), integrating (2.4) over
[0, ω], we obtain ∫ ω

0

[ n∑
j=1

aij(t)e
xj(t) + di(t)(φie

xi)(t)
]
dt = riω. (2.5)

It follows from (2.4) that∫ ω

0

|ẋi(t)|dt

= λ

∫ ω

0

∣∣∣ri(t)− n∑
j=1

aij(t)e
xj(t) − di(t)(φiexi)(t)

∣∣∣dt
<

∫ ω

0

ri(t)dt+

∫ ω

0

[ n∑
j=1

aij(t)e
xj(t) + di(t)(φie

xi)(t)
]
dt

=

∫ ω

0

ri(t)dt+ riω = 2riω,

that is, ∫ ω

0

|ẋi(t)|dt < 2riω. (2.6)

Since x(t) ∈ X, each xi(t), i = 1, 2, . . . , n, as components of x(t), is continuously
differentiable and ω-periodic. In view of continuity and periodicity, there exist
ξi, ηi ∈ [0, ω] such that

xi(ξi) = min
t∈[0,ω]

xi(t), xi(ηi) = max
t∈[0,ω]

xi(t), i = 1, 2, . . . , n. (2.7)

Accordingly, ẋi(ξi) = 0 and we arrive at

ri(ξi)−
n∑
j=1

aij(ξi)e
xj(ξi) − di(ξi)(φiexi)(ξi) = 0, i = 1, 2, . . . , n.

That is,

aii(ξi)e
xi(ξi) + di(ξi)(φie

xi)(ξi) = ri(ξi)−
n∑

j=1,j 6=i
aij(ξi)e

xj(ξi), i = 1, 2, . . . , n.

(2.8)
It follows from (1.4) that

(φie
xi)(t) =

∫ t+ω

t

[βi(s)e
xi(s)]Gi(t, s)ds

=

∫ t+ω

t

[βi(s)e
xi(s)]

e
∫ s
t
αi(θ)dθ

e
∫ ω
0
αi(θ)dθ − 1

ds

≥ e−
∫ ω
0
αi(θ)dθ

∫ t+ω

t

[βi(s)e
xi(s))]ds.

(2.9)
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Noting that xi(ξj) ≥ xi(ξi), it follows from (2.8)and (2.9) that

aliie
xi(ξi) + dliβ

l
iωe
−

∫ ω
0
αi(θ)dθexi(ξi)

≤ aii(ξi)e
xi(ξi) + di(ξi)(φie

xi)(ξi)

= ri(ξi)−
n∑

j=1,j 6=i

aij(ξi)e
xj(ξi)

≤ rui −
n∑

j=1,j 6=i
alije

xj(ξj).

(2.10)

Letting (alii + dliβ
l
iωe
−

∫ ω
0
αi(θ)dθ)exi(ξi) = zi(ξi), it follows from (2.10) that

zi(ξi) ≤ rui −
n∑

j=1,j 6=i

alij(a
l
jj + dljβ

l
jωe
−

∫ ω
0
αj(θ)dθ)−1zj(ξj),

or

zi(ξi) +

n∑
j=1,j 6=i

alij

aljj + dljβ
l
jωe
−

∫ ω
0
αj(θ)dθ

zj(ξj) ≤ rui ,

which implies 
1

al12
Al22

· · · al1n
Alnn

al21
Al11

1 . . .
al2n
Alnn

. . . · · · · · · · · ·
aln1

Al11

aln2

Al22
· · · 1




z1(ξ1)

z2(ξ2)

· · ·

zn(ξn)

 ≤

ru1

ru2

. . .

run

 . (2.11)

Set D = (D1, D2, . . . , Dn)T = (ru1 , r
u
2 , . . . , r

u
n)T . It follows from (2.11) that

(E −K1)
(
z1(ξ1), z2(ξ2), . . . , zn(ξn)

)T
≤ D. (2.12)

In view of ρ(K1) < 1 and Lemma 2.3, (En −K1)−1 ≥ 0. Let

H1 = (h1, h2, . . . , hn)T := (E −K1)−1D ≥ 0. (2.13)

Then, it follows from (2.12) and (2.13) that(
z1(ξ1), z2(ξ2), . . . , zn(ξn)

)T
≤ H1, or zi(ξi) ≤ hi, i = 1, 2, . . . , n, (2.14)

which implies

xi(ξi) ≤ ln
hi

alii + dliβ
l
iωe
−

∫ ω
0
αi(θ)dθ

, i = 1, 2, . . . , n.

This, combining with (2.6), gives

xi(t) ≤ xi(ξi) +

∫ ω

0

|ẋi(t)|dt < ln
hi

alii + dliβ
l
iωe
−

∫ ω
0
αi(θ)dθω

+ 2riω , B11. (2.15)
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On the other hand, it from (2.7) that ẋi(ηi) = 0, which implies

ri(ηi)−
n∑
j=1

aij(ηi)e
xj(ηi) − di(ηi)(φiexi)(ηi) = 0, i = 1, 2, . . . , n.

That is,

aii(ηi)e
xi(ηi) + di(ηi)(φie

xi)(ηi) = ri(ηi)−
n∑

j=1,j 6=i
aij(ηi)e

xj(ηi), i = 1, 2, . . . , n.

(2.16)
It follows from (1.4) that

(φie
xi)(t) =

∫ t+ω

t

[βi(s)e
xi(s)]Gi(t, s)ds

=

∫ t+ω

t

[βi(s)e
xi(s)]

e
∫ s
t
αi(θ)dθ

e
∫ ω
0
αi(θ)dθ − 1

ds

≤
∫ t+ω

t

[βi(s)e
xi(s)]

e
∫ t+ω
t

αi(θ)dθ

e
∫ ω
0
αi(θ)dθ − 1

ds

=
e
∫ ω
0
αi(θ)dθ

e
∫ ω
0
αi(θ)dθ − 1

∫ t+ω

t

[βi(s)e
xi(s)]ds.

(2.17)

Noting that xi(ηj) ≤ xi(ηi), it follows from (2.16)and (2.17) that

auiie
xi(ηi) + dui β

u
i ω

e
∫ω
0 αi(θ)dθ

e
∫ω
0 αi(θ)dθ−1

exi(ηi)

≥ aii(ηi)e
xi(ηi) + di(ηi)(φie

xi)(ηi)

= ri(ηi)−
n∑

j=1,j 6=i

aij(ηi)e
xj(ηi)

≥ rli −
n∑

j=1,j 6=i
auije

xj(ηj).

(2.18)

Letting (auii + dui β
u
i ω

e
∫ω
0 αi(θ)dθ

e
∫ω
0 αi(θ)dθ−1

)exi(ηi) = z̃i(ηi), it follows from (2.18) that

z̃i(ηi) ≥ rli −
n∑

j=1,j 6=i

auij(a
u
jj + duj β

u
j ω

e
∫ ω
0
αj(θ)dθ

e
∫ ω
0
αj(θ)dθ − 1

)−1z̃j(ηj),

or

z̃i(ηi) +

n∑
j=1,j 6=i

auij

aujj + duj β
u
j ω

e
∫ω
0 αj(θ)dθ

e
∫ω
0 αj(θ)dθ−1

z̃j(ηj) ≥ rli,

which implies 
1

au12
Bu22

· · · au1n
Bunn

au21
Bu11

1 . . .
au2n
Bunn

. . . · · · · · · · · ·
aun1

Bu11

aun2

Bu22
· · · 1




z̃1(η1)

z̃2(η2)

· · ·

z̃n(ηn)

 ≥

rl1

rl2

. . .

rln

 . (2.19)

Set D̃ = (D̃1, D̃2, . . . , D̃n)T = (rl1, r
l
2, . . . , r

l
n)T . It follows from (2.19) that

(E −K2)
(
z̃1(η1), z̃2(η2), . . . , z̃n(ηn)

)T
≥ D̃. (2.20)
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In view of ρ(K2) < 1 and Lemma 2.3, (En −K2)−1 ≥ 0. Let

H2 = (h̃1, h̃2, . . . , h̃n)T := (E −K2)−1D̃ ≥ 0. (2.21)

Then it follows from (2.12) and (2.13) that(
z̃1(η1), z̃2(η2), . . . , z̃n(ηn)

)T
≥ H2, or zi(ηi) ≥ h̃i, i = 1, 2, . . . , n, (2.22)

which implies

xi(ηi) ≥ ln
h̃i

auii + dui β
u
i ω

e
∫ω
0 αi(θ)dθ

e
∫ω
0 αi(θ)dθ−1

, i = 1, 2, . . . , n.

This, combining with (2.6), gives

xi(t) ≥ xi(ηi)−
∫ ω

0

|ẋi(t)|dt > ln
h̃i

auii + dui β
u
i ω

e
∫ω
0 αi(θ)dθ

e
∫ω
0 αi(θ)dθ−1

− 2riω , B22. (2.23)

It follows from (2.15) and (2.23) that

|xi(t)| < max{|B11|, |B22|} , B1. (2.24)

Clearly, B1 are independent of λ. Take B = B1 + B2. In view of Lemma 2.2 that,

B2 > 0 is taken sufficiently large such that ‖(v∗1 , v∗2 , . . . , v∗n)‖1 =
n∑
i=1

|v∗i | < B2,

where (v∗1 , v
∗
2 , . . . , v

∗
n)T is the unique solution of (2.1) with v∗i > 0.

Let Ω = {(y1, y2)T ∈ X, ‖(y1, y2)‖ < B}, then it is clear that Ω satisfies the
requirement (i) of Lemma 2.1. We can easily verify that for each x ∈ ∂Ω ∩ KerL,
QNx 6= 0 and deg{JQN, Ω∩KerL, 0} 6= 0, where deg(·) is the Brouwer degree and
J is the identity mapping since ImQ = KerL.

Hence, by Lemma 2.1, system (2.3) has at least one positive ω-periodic solution
in DomL ∩ Ω. Then system (1.3) has at least one positive ω-periodic solution,
denoted by ỹ(t). This completes the proof of Theorem 2.1.

3. Globally asymptotic stability

Under the assumption of Theorem 2.1, we know that system (1.3) has at least one
positive ω-periodic solution, denoted by

(y∗(t), u∗(t))T = (y∗1(t), . . . , y∗n(t), u∗1(t), . . . , u∗n(t))T .

The aim of this section is to derive a set of sufficient conditions which guarantee
the global asymptotic stability of the positive ω-periodic solution (y∗(t), u∗(t))T .

Definition 3.1. Let (y∗(t), u∗(t))T = (y∗1(t), . . . , y∗n(t), u∗1(t), . . . , u∗n(t))T be a
strictly positive (componentwise) periodic of (1.3). We say (y∗(t), u∗(t))T is globally
asymptotically stable (or attractive) if any other solution (y(t), u(t))T = (y1(t), . . . , yn(t),
u1(t), . . . , un(t))T of (1.3) has the property

lim
t→+∞

|yi(t)− y∗i (t)| = 0, lim
t→+∞

|ui(t)− u∗i (t)| = 0.

It is immediate that if (y∗, u∗)T is globally asymptotically stable, then (y∗, u∗)T is
in fact unique.
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Lemma 3.1 (see [1]). Let f be a nonnegative function defined on [0,+∞] such
that f is integrable on [0,+∞] and is uniformly continuous on [0,+∞]. Then

lim
t→+∞

f(t) = 0.

Lemma 3.2 (see [2,10]). Let Q = (qij)n×n be a matrix with nonpositive off-diagonal
elements. Q is an M -matrix if and only if there exists a positive diagonal matrix
Ξ = diag(ξ1, ξ2..., ξn) such that

ξiqii >
∑
j 6=i

ξjqji, i = 1, 2, . . . , n.

Theorem 3.1. Assume that all the assumptions in Theorem 2.1 hold, and if there
exist positive constants ki, i = 1, . . . , n, such that

(A4) kiaii(t) > kj
n∑

j=1,j 6=i
aji(t) + kiβi(t),

(A5) αi(t) > di(t),

then system (1.3) has a unique positive ω-periodic solution y∗(t) which is globally
asymptotically stable.

Proof. In order to show the global asymptotic stability of system (1.4), we define
a Lyapunov function V (t) as follows:

V (t) =

n∑
i=1

ki

[
| ln yi(t)− ln y∗i (t)|+ |ui(t)− u∗i (t)|

]
. (3.1)

It is not difficult to show that

V (0) =

n∑
i=1

ki

[
| ln yi(0)− ln y∗i (0)|+ |ui(0)− u∗i (0)|

]
< +∞, (3.2)

and V (t) ≥ 0, t ≥ 0. Let

Zi(t) = |yi(t)− y∗i (t)|, Ui(t) = |ui(t)− u∗i (t)|.

Calculating the upper right derivative D+V (t) of V (t) along the solution to (1.4),
it follows from (A4), (A5) that

D+V (t) =

n∑
i=1

ki

{
sgn{yi(t)− y∗i (t)}

[
−

n∑
j=1

aij(t)(yi(t)− y∗i (t))− di(t)(ui(t)− u∗i (t))
]

+ sgn{ui(t)− u∗i (t)}
[
− αi(t)(ui(t)− u∗i (t)) + βi(t)(yi(t)− y∗i (t))

]}
≤−

n∑
i=1

kiaii(t)|yi(t)− y∗i (t)|+
n∑
i=1

ki

n∑
j=1,j 6=i

aij(t)|yj(t)− y∗j (t)|

+

n∑
i=1

kidi(t)|ui(t)− u∗i (t)| −
n∑
i=1

kiαi(t)|ui(t)− u∗i (t)|

+

n∑
i=1

kiβi(t)|yi(t)− y∗i (t)|
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=−
n∑
i=1

{[
kiaii(t)− kj

n∑
j=1,j 6=i

aji(t)− kiβi(t)
]
|yi(t)− y∗i (t)|

+
[
kidi(t)− kiαi(t)

]
|ui(t)− u∗i (t)|

}
=−

n∑
i=1

{[
kiaii(t)− kj

n∑
j=1,j 6=i

aji(t)− kiβi(t)
]
Zi(t)

−
[
kiαi(t)− kidi(t)

]
Ui(t)

}
≤− c

n∑
i=1

{Zi(t) + Ui(t)}, (3.3)

where c = min1≤i≤n inft∈[0,ω]

{
kiaii(t)−kj

n∑
j=1,j 6=i

aji(t)−kiβi(t), kiαi(t)−kidi(t)
}

.

It follows from (3.3) that D+V (t) ≤ 0. Obviously, the zero solution (1.4) is Lya-
punov stable. On the other hand, integrating (3.3) over [0, t] leads to

V (t)− V (0) ≤ −c
∫ t

t0

n∑
i=1

{Zs(t) + Ui(s)}ds, t ≥ 0,

or

V (t) + c

∫ t

0

n∑
i=1

{|yi(s)− y∗i (s)|+ |ui(s)− u∗i (s)|}ds ≤ V (0) < +∞, t > 0.

Noting that V (t) > 0, it follows that∫ t

0

n∑
i=1

{|yi(s)− y∗i (s)|+ |ui(s)− u∗i (s)|}ds ≤
V (0)

k
< +∞, t > 0. (3.4)

Therefore, by Lemma 3.1, it is not difficult to conclude that

lim
t→+∞

|yi(t)− y∗i (t)| = 0, lim
t→+∞

|ui(t)− u∗i (t)| = 0,

which implies the global asymptotical stability of system (1.3). This completes the
proof of Theorem 3.1.

4. Examples

In this section, some examples and their simulations are presented to illustrate the
feasibility and effectiveness of our results.

Example 4.1. Consider a two-species competitive system with feedback controls

ẏ1(t) = y1(t)[6− (3.7 + sin t)y1(t)− (1 + 1
20 cos t)y2(t)]− (1 + cos t)u1(t)y1(t),

ẏ2(t) = y2(t)[8− ( 5
2 + sin t)y2(t)− ( 5

2 + cos t)y2(t)]− 1
4u2(t)y2(t),

u̇1(t) = −(2 + 1
2 cos t)u1(t) + (1 + 1

10 sin t)y1(t),

u̇2(t) = −(2 + sin t)u1(t) + 1
4y2(t).

(4.1)
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We have al11 = 2.7, al12 = 0.95, al21 = 1.5, al22 = 1.5, dl1 = 0, dl2 = 1
4 , α1(t) = 2 +

1
2 cos t, α2(t) = 2 + sin t, βl1 = 0.9, βl2 = 0.25, ω = 2π. Let σ1 =

∫ ω
0
α1(θ)dθ, σ2 =∫ ω

0
α2(θ)dθ. Simple computation shows

K1 =

 0 − al12
al22+d

l
2β
l
2e

−
∫ω
0 α2(θ)dθω

− al21
al11+d

l
1β
l
1e

−
∫ω
0 α1(θ)dθω

0


=

 0 −0.95
1.5+π

8 e
−4π

− 5
9 0

 .

Hence, ρ(K1) ≈ 0.5932 < 1. Similarly, au11 = 4.7, au12 = 1.05, au21 = 3.5, au22 =
3.5, du1 = 2, du2 = 1

4 , β
u
1 = 1.1, βu2 = 0.25, ω = 2π. Simple computation shows

K2 =


0 − au12

au22+d
u
2β

u
2

e

∫ω
0 α2(θ)dθ

e

∫ω
0 α2(θ)dθ−1

ω

− au21

au11+d
u
1β

u
1

e

∫ω
0 α1(θ)dθ

e

∫ω
0 α1(θ)dθ−1

ω
0


=

 0 − 1.05

3.5+ 1
8π

e4π

e4π−1

− 3.5

4.7+4.4π e4π

e4π−1

0

 .

And ρ(K2) ≈ 0.2258 < 1. Thus, by Theorem 3.1, system (1.3) has a unique positive
equilibrium which is globally asymptotically stable. Figure 1 shows the asymptotic
behavior of system (4.1).

0 5 10 15
0

0.5

1

1.5

2

2.5
Asymptotic behavior of two−species competitive system 

t

x

 

 
y1(t)
y2(t)
u1(t)
u2(t)

Figure 1. Asymptotic behavior of two-species competitive system with feedback control. The initial
values (y1(0), y2(0), u1(0), u2(0)) = (0.1, 0.5, 0.1, 0.1), t ∈ [0, 15].

Example 4.2. Next we consider the three-species competitive with feedback con-
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trols system

ẏ1(t) = y1(t)[7− (4 + sin t)y1(t)− (2.5 + cos t)y2(t)− (2 + sin t)y3(t)]

−( 1
5 + 1

6 cos t)u1(t)y1(t),

ẏ2(t) = y2(t)[14− (1.5 + sin t)y1(t)− (7 + cos t)y2(t)− (2 + sin t)y3(t)]

− 1
5 (1 + cos t)u2(t)y2(t),

ẏ3(t) = y3(t)[3− 1
2 (1 + sin t)y1(t)− (1.5 + cos t)y2(t)

−(6 + sin t)y3(t)]− 1
2 (1 + sin t)u3(t)y3(t),

u̇1(t) = −( 3
2 + cos t)u1(t) + ( 1

2 + 1
4 sin t)y1(t),

u̇2(t) = −( 3
2 + sin t)u2(t) + (1 + 1

4 cos t)y2(t),

u̇3(t) = − 3
2u3(t) + ( 1

2 + 1
3 sin t)y3(t).

(4.2)

We get al11 = 3, al12 = 1.5, al13 = 1, al21 = 0.5, al22 = 6, al23 = 1, al31 = 0, al32 =
0.5, al33 = 5, βl1 = 0.25, βl2 = 0.75, βl3 = 1

6 , d
l
1 = 1

30 , d
l
2 = dl3 = 0, ω = 2π, α1(t) =

1.5 + cos t, α2(t) = 1.5 + sin(t), α3(t) = 1.5. Further, let σ1 =
∫ ω
0
α1(θ)dθ, σ2 =∫ ω

0
α2(θ)dθ, σ3 =

∫ ω
0
α3(θ)dθ. Simple computation shows

K1 =


0

−al12
al22+ωd

l
2β
l
2e

−σ2
−al13

al33+ωd
l
3β
l
3e

−σ3

−al21
al11+ωd

l
1β
l
1e

−σ1 0
−al23

al33+ωd
l
3β
l
3e

−σ3

−al31
al11+ωd

l
1β
l
1e

−σ1
−al32

al22+ωd
l
2β
l
2e

−σ2 0

 =


0 −1

4
−1
5

−1
6+ 1

30πe
−3π 0 −1

5

0 −1
12 0

 .

And ρ(K1) ≈ 0.2625 < 1. Similarly, we have au11 = 5, au12 = 3.5, au13 = 3, au21 =
2.5, au22 = 8, au23 = 3, au31 = 1, au32 = 2.5, au33 = 7, du1 = 11

30 , d
u
2 = 2

5 , d
u
3 = 1, βu1 =

3
4 , β

u
2 = 5

4 , β
u
3 = 5

6 and

K2 =


0

−au12
au22+

ωdu2 β
u
2 e
σ2

eσ2−1

−au13
au33+

ωdu3 β
u
3 e
σ3

eσ3−1

−au21
au11+

ωdu1 β
u
1 e
σ1

eσ1−1

0
−au23

au33+
ωdu3 β

u
3 e
σ3

eσ3−1

−au31
au11+

ωdu1 β
u
1 e
σ1

eσ1−1

−au32
au22+

ωdu2 β
u
2 e
σ2

eσ2−1

0



=


0 −3.5

8+ πe3π

e3π−1

−3
7+ 5

3π
e3π

e3π−1

−2.5
5+ 11

20π
e3π

e3π−1

0 −3
7+ 5

3π
e3π

e3π−1

−1
5+ 11

20π
e3π

e3π−1

−2.5
8+ πe3π

e3π−1

0

 .

Further, we get ρ(K2) ≈ 0.5192 < 1. Thus, by Theorem 3.1, system (1.3) has a
unique positive periodic solution which is globally asymptotically stable.
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