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Abstract In this article, we introduce and investigate the concept of µ-
Stepanov-like pseudo almost automorphic functions of class h and class infinity
via measure theory. We present new results on completeness and composition
theorems for the space of such functions. To illustrate our main results, we
provide some applications to an abstract partial neutral functional differential
equation with infinite delay.
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1. Introduction

The concept of almost automorphy was first introduced in the literature by Bochner
in 1960’s [5], which generalized the classical almost periodicity in the sense of Bohr,
for more details about this topic we refer to [1,7,12–14,16,22,23,30,33] and the ref-
erences therein. Recently, there have been several interesting, natural and powerful
generalizations of the classical almost automorphic functions. In [24], N’Guérékata
and Pankov introduced the concept of Stepanov-like almost automorphy and ap-
plied this concept to study the existence and uniqueness of an almost automorphic
solution to the autonomous semilinear equation. Blot et al. introduced the no-
tion of weighted pseudo almost automorphic functions with values in a Banach
space in [3], and Mophou studied the existence and uniqueness of a weighted pseu-
do almost automorphic mild solution to a semilinear fractional equation in [21].
Moreover, Chang, N’Guérékata et al investigated some properties and new com-
position theorems of Stepanov-like weighted pseudo almost automorphic functions
in [8, 31, 32]; Blot, Cieutat, and Ezzinbi in [4] applied the measure theory to define
an ergodic function and they investigate many interesting properties of µ-pseudo
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almost automorphic functions. Recently, by the measure theory developed in [4],
the concept of µ-Stepanov-like pseudo almost automorphic (i.e. µ-Sp-pseudo al-
most automorphic) functions was presented and applied to investigate the existence
of µ-pseudo almost automorphic solutions to some evolution equations in Banach
spaces in [9, 10].

Partial neutral differential equations with infinite delay have been applied to
model the evolution of physical systems in which the response of the system depends
not only on current state, but also on the past history of its, for instance, in the
theory developed in Nunziato [26] for the description of heat conduction in the
materials with fading memory. The literature relative to partial neutral differential
equations is extensive; for more on this topic we refer the reader to [2,6,29] and the
references therein. To the best of our knowledge, there are few results reported in
the literature on the existence and uniqueness of µ-Sp-pseudo almost automorphic
solutions to neutral equations with infinite delay. To close this gap, motivated
by the above mentioned works, the main purpose of this work is to present the
concept of µ-Sp-pseudo almost automorphic functions of class h and establish the
completeness and some composition theorems for the space of such functions. And
then, we apply our main results to investigate the existence of µ-pseudo almost
automorphic mild solutions with µ-Sp-pseudo almost automorphic coefficients to
the abstract partial neutral differential equation with infinite delay:

d

dt
D(t, ut) = AD(t, ut) + g(t, ut), (1.1)

where A:D(A) ⊂ X → X is a densely closed linear operator and an infinitesimal
generator of an exponentially stable C0-semigroup (T (t))t≥0 on X; (X, ‖ · ‖) is a
Banach space; the history ut : (−∞, 0] → X, ut(θ) := u(t + θ), belongs to some
abstract phase space B defined axiomatically; D(t, ψ) = ψ(0) + f(t, ψ) and f, g :
R×B→ X are suitable functions.

The rest of this paper is organized as follows. In section 2, we present some
basic definitions, lemmas, and preliminary results which will be used throughout
this paper. In section 3, we establish some composition theorems of µ-Sp-pseudo
almost automorphic functions of class h and class infinity. In section 4, we prove
the existence and uniqueness of µ-pseudo almost automorphic mild solutions to the
abstract partial neutral functional differential equation (1.1).

2. Preliminaries

In this section, we define new the notion of µ-ergodic functions of class h, µ-ergodic
functions of class infinity, the µ-Stepanov-like pseudo almost automorphic functions
of class h and the µ-Stepanov-like pseudo almost automorphic functions of class
infinity, then we give some fundamental properties of these functions that we use in
differential equations. We will recall also the axiomatic notion of the phase space
B.

Let (X, ‖·‖), (Y, ‖·‖Y), be two Banach spaces and BC(R,X) denotes the Banach
space of all bounded continuous functions from R to X, equipped with the supremum
norm ‖f‖∞ = supt∈R ‖f(t)‖. The notation =(X,Y) stands for the Banach space of
all bounded linear operators from X into Y equipped with its natural topology; in
particular, this is simply denoted by =(X) when X = Y. Throughout this work, we
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denote by B the Lebesgue σ-field of R and by M the set of all positive measures µ
on B satisfying µ(R) = +∞ and µ([a, b]) < +∞, for all a, b ∈ R(a < b).

Definition 2.1 ( [23]). A continuous function f : R → X is said to be almost au-
tomorphic if for every sequence of real numbers {s′n}n∈N there exists a subsequence
{sn}n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t),

for each t ∈ R. The collection of all such functions will be denoted by AA(X).

Definition 2.2 ( [20, 23]). A continuous function f : R × X → X is said to be
almost automorphic if f(t, x) is almost automorphic for each t ∈ R uniformly for
all x ∈ B, where B is any bounded subset of X. The collection of all such functions
will be denoted by AA(R× X,X).

Let U denote the set of all functions ρ : R→ (0,∞), which are locally integrable
over R such that ρ > 0 almost everywhere. For a given r > 0 and for each ρ ∈ U,
we set m(r, ρ) :=

∫ r
−r ρ(t)dt.

Thus the space of weights U∞ is defined by

U∞ := {ρ ∈ U : lim
r→∞

m(r, ρ) =∞}.

Now for ρ ∈ U∞, we define

PAA0(X, ρ) :=

{
f ∈ BC(R,X) : lim

r→∞

1

m(r, ρ)

∫ r

−r
‖f(t)‖ρ(t)dt = 0

}
;

PAA0(Y,X, ρ) := {f ∈ C(R× Y,X) : f(·, y) is bounded for each y ∈ Y

and lim
r→∞

1

m(r, ρ)

∫ r

−r
‖f(t, y)‖ρ(t)dt = 0 uniformly in y ∈ Y

}
.

In [32], we give the definitions of the following spaces:

PAA0(X, h, ρ) :=

{
f ∈ BC(R,X) : lim

r→∞

1

m(r, ρ)

∫ r

−r

(
sup

θ∈[t−h,t]
‖f(θ)‖

)
ρ(t)dt = 0

}
;

PAA0(Y,X, h, ρ) := {f ∈ C(R× Y,X) : f(·, y) is bounded for each y ∈ Y

and lim
r→∞

1

m(r, ρ)

∫ r

−r

(
sup

θ∈[t−h,t]
‖f(θ, y)‖

)
ρ(t)dt = 0 uniformly in y ∈ Y

}
.

In view of the previous definitions it is clear that PAA0(X, h, ρ) and PAA0(Y,X, h, ρ)
are continuously embedded into PAA0(X, ρ) and PAA0(Y,X, ρ), respectively. Fur-
thermore, it is not hard to see that PAA0(X, h, ρ) and PAA0(Y,X, h, ρ) are closed
in PAA0(X, ρ) and PAA0(Y,X, ρ), respectively.

Definition 2.3 ( [4]). Let µ ∈ M. A bounded continuous function f : R → X is
said to be µ-ergodic if

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

‖f(t)‖dµ(t) = 0.

We denote the space of all such functions by ε(R,X, µ).
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Definition 2.4. Let µ ∈ M. A continuous function f : R × Y → X is said to be
µ-ergodic if f(·, y) is bounded for each y ∈ Y and

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

‖f(t, y)‖dµ(t) = 0,

uniformly in y ∈ Y. We denote the space of all such functions by ε(R× Y,X, µ).

To study issues related to delay under measure theory, we need to introduce the
new spaces of functions defined for each h > 0 by

ε(X, µ, h) :=

{
f ∈ BC(R,X) : lim

r→∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖f(θ)‖

)
dµ(t) = 0

}
;

ε(Y,X, µ, h) := {f ∈ C(R× Y,X) : f(·, y) is bounded for each y ∈ Y

and lim
r→∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖f(θ, y)‖

)
dµ(t) = 0 uniformly in y ∈ Y

}
.

Definition 2.5 ( [3]). Let ρ ∈ U∞. A function f ∈ BC(R,X) (respectively, f ∈
BC(R×Y,X)) is called weighted pseudo almost automorphic if it can be expressed
as f = g + φ, where g ∈ AA(X) (respectively, AA(R× Y,X)) and φ ∈ PAA0(X, ρ)
(respectively, PAA0(Y,X, ρ)). We denote by WPAA(X) (respectively, WPAA(R×
Y,X)) the set of all such functions.

Definition 2.6 ( [4]). Let µ ∈ M. A continuous function f : R → X is said to be
µ-pseudo almost automorphic if f is written in the form:

f = g + φ,

where g ∈ AA(X) and φ ∈ ε(R,X, µ).

We denote the space of all such functions by PAA(R,X, µ). Then we have

AA(R,X) ⊂ PAA(R,X, µ) ⊂ BC(R,X).

Definition 2.7. Let µ ∈ M. A continuous function f : R × Y → X is said to be
µ-pseudo almost automorphic if f is written in the form:

f = g + φ,

where g ∈ AA(R× Y,X) and φ ∈ ε(R× Y,X, µ).

Definition 2.8. Let µ ∈M. A function f ∈ BC(R,X) (respectively, f ∈ BC(R×
Y,X)) is called µ-pseudo almost automorphic of class h if it can be expressed as f =
g+φ, where g ∈ AA(X) (respectively, AA(R×Y,X)) and φ ∈ ε(X, µ, h) (respectively,
ε(Y,X, µ, h)). We denote by PAA(X, µ, h) (respectively, PAA(R × Y,X, µ, h)) the
set of all such functions.

From discussion of [4], the concept of µ-pseudo almost automorphic functions is
a generalization of the weighted pseudo almost automorphic functions which is due
to [3]

Lemma 2.1 ( [4]). Let µ ∈M. Then (ε(R,X, µ), ‖ · ‖∞) is a Banach space.
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Lemma 2.2. Let µ ∈M. Then (ε(X, µ, h), ‖ · ‖∞) is a Banach space.

Proof. It is enough to prove that ε(X, µ, h) is closed in ε(R,X, µ). Let (fn)n be
a sequence in ε(X, µ, h) such that limn→∞ fn = f uniformly in R. Let r > 0. Then
we have∫

[−r,r]

(
sup

θ∈[t−h,t]
‖f(θ)‖

)
dµ(t)

≤
∫
[−r,r]

(
sup

θ∈[t−h,t]
‖f(θ)− fn(θ)‖

)
dµ(t) +

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖fn(θ)‖

)
dµ(t),

we deduce that

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖f(θ)‖

)
dµ(t)

≤ ‖f − fn‖∞ +
1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖fn(θ)‖

)
dµ(t).

It follows that

lim sup
r→∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖f(θ)‖

)
dµ(t) ≤ ‖f − fn‖∞ for all n ∈ N.

Since limn→∞ ‖f − fn‖∞ = 0, we deduce that

lim
n→∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖f(θ)‖

)
dµ(t) = 0.

We also obtain that

lim
n→∞

1

µ([−r, r])

∫
[−r,r]

‖f(t)‖dµ(t) = 0.

i.e. ε(X, µ, h) is closed in ε(R,X, µ). This ends of the proof.
In view of the definitions of ε(X, µ, h) and ε(Y,X, µ, h) and the previous proof,

it is clear that ε(X, µ, h) and ε(Y,X, µ, h) are continuously embedded into ε(R,X, µ)
and ε(R × Y,X, µ), respectively. Furthermore, it is not hard to see that ε(X, µ, h)
and ε(Y,X, µ, h) are closed in ε(R,X, µ) and ε(R× Y,X, µ), respectively.

For µ ∈M and τ ∈ R, we denote µτ the positive measure on (R,B) defined by

µτ (A) = µ({a+ τ : a ∈ A}), for A ∈ B. (2.1)

From µ ∈M, we formulate the following hypothesis.
(H0)For all τ ∈ R, there exist β > 0 and a bounded interval I such that

µτ (A) ≤ βµ(A),

when A ∈ B satisfies A ∩ I = ∅.

Lemma 2.3 ( [4]). Let µ ∈M satisfy (H0). Then ε(R,X, µ) is translation invari-
ant, therefore PAA(R,X, µ) is also translation invariant.
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Lemma 2.4 ( [4]). Let µ ∈M. Assume that PAA(R,X, µ) is translation invariant.
Then the decomposition of a µ-pseudo almost automorphic function in the form
f = g + φ where g ∈ AA(R,X) and φ ∈ ε(R,X, µ), is unique.

Lemma 2.5 ( [4]). Let µ ∈M. Assume that PAA(R,X, µ) is translation invariant.
Then (PAA(R,X, µ), ‖ · ‖∞) is a Banach space.

Definition 2.9 ( [11, 24]). The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1], of a
function f : R→ X is defined by

f b(t, s) := f(t+ s).

Remark 2.1 ( [11]). (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform
of a certain function f , ϕ(t, s) = f b(t, s), if and only if ϕ(t+ τ, s− τ) = ϕ(s, t) for
all t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

(ii) Note that if f = h+ ϕ, then f b = hb + ϕb. Moreover, (λf)b = λf b for each
scalar λ.

Definition 2.10 ( [11]). The Bochner transform f b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X
of a function f : R× X→ X is defined by

f b(t, s, u) := f(t+ s, u), for each u ∈ X.

Definition 2.11 ( [11, 24]). Let p ∈ [1,∞). The space BSp(X) of all Stepanov
bounded functions, with the exponent p, consists of all measurable functions f :
R→ X such that f b ∈ L∞ (R, Lp(0, 1;X)). This is a Banach space with the norm

‖f‖Sp = ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖pdτ
) 1
p

.

Definition 2.12 ( [18,24]). The space ASp(X) of Stepanov-like almost automorphic
(or Sp-almost automorphic) functions consists of all f ∈ BSp(X) such that f b ∈
AA (Lp(0, 1;X)). In other words, a function f ∈ Lploc(R,X) is said to be Sp-almost
automorphic if its Bochner transform f b : R→ Lp(0, 1;X) is almost automorphic in
the sense that for every sequence of real numbers {s′n}n∈N, there exist a subsequence
{sn}n∈N and a function g ∈ Lploc(R,X) such that

lim
n→∞

(∫ t+1

t

‖f(s+ sn)− g(s)‖pds
) 1
p

= 0

and

lim
n→∞

(∫ t+1

t

‖g(s− sn)− f(s)‖pds
) 1
p

= 0,

pointwise on R.

Definition 2.13 ( [18,24]). A function f : R×Y→ X, (t, u)→ f(t, u) with f(·, u) ∈
Lploc(R,X) for each u ∈ Y, is said to be Sp-almost automorphic in t ∈ R uniformly
in u ∈ Y if t → f(t, u) is Sp-almost automorphic for each u ∈ Y. That means, for
every sequence of real numbers {s′n}n∈N, there exist a subsequence {sn}n∈N and a
function g(·, u) ∈ Lploc(R,X) such that

lim
n→∞

(∫ t+1

t

‖f(s+ sn, u)− g(s, u)‖pds
) 1
p

= 0,
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and

lim
n→∞

(∫ t+1

t

‖g(s− sn, u)− f(s, u)‖pds
) 1
p

= 0,

pointwise on R and for each u ∈ Y. We denote by ASp(R×Y,X) the set of all such
functions.

Definition 2.14 ( [31]). Let ρ ∈ U∞. A function f ∈ BSp(X) is said to be
Stepanov-like weighted pseudo almost automorphic (or Sp-weighted pseudo almost
automorphic) if it can be expressed as f = g + φ, where g ∈ ASp(X) and φb ∈
PAA0 (Lp(0, 1;X), ρ). In other words, a function f ∈ Lploc(R,X) is said to be
Stepanov-like weighted pseudo almost automorphic relatively to the weight ρ ∈ U∞,
if its Bochner transform f b : R → Lp(0, 1;X) is weighted pseudo almost automor-
phic in the sense that there exist two functions g, h : R → X such that f = g + φ,
where g ∈ ASp(X) and φb ∈ PAA0 (Lp(0, 1;X), ρ). We denote by WPAASp(X) the
set of all such functions.

Definition 2.15 ( [31]). Let ρ ∈ U∞. A function f : R × Y → X, (t, u) → f(t, u)
with f(·, u) ∈ Lploc(R,X) for each u ∈ Y, is said to be Stepanov-like weighted
pseudo almost automorphic (or Sp-weighted pseudo almost automorphic) if it can be
expressed as f = g+φ, where g ∈ ASp(R×Y,X) and φb ∈ PAA0 (Y, Lp(0, 1;X), ρ).
We denote by WPAASp(R× Y,X) the set of all such functions.

Definition 2.16 ( [9]). Let µ ∈ M. A function f ∈ BSp(X) is said to be µ-
Stepanov-like pseudo almost automorphic (or µ-Sp-pseudo almost automorphic) if
it can be expressed as f = g + φ, where g ∈ ASp(X) and φb ∈ ε(Lp(0, 1;X), µ).
In other words, a function f ∈ Lploc(R,X) is said to be µ-stepanov-like pseudo al-
most automorphic relatively to the measure µ, if its Bochner transform f b : R →
Lp(0, 1;X) is µ-pseudo almost automorphic in the sense that there exist two func-
tions g, φ : R→ X such that f = g+φ, where g ∈ ASp(X) and φb ∈ ε(Lp(0, 1;X), µ),
that is φb ∈ BC(Lp(0, 1;X)) and

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

(∫ t+1

t

‖φ(s)‖pds
) 1
p

dµ(t) = 0.

We denote by PAAp(R,X, µ) the set of all such functions.

Definition 2.17 ( [9]). Let µ ∈ M. A function f : R × Y → X, (t, u) → f(t, u)
with f(·, u) ∈ Lploc(R,X) for each u ∈ Y, is said to be µ-Stepanov-like pseudo
almost automorphic (or µ-Sp-pseudo almost automorphic) if it can be expressed as
f = g + φ, where g ∈ ASp(R × Y,X) and φb ∈ ε(Y, Lp(0, 1;X), µ). We denote by
PAAp(R× Y,X, µ) the set of all such functions.

Definition 2.18. Let µ ∈ M. A function f ∈ BSp(X) is said to be µ-Stepanov-
like pseudo almost automorphic of class h (or µ-Sp-pseudo almost automorphic
of class h) if it can be expressed as f = g + φ, where g ∈ ASp(X) and φb ∈
ε(Lp(0, 1;X), µ, h). In other words, a function f ∈ Lploc(R,X) is said to be µ-
Stepanov-like pseudo almost automorphic relatively to the measure µ, if its Bochner
transform f b : R → Lp(0, 1;X) is µ-pseudo almost automorphic of class h in the
sense that there exist two functions g, φ : R → X such that f = g + φ, where
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g ∈ ASp(X) and φb ∈ ε(Lp(0, 1;X), µ, h), that is φb ∈ BC(Lp(0, 1;X)) and

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ(s)‖pds

) 1
p

 dµ(t) = 0.

We denote by PAAp(X, µ, h) the set of all such functions.

Definition 2.19. Let µ ∈ M. A function f : R × Y → X, (t, u) → f(t, u) with
f(·, u) ∈ Lploc(R,X) for each u ∈ Y, is said to be µ-Stepanov-like pseudo almost
automorphic of class h (or µ-Sp-pseudo almost automorphic of class h) if it can be
expressed as f = g + φ, where g ∈ ASp(R × Y,X) and φb ∈ ε(Y, Lp(0, 1;X), µ, h).
We denote by PAAp(R× Y,X, µ, h) the set of all such functions.

Remark 2.2. From µ ∈M and the fact that µ([−r, r]) = µ([−r, r] \ I) + µ(I) for
r sufficiently large, we deduce that limr→+∞ µ([−r, r] \ I) = +∞.

Theorem 2.1. Let µ ∈M and I be a bounded interval (eventually I = ∅). Assume
that f ∈ BSp(R,X). Then the following assertions are equivalent.

(i) f b ∈ ε(Lp(0, 1;X), µ, h).

(ii) limr→+∞
1

µ([−r, r] \ I)

∫
[−r,r]\I

(
supθ∈[t−h,t]

(∫ θ+1

θ
‖f(s)‖pds

) 1
p

)
dµ(t) = 0.

(iii) For any ε > 0,

lim
r→+∞

µ

({
t ∈ [−r, r] \ I :

(
supθ∈[t−h,t]

(∫ θ+1

θ
‖f(s)‖pds

) 1
p

)
> ε

})
µ([−r, r] \ I)

= 0.

Proof. We refer to [9, Theorem 2.1]. First we show (i) ⇐⇒ (ii). Denote by

Ã = µ(I) and B =
∫
I

(
supθ∈[t−h,t]

(∫ θ+1

θ
‖f(s)‖pds

) 1
p

)
dµ(t). Since the interval I

is bounded and the function f ∈ BSp(X), then Ã and B are finite. Let r > 0 be
such that I ⊂ [−r, r] and µ([−r, r] \ I) > 0. Then we have

1

µ([−r, r] \ I)

∫
[−r,r]\I

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t)

=
1

µ([−r, r])− Ã

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t)− B


=

µ([−r, r])
µ([−r, r])− Ã

 1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t)

− B
µ([−r, r])

]
. (2.2)

From equality (2.2) and the fact that µ(R) = +∞, we deduce that (ii) is equivalent
to

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t) = 0,
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that is (i).
(iii)=⇒(ii) Denote by Aεr(f) and Bεr(f) the following sets

Aεr(f) =

t ∈ [−r, r] \ I :

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 > ε


and

Bεr(f) =

t ∈ [−r, r] \ I :

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 ≤ ε
 .

Assume that (iii) holds, that is

lim
r→+∞

µ(Aεr(f))

µ([−r, r] \ I)
= 0. (2.3)

From the following equality∫
[−r,r]\I

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t)

=

∫
Aεr(f)

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t)

+

∫
Bεr(f)

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t),

we deduce for r large enough that

1

µ([−r, r]) \ I

∫
[−r,r]\I

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t)

≤ ‖f‖Sp
µ(Aεr(f))

µ([−r, r] \ I)
+ ε.

Then for all ε > 0,

lim sup
r→+∞

1

µ([−r, r] \ I)

∫
[−r,r]\I

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t) ≤ ε.

So (ii) holds.
(ii)=⇒ (iii) Assume that (ii) holds. From the following inequality

1

µ([−r, r] \ I)

∫
[−r,r]\I

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t)

≥ 1

µ([−r, r] \ I)

∫
Aεr(f)

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµ(t)

≥ ε
µ(Aεr(f))

µ([−r, r] \ I)
,
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for r sufficiently large, we obtain (2.3), that is (iii). This completes the proof.

Definition 2.20 ( [4]). Let µ1 and µ2 ∈M. µ1 is said to be equivalent to µ2(µ1 ∼
µ2) if there exist constants α and β > 0 and a bounded interval I(eventually I = ∅)
such that

αµ1(A) ≤ µ2(A) ≤ βµ1(A),

for A ∈ B satisfying A ∩ I = ∅.

Theorem 2.2. Let µ1, µ2 ∈M. If µ1 and µ2 are equivalent, then

ε(Lp(0, 1;X), µ1, h) = ε(Lp(0, 1;X), µ2, h)

and
PAAp(X, µ1, h) = PAAp(X, µ2, h).

Proof. Let us show that ε(Lp(0, 1;X), µ1, h) = ε(Lp(0, 1;X), µ2, h). Since µ1 ∼ µ2

and B is the Lebesgue σ-field, we obtain for r sufficiently large

α

β

µ1

({
t ∈ [−r, r] \ I :

(
supθ∈[t−h,t]

(∫ θ+1

θ
‖f(s)‖pds

) 1
p

)
> ε

})
µ1([−r, r] \ I)

≤
µ2

({
t ∈ [−r, r] \ I :

(
supθ∈[t−h,t]

(∫ θ+1

θ
‖f(s)‖pds

) 1
p

)
> ε

})
µ2([−r, r] \ I)

≤ β

α

µ1

({
t ∈ [−r, r] \ I :

(
supθ∈[t−h,t]

(∫ θ+1

θ
‖f(s)‖pds

) 1
p

)
> ε

})
µ1([−r, r] \ I)

.

By using Theorem 2.1, we deduce that ε(Lp(0, 1;X), µ1, h) = ε(Lp(0, 1;X), µ2, h).
From the definition of a µ-Sp-pseudo almost automorphic function of class h, we
deduce that PAAp(X, µ1, h) = PAAp(X, µ2, h). The proof is finished.

We give sufficient conditions for the translation invariance of the spaces of µ-
Sp-pseudo almost automorphic functions of class h.

Lemma 2.6 ( [4]). Let µ ∈M. Then µ satisfies (H0) if and only if the measures µ
and µτ are equivalent for all τ ∈ R.

Lemma 2.7 ( [4]). Hypothesis (H0) implies for all σ > 0,

lim sup
r→+∞

µ([−r − σ, r + σ])

µ([−r, r])
< +∞.

Theorem 2.3. Let µ ∈ M satisfy (H0). Then ε(Lp(0, 1;X), µ, h) is translation
invariant, therefore PAAp(X, µ, h) is also translation invariant.

Proof. The proof of this theorem is conducted as [9, Theorem 2.3]. Since ASp(X)
is translation invariant, it remains to prove that if f ∈ ε(Lp(0, 1;X), µ, h) then
fτ ∈ ε(Lp(0, 1;X), µ, h) for all τ ∈ R. Let f ∈ ε(Lp(0, 1;X), µ, h) and τ ∈ R. Since
µ(R) = +∞, there exists r0 > 0 such that µ([−r − |τ |, r + |τ |]) > 0 for all r ≥ r0.
In this proof, we assume that r ≥ r0. Let us denote by for r > 0 and τ ∈ R,

Kτ (r) =
1

µτ ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµτ (t), (2.4)
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where µτ is the positive measure defined by (2.1). By Lemma 2.6, it follows that
µτ and µ are equivalent, then by using Theorem 2.2 we have ε(Lp(0, 1;X), µτ , h) =
ε(Lp(0, 1;X), µ, h), therefore f ∈ ε(Lp(0, 1;X), µτ , h), that is

lim
r→+∞

Kτ (r) = 0, for all τ ∈ R. (2.5)

For all A ∈ B, we denote by χA the characteristic function of A. By using definition
of the measure µτ , we obtain that

∫
[−r,r] χA(t)dµτ (t) =

∫
[−r+τ,r+τ ] χA(t − τ)dµ(t)

for all A ∈ B and since t 7→
(∫ t+1

t
‖f(s)‖pds

) 1
p

is the pointwise limit of an increasing

sequence of linear combinations of characteristic functions [27, Theorem 1.17], we
deduce that ∫

[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)‖pds

) 1
p

 dµτ (t)

=

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+τ+1

θ+τ

‖f(s− τ)‖pds

) 1
p

 dµτ (t)

=

∫
[−r,r]

 sup
θ∈[t−τ−h,t−τ ]

(∫ θ+1

θ

‖f(s− τ)‖pds

) 1
p

 dµτ (t)

=

∫
[−r+τ,r+τ ]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s− τ)‖pds

) 1
p

 dµ(t). (2.6)

From (2.1),(2.4) and (2.6), we obtain

Kτ (r) =
1

µ([−r + τ, r + τ ])

∫
[−r+τ,r+τ ]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s− τ)‖pds

) 1
p

 dµ(t).

If we denote by τ+ := max(τ, 0) and τ− := max(−τ, 0), we have |τ |+ τ = 2τ+ and
|τ | − τ = 2τ−; and then [−r+ τ − |τ |, r+ τ + |τ |] = [−r− 2τ−, r+ 2τ+]. Therefore
we obtain

Kτ (r + |τ |)

=
1

µ([−r − 2τ−, r + 2τ+])

×
∫
[−r−2τ−,r+2τ+]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s− τ)‖pds

) 1
p

 dµ(t). (2.7)

From (2.7) and the following inequality

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s− τ)‖pds

) 1
p

 dµ(t)

≤ 1

µ([−r, r])

∫
[−r−2τ−,r+2τ+]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s− τ)‖pds

) 1
p

 dµ(t),
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we get

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s− τ)‖pds

) 1
p

 dµ(t)

≤ µ([−r − 2τ−, r + 2τ+])

µ([−r, r])
Kτ (r + |τ |),

which implies

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s− τ)‖pds

) 1
p

 dµ(t)

≤ µ([−r − 2|τ |, r + 2|τ |])
µ([−r, r])

Kτ (r + |τ |). (2.8)

From (2.5) and (2.8) and by using Lemma 2.7, we deduce that

lim
r→+∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s− τ)‖pds

) 1
p

 dµ(t) = 0,

that is f−τ ∈ ε(Lp(0, 1;X), µ, h) for all τ ∈ R. Then ε(Lp(0, 1;X), µ, h) is translation
invariant. This ends the proof.

From the above Theorem and the proofs of [4, Theorem 3.5], we have the fol-
lowing theorem.

Theorem 2.4. Let µ ∈ M satisfy (H0). Then ε(X, µ, h) is translation invariant,
therefore PAA(X, µ, h) is also translation.

Theorem 2.5. Let µ ∈M satisfy (H0). If f ∈ PAA(X, µ, h), then f ∈ PAAp(X, µ, h)
for each 1 ≤ p <∞. In other words, PAA(X, µ, h) ⊂ PAAp(X, µ, h).

Proof. In the proof of this theorem, we follow the same reasoning as the proof
of [9, Theorem 2.4]. Let f = g + φ where g ∈ AA(X) and φ ∈ ε(R,X, µ, h).
From [24, Remark 2.4], we know that the function g ∈ AA(X) ⊂ ASp(X).

Next, let us show that φb ∈ ε (Lp(0, 1;X), µ, h). For r > 0, we see that

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]

(∫ 1

0

‖φ(θ + s)‖pds
) 1
p

)
dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ 1

0

sup
s∈[0,1]

‖φ(θ + s)‖pds

) 1
p

 dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(
sup
s∈[0,1]

‖φ(θ + s)‖p
) 1
p

 dµ(t).
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Let s0 ∈ [0, 1] such that sups∈[0,1] ‖φ(t+ s)‖ = ‖φ(t+ s0)‖. Then, we deduce

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]

(∫ 1

0

‖φ(θ + s)‖pds
) 1
p

)
dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(
sup
s∈[0,1]

‖φ(θ + s)‖p
) 1
p

 dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
(‖φ(θ + s0)‖p)

1
p

)
dµ(t)

=
1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖φ(θ + s0)‖

)
dµ(t).

By using the fact that ε(X, µ, h) is translation invariant, it follows that

lim
r→∞

∫
[−r,r]

sup
θ∈[t−h,t]

‖φ(θ + s0)‖dµ(t) = 0.

Hence, φb ∈ ε (Lp(0, 1;X), µ, h). The proof is then completed.

Theorem 2.6. Let µ ∈ M and f ∈ PAAp(X, µ, h) be such that f = g + φ, where
g ∈ ASp(X) and φb ∈ ε(Lp(0, 1;X), µ, h). If PAAp(X, µ, h) is translation invariant,
then

{g(t) : t ∈ R} ⊂ {f(t) : t ∈ R}, (the closure of range f).

Proof. The proof is an adoption of [9, Theorem 2.5]. Suppose that the above
claim is not true, then there exist constants t0 ∈ R such that g(t0) /∈ {f(t) : t ∈ R}.
Since the space ASp(X) and ε(Lp(0, 1;X), µ, h) are translation invariant, we can
assume that t0 = 0, then there exists a constant ε > 0 such that

sup
θ∈[t−h,t]

(∫ θ+1

θ

‖g(0)− f(s)‖pds

) 1
p

> 2ε, for all t ∈ R.

Since g ∈ ASp (X), for ε > 0, let

Cε =

t ∈ R : sup
θ∈[t−h,t]

(∫ θ+1

θ

‖g(s)− g(0)‖pds

) 1
p

< ε

 .

By [28, Lemma 2.11], there exist constants s1, · · · , sm ∈ R such that
⋃m
i=1(si+Cε) =

R. From the fact that f = g + φ and the Minkowski inequality, for all t ∈ Cε, we
have

sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ(s)‖pds

) 1
p

= sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s)− g(s)‖pds

) 1
p

≥ sup
θ∈[t−h,t]

(∫ θ+1

θ

‖g(0)− f(s)‖pds

) 1
p

− sup
θ∈[t−h,t]

(∫ θ+1

θ

‖g(s)− g(0)‖pds

) 1
p

> ε.
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Then it follows that

sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ(s− si)‖pds

) 1
p

> ε, for all i = 1, · · · ,m and t ∈ si + Cε.

Let Φ(t) :=
∑m
i=1 supθ∈[t−h,t]

(∫ θ+1

θ
‖φ(s− si)‖pds

) 1
p

. From the previous inequali-

ties, we have the fact that

Φ(t) > ε, for all t ∈ R. (2.9)

In view of ε(Lp(0, 1;X), µ, h) is translation invariant, then [t 7−→ φ(t − si)] ∈
ε(Lp(0, 1;X), µ, h) for all i ∈ {1, · · · ,m}. Hence H ∈ ε(Lp(0, 1;X), µ, h), which
contradicts the relation (2.9). This finishes the proof.

Theorem 2.7. Let µ ∈ M. Assume that PAAp(X, µ, h) is translation invariant.
Then (PAAp(X, µ, h), ‖ · ‖Sp) is a Banach space.

Proof. Let (fn)n∈N ⊂ PAAp(X, µ, h) be a Cauchy sequence for the norm ‖ · ‖Sp .
By definition, we can write fn = gn + φn, where (gn)n∈N ⊂ ASp(X) and (φbn)n∈N ⊂
ε(Lp(0, 1;X), µ, h). From Theorem 2.6, we obtain that

{gn(t) : t ∈ R} ⊂ {fn(t) : t ∈ R}.

Hence, we easily deduce that (gn)n∈N is also a Cauchy sequence for the norm ‖·‖Sp .
Thus there exists a function g ∈ ASp(X) such that ‖gn−g‖Sp → 0 as n→∞. Using
the previous fact, it follows that φn = fn− gn is a Cauchy sequence with respect to
the norm ‖ · ‖Sp . So there exists a function φ ∈ BSp(X) such that ‖φn − φ‖Sp → 0
as n→∞.

Now for r > 0,

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ(s)‖pds

) 1
p

 dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φn(s)− φ(s)‖pds

) 1
p

 dµ(t)

+
1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φn(s)‖pds

) 1
p

 dµ(t)

≤ ‖φn − φ‖Sp +
1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φn(s)‖pds

) 1
p

 dµ(t).

It follows that for all n ∈ N,

lim sup
r→∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ(s)‖pds

) 1
p

 dµ(t) ≤ ‖φn − φ‖Sp .

Since limn→∞ ‖φn − φ‖Sp = 0, we deduce that

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ(s)‖pds

) 1
p

 dµ(t) = 0,
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that is, f = g + φ ∈ PAAp(X, µ, h). So PAAp(X, µ, h, ‖ · ‖Sp) is a Banach space.
The proof is completed.

Theorem 2.8. Let µ ∈ M. Assume that PAA(X, µ, h) is translation invariant,
Then (PAA(X, µ, h), ‖ · ‖∞) is a Banach space.

Proof. The proof of Theorem 2.8 follows from the proof of Theorem 2.7 and [4,
Theorem 4.9], we omit the details.

From Theorem 2.7 and [9, Theorem 2.7], we have the following result.

Theorem 2.9. Let µ ∈ M. Assume that PAAp(X, µ, h) is translation invariant.
Then the decomposition of a µ-Sp-pseudo almost automorphic function of class h
in the form f = g + φ, where g ∈ ASp(X) and φb ∈ ε(Lp(0, 1;X), µ, h), is unique.

From Theorem 2.8 and [4, Theorem 4.7], we have the following result.

Theorem 2.10. Let µ ∈ M. Assume that PAA(X, µ, h) is translation invariant.
Then the decomposition of a µ-pseudo almost automorphic function of class h in
the form f = g + φ, where g ∈ AA(X) and φ ∈ ε(X, µ, h), is unique.

To deal with infinite delays, we introduce the following new spaces of functions:
ε(X, µ,∞) :=

⋂
h>0 ε(X, µ, h),

ε(Y,X, µ,∞) :=
⋂
h>0 ε(Y,X, µ, h),

ε(Lp(0, 1;X), µ,∞) :=
⋂
h>0 ε(L

p(0, 1;X), µ, h),
ε(Y, Lp(0, 1;X), µ,∞) :=

⋂
h>0 ε(Y, Lp(0, 1;X), µ, h).

Obviously, ε(X, µ,∞) and ε(Y,X, µ,∞) are, respectively, closed subspaces of
ε(X, µ, h) and ε(Y,X, µ, h), and hence both are Banach spaces. By the same way,
ε(Lp(0, 1;X), µ,∞) and ε(Y, Lp(0, 1;X), µ,∞) are closed subspaces of ε(Lp(0, 1;X), µ, h)
and ε(Y, Lp(0, 1;X), µ, h). So both are Banach spaces.

In view of the above, we introduce the following new classes of functions.

Definition 2.21. Let µ ∈M. A function f ∈ BC(R,X) (respectively, f ∈ BC(R×
Y,X)) is called µ-pseudo almost automorphic of class infinity if it can be expressed
as f = g + φ, where g ∈ AA(X) (respectively, AA(R × Y,X)) and φ ∈ ε(X, µ,∞)
(respectively, ε(Y,X, µ,∞)). We denote by PAA(X, µ,∞) (respectively, PAA(R×
Y,X, µ,∞)) the set of all such functions.

Definition 2.22. Let µ ∈M. A function f ∈ BSp(X) is said to be µ-Stepanov-like
pseudo almost automorphic of class infinity (or µ-Sp-pseudo almost automorphic
of class infinity) if it can be expressed as f = g + φ, where g ∈ ASp(X) and
φb ∈ ε(Lp(0, 1;X), µ,∞). In other words, a function f ∈ Lploc(R,X) is said to be µ-
stepanov-like pseudo almost automorphic of class infinity relatively to the measure
µ, if its Bochner transform f b : R → Lp(0, 1;X) is µ-pseudo almost automorphic
of class infinity in the sense that there exist two functions g, φ : R → X such
that f = g + φ, where g ∈ ASp(X) and φb ∈ ε(Lp(0, 1;X), µ,∞). We denoted by
PAAp(X, µ,∞) the set of all such functions.

Definition 2.23. Let µ ∈ M. A function f : R × Y → X, (t, u) → f(t, u) with
f(·, u) ∈ Lploc(R,X) for each u ∈ Y, is said to be µ-Stepanov-like pseudo al-
most automorphic of class infinity (or µ-Sp-pseudo almost automorphic of class
infinity) if it can be expressed as f = g + φ, where g ∈ ASp(R × Y,X) and
φb ∈ ε(Y, Lp(0, 1;X), µ,∞). We denoted by PAAp(R × Y,X, µ,∞) the set of all
such functions.
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Lemma 2.8. Assume that f ∈ ASp (R× X,X) and f(t, x) is uniformly continuous
on each bounded subset K ′ ⊂ X uniformly for t ∈ R. If u ∈ ASp(X) and K =
{u(t) : t ∈ R} is compact. Then f (·, u(·)) ∈ ASp(X).

Proof. From the proof of [14, Theorem 3.2], we can infer that f (·, u(·)) ∈ Lploc(R,X).
Since f ∈ ASp (R× X,X), then for every sequence of real numbers {s′n}, there exist
a subsequence {sn} and a function g : R × X → X with g(·, u) ∈ Lploc(R,X) such
that

lim
n→∞

(∫ t+1

t

‖f(s+ sn, u)− g(s, u)‖pds
) 1
p

= 0, (2.10)

and

lim
n→∞

(∫ t+1

t

‖g(s− sn, u)− f(s, u)‖pds
) 1
p

= 0, (2.11)

for all t ∈ R and u ∈ X. Moreover, because u ∈ ASp(X), we have that for every
sequence of real numbers {s′n}, there exist a subsequence {sn} and a function v ∈
Lploc(R,X) such that

lim
n→∞

(∫ t+1

t

‖u(s+ sn)− v(s)‖pds
) 1
p

= 0, (2.12)

and

lim
n→∞

(∫ t+1

t

‖v(s− sn)− u(s)‖pds
) 1
p

= 0, (2.13)

for each t ∈ R.
On the other hand, since K = {u(t) : t ∈ R} is compact, it follows from (2.12)

and (2.13) that v(t + s) ∈ K for a.e. s ∈ [0, 1]. By assumption f is uniformly
continuous on any bounded subset K ′ ⊂ X uniformly for t ∈ R. That is to say, for
any ε > 0, there exists δ > 0 such that x, y ∈ K ′ and ‖x− y‖ ≤ δ imply that

(∫ t+1

t

‖f(s, x)− f(s, y)‖pds
) 1
p

< ε, t ∈ R.

Now, using the Minkowski’s inequality, one obtains

(∫ t+1

t

‖f (s+ sn, u(s+ sn))− g (s, v(s)) ‖pds
) 1
p

≤
(∫ t+1

t

‖f (s+ sn, u(s+ sn))− f (s+ sn, v(s)) ‖pds
) 1
p

+

(∫ t+1

t

‖f (s+ sn, v(s))− g (s, v(s)) ‖pds
) 1
p

:= I + J,

where

I =

(∫ t+1

t

‖f (s+ sn, u(s+ sn))− f (s+ sn, v(s)) ‖pds
) 1
p

,
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and

J =

(∫ t+1

t

‖f (s+ sn, v(s))− g (s, v(s)) ‖pds
) 1
p

.

In view of the above, for each t ∈ R, we get

lim
n→∞

I = lim
n→∞

(∫ t+1

t

‖f (s+ sn, u(s+ sn))− f (s+ sn, v(s)) ‖pds
) 1
p

= 0.

Furthermore, by (2.10), we obtain that for each t ∈ R

lim
n→∞

J =

(∫ t+1

t

‖f (s+ sn, v(s))− g (s, v(s)) ‖pds
) 1
p

= 0.

Hence, we have

lim
n→∞

(∫ t+1

t

‖f (s+ sn, u(s+ sn))− g (s, v(s)) ‖pds
) 1
p

= 0,

for each t ∈ R. Using the same argument as above, we can prove that

lim
n→∞

(∫ t+1

t

‖g (s− sn, v(s− sn))− f (s, u(s)) ‖pds
) 1
p

= 0,

for each t ∈ R. This prove that the function f (·, u(·)) : R → X is Stepanov-like
almost automorphic, which ends the proof.

In this work we will employ an axiomatic definition of the phase space B, which
is similar to the one introduced in [17]. More precisely, B is a vector space of
functions mapping (−∞, 0] into X endowed with a seminorm ‖ · ‖B such that the
next axioms hold.

(A) If x : (−∞, σ+ a) 7→ X, a > 0, σ ∈ R, is continuous on [σ, σ+ a) and xσ ∈ B,
then for every t ∈ [σ, σ + a) the following hold:

(i) xt is in B;

(ii) ‖x(t)‖ ≤ H‖xt‖B;

(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,
where H > 0 is a constant; K, M : [0,∞) 7→ [1,∞), K is continuous, M is
locally bounded and H, K, M are independent of x(·).

(A1) For the function x(·) appearing in (A), the function t→ xt is continuous from
[σ, σ + a) into B.

(B) The space B is complete.

(C2) If (ϕn)n∈N is a bounded sequence in BC((−∞, 0],X) given by functions with
compact support and ϕn → ϕ in the compact-open topology, then ϕ ∈ B and
‖ϕn − ϕ‖B → 0 as n→∞.

Definition 2.24 ( [15]). Let B0 = {ϕ ∈ B : ϕ(0) = 0} and S(t) : B → B be
the C0-semigroup defined by S(t)ϕ(θ) = ϕ(0) on [−t, 0] and S(t)ϕ(θ) = ϕ(t + θ)
on (−∞,−t]. The phase space B is called a fading memory space if ‖S(t)ϕ‖B → 0
as t → ∞ for every ϕ ∈ B0. We said that B is a uniform fading memory space if
‖S(t)‖=(B0) → 0 as t→∞.
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Remark 2.3 ( [15]). In this paper we suppose ς > 0 is such that ‖ϕ‖B ≤ ς supθ≤0 ‖ϕ(θ)‖
for each ϕ ∈ B

⋂
BC((−∞, 0],X), see [17] for details. Moreover, if B is a fading

memory, we assume that max{K(t),M(t)} ≤ < for all t ≥ 0, see [17].

Lemma 2.9 ( [17]). The phase B is a uniform fading memory space if, and only
if, axiom(C2) holds, the function K is bounded and limt→∞M(t) = 0.

3. Composition theorems of µ-Sp-pseudo almost au-
tomorphic functions of class h

In this section, we prove some composition theorems for µ-Stepanov-like pseudo
almost automorphic functions under suitable conditions.

Theorem 3.1. Let µ ∈ M. Suppose that f = g + ϕ ∈ PAAp (R× X,X, µ, h)
and let φ = α + β ∈ PAAp (X, µ, h). Assume that g ∈ ASp(R × X,X), ϕb ∈
ε (X, Lp(0, 1;X), µ, h), α ∈ ASp(X), βb ∈ ε (Lp(0, 1;X), µ, h), Q = {α(t) : t ∈ R} is
compact and there exists a continuous function LF (·) : R 7→ [0,∞) satisfying

(∫ t+1

t

‖f(s, x1)− f(s, x2)‖pds
) 1
p

≤ LF (t)‖x1 − x2‖ ∀t ∈ R, ∀x1, x2 ∈ X.

(3.1)
If

lim sup
r→∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
LF (θ)

)
dµ(t) <∞ (3.2)

and

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
LF (θ)

)
ξ(t)dµ(t) = 0, (3.3)

for each ξb ∈ ε (R, Lp(0, 1;X), µ).

(I) g(t, x) is uniformly continuous in any bounded subset K ′ ⊂ X uniformly for
t ∈ R. then the function t→ f(t, φ(t)) belongs to PAAp (X, µ, h)

Proof. Assume that f = g + ϕ, φ = α + β, where g ∈ ASp(R × X,X), ϕb ∈
ε (X, Lp(0, 1;X), µ, h), α ∈ ASp(X), βb ∈ ε (Lp(0, 1;X), µ, h) and Q = {α(t) : t ∈ R}
is compact. Consider the decomposition

f(t, φ(t)) = g(t, α(t)) + f(t, φ(t))− f(t, α(t)) + ϕ(t, α(t)).

Define

G(t) = g(t, α(t)), F (t) = f(t, φ(t))− f(t, α(t)), H(t) = ϕ(t, α(t)).

Then f(t, φ(t)) = G(t)+F (t)+H(t). Since the function g satisfies condition (I) and
Q = {α(t) : t ∈ R} is compact, it follows from Lemma 2.8 that the function G(t) ∈
ASp(X). It remains to prove that both F b(t), Hb(t) belong to ε (Lp(0, 1;X), µ, h),
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from (3.1) it is clear that F ∈ BSp(X). Indeed, using (3.1) for r > 0, we see that

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖F (s)‖pds

) 1
p

 dµ(t)

=
1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s, φ(s))− f(s, α(s))‖pds

) 1
p

 dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
LF (θ)‖β(θ)‖

)
dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
LF (θ)

)
·

(
sup

θ∈[t−h,t]
‖β(θ)‖

)
dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
LF (θ)

)
·

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖β(s)‖pds

) 1
p

 dµ(t),

which implies that F b(t) ∈ ε (Lp(0, 1;X), µ, h) by (3.3).
Next, we prove that Hb ∈ ε (Lp(0, 1;X), µ, h). Since g satisfies condition (I), i.e.

for any ε > 0, there exists a δ > 0 such that x, x ∈ K ′ and ‖x− x‖ ≤ δ imply that(∫ t+1

t

‖g(s, x)− g(s, x)‖pds
) 1
p

< ε, t ∈ R.

Put δ0 = min{ε, δ}. Then(∫ t+1

t

‖ϕ(s, x)− ϕ(s, x)‖pds
) 1
p

≤
(∫ t+1

t

‖f(s, x)− f(s, x)‖pds
) 1
p

+

(∫ t+1

t

‖g(s, x)− g(s, x)‖pds
) 1
p

≤ (LF (t) + 1)ε,

for ∀ ε > 0, let δ and LF (t) be as in the above assumptions, let δ0 = min{ε, δ}.
Since Q is compact, there are finite open balls Ok(k = 1, 2, · · · ,m) with center xk
and radius δ0 such that

{α(t) : t ∈ R} ⊂
m⋃
k=1

Ok.

Define and choose Bk, such that

Bk = {t ∈ R : ‖α(t)− αk‖ < δ0}, k = 1, 2, · · · ,m.

Then R =
⋃m
k=1Bk, and let E1 = B1, Ek = Bk \ (∪k−1i=1Bi) (2 ≤ k ≤ m). Then

R = ∪mk=1Ek and Ei
⋂
Ej = ∅, i 6= j, 1 ≤ i, j ≤ m. Define the step function

α : R → X, by α(t) = αk for t ∈ Ek, k = 1, 2, · · · ,m. It is easy to see that
‖α(t) − α(t)‖ < δ0, for all t ∈ R. By the definition of ε (Lp(0, 1;X), µ, h), for the
above ε > 0, there is constant r0 > 0 such that for all r > r0 and 1 ≤ k ≤ m,

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖ϕ(s, αk)‖pds

) 1
p

 dµ(t) <
ε

m
, (3.4)
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Then, by (3.1) we have(∫ t+1

t

‖ϕ(s, α(s))‖pds
) 1
p

≤
(∫ t+1

t

‖ϕ(s, α(s))− f(s, α(s))‖pds
) 1
p

+

(∫ t+1

t

‖ϕ(s, α(s))‖pds
) 1
p

≤ (LF (t) + 1)ε+

(
m∑
k=1

∫
Ek

⋂
[t,t+1]

‖ϕ(s, αk)‖pds

) 1
p

.

Now combining (3.4) and the above inequality, we get

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖ϕ(s, α(s))‖pds

) 1
p

 dµ(t)

≤ ε

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
(LF (θ) + 1)

)
dµ(t)

+
1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

m∑
k=1

(∫
Ek

⋂
[θ,θ+1]

‖f(s, αk)‖pds

) 1
p

 dµ(t)

≤ ε

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
(LF (θ) + 1)

)
dµ(t)

+

m∑
k=1

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s, αk)‖pds

) 1
p

 dµ(t).

From (3.2), (3.4) and using the arbitrariness of ε,

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s, α(s))‖pds

) 1
p

 dµ(t) = 0.

That is Hb ∈ ε (Lp(0, 1;X), µ, h) . Hence, f(t, φ(t)) ∈ PAAp(X, µ, h). This completes
the proof.

Lemma 3.1. Let µ ∈ M. Assume that x(t) ∈ ASp(X), Q = {x(t) : t ∈ R} is
a compact subset of X, and f b ∈ ε (X, Lp(0, 1;X), µ, h) satisfying that ∀ ε > 0,
∃ δ > 0 and L(·) ∈ Lp(µ,R+) with p > 1 such that(∫ t+1

t

‖f(s, x)− f(s, y)‖pds
) 1
p

< L(t)ε, (3.5)

for all x, y ∈ Q with ‖x− y‖ < δ. Then

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s, x(s))‖pds

) 1
p

 dµ(t) = 0,
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whenever

lim
r→∞

1

(µ([−r, r]))
1
p

∫
[−r,r]

[(
sup

θ∈[t−h,t]
L(θ)

)p
dµ(t)

] 1
p

<∞. (3.6)

Proof. For any given ε > 0, let δ and L(t) be as in the assumptions. Let δ0 =
min{ε, δ}. Since Q is compact, there are finite open balls Ok(k = 1, 2, · · · ,m) with
center xk and radius δ0 such that

{x(t) : t ∈ R} ⊂
m⋃
k=1

Ok.

Define and choose Bk, such that

Bk = {t ∈ R : ‖x(t)− xk‖ < δ0}, k = 1, 2, · · · ,m.

Then R =
⋃m
k=1Bk, and let E1 = B1, Ek = Bk \ (∪k−1i=1Bi) (2 ≤ k ≤ m). Then

R = ∪mk=1Ek and Ei
⋂
Ej = ∅, i 6= j, 1 ≤ i, j ≤ m. Define the step function

x : R → X, by x(t) = xk for t ∈ Ek, k = 1, 2, · · · ,m. It is easy to see that
‖x(t)−x(t)‖ < δ0, for all t ∈ R. By the definition of ε (Lp(0, 1;X), µ), for the above
ε > 0, there is a constant r0 > 0 such that for all r > r0 and 1 ≤ k ≤ m,

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s, xk)‖pds

) 1
p

 dµ(t) <
ε

m
. (3.7)

By (3.5) we have(∫ t+1

t

‖f(s, x(s))‖pds
) 1
p

≤
(∫ t+1

t

‖f(s, x(s))− f(s, x(s))‖pds
) 1
p

+

(∫ t+1

t

‖f(s, x(s))‖pds
) 1
p

≤ L(t)ε+

(
m∑
k=1

∫
Ek

⋂
[t,t+1]

‖f(s, xk)‖pds

) 1
p

.

Now combining (3.7) and the above inequality, we get

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s, x(s))‖pds

) 1
p

 dµ(t)

≤ ε

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
L(θ)

)
dµ(t)

+
1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

m∑
k=1

(∫
Ek

⋂
[θ,θ+1]

‖f(s, xk)‖pds

) 1
p

 dµ(t)

≤ ε

µ([−r, r])

∫
[−r,r]

[(
sup

θ∈[t−h,t]
L(θ)

)p
dµ(t)

] 1
p

(µ([−r, r]))1−
1
p
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+

m∑
k=1

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s, xk)‖pds

) 1
p

 dµ(t)

≤ ε
1

(µ([−r, r]))
1
p

∫
[−r,r]

[(
sup

θ∈[t−h,t]
L(θ)

)p
dµ(t)

] 1
p

+

m∑
k=1

ε

m

≤ ε
1

(µ([−r, r]))
1
p

∫
[−r,r]

[(
sup

θ∈[t−h,t]
L(θ)

)p
dµ(t)

] 1
p

+ ε

≤

 1

(µ([−r, r]))
1
p

∫
[−r,r]

[(
sup

θ∈[t−h,t]
L(θ)

)p
dµ(t)

] 1
p

+ 1

 ε.

In view of (3.6), for all r > r0, which means that

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f(s, x(s))‖pds

) 1
p

 dµ(t) = 0.

This finishes the proof.

Theorem 3.2. Let µ ∈ M and let f = g + φ ∈ PAAp (R× X,X, µ, h) with g ∈
ASp (R× X,X), φb ∈ ε (X, Lp(0, 1;X), µ, h). Assume that the following conditions
are satisfied:

(i) there exists a nonnegative function L(·) ∈ Lp(µ,R+) satisfying (3.6) with
p > 1 such that for all u, v ∈ X and t ∈ R,(∫ t+1

t

‖f(s, u)− f(s, v)‖pds
) 1
p

< L(t)‖u− v‖.

(ii) g(t, x) is uniformly continuous in any bounded subset K
′ ⊂ X uniformly for t ∈

R. If u = u1+u2 ∈ PAAp(X, µ, h),with u1 ∈ ASp(X), ub2 ∈ ε (Lp(0, 1;X), µ, h)
and K2 = {u1(t) : t ∈ R} is compact, then f (·, u(·)) belongs to PAAp(X, µ, h).

Proof. Since f ∈ PAAp (R× X,X, µ, h) and u(t) ∈ PAAp(X, µ, h), we have by
definition that f = g + φ and u = u1 + u2 where g ∈ ASp (R× X,X), φb ∈
ε (X, Lp(0, 1;X), µ, h), u1 ∈ ASp(X) and ub2 ∈ ε (Lp(0, 1;X), µ, h). Now, the function
f can be decomposed as

f (t, u(t)) = g (t, u1(t)) + f (t, u(t))− g (t, u1(t))

= g (t, u1(t)) + f (t, u(t))− f (t, u1(t)) + φ (t, u1(t)) .

Define

G(t) = g (t, u1(t)) , F (t) = f (t, u(t))− f (t, u1(t)) , H(t) = φ (t, u1(t)) .

Then f (t, u(t)) = G(t) + F (t) + H(t). Since the function g satisfies condition (ii)
and K2 = {u1(t) : t ∈ R} is compact, it follows from Lemma 2.8 that the func-
tion g (·, u1(·)) ∈ ASp(X). To show that f (·, u(·)) ∈ PAAp(X, µ, h), it is suf-
ficient to show that F b + Hb ∈ ε (Lp(0, 1;X), µ, h). First we prove that F b ∈
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ε (Lp(0, 1;X), µ, h). It is easy to see that F (·) ∈ BSp(X). Assume that ‖F (t)‖Sp ≤
M for t ∈ R. For any ε > 0, by (i) and I = ∅, we have

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖F (s)‖pds

) 1
p

 dµ(t)

=
1

µ([−r, r])

∫
Aεr(u2)

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖F (s)‖pds

) 1
p

 dµ(t)

+
1

µ([−r, r])

∫
Bεr(u2)

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f (s, u(s))− f (s, u1(s)) ‖pds

) 1
p

 dµ(t)

≤ M
µ(Aεr(u2))

µ([−r, r])
+

1

µ([−r, r])

∫
Bεr(u2)

(
sup

θ∈[t−h,t]
L(θ)

)
‖u2(s)‖dµ(t)

≤ M
µ(Aεr(u2))

µ([−r, r])
+

ε

µ([−r, r])

∫
[−r,r]

[(
sup

θ∈[t−h,t]
L(θ)

)p
dµ(t)

] 1
p

(µ([−r, r]))1−
1
p

≤ M
µ(Aεr(u2))

µ([−r, r])
+

ε

(µ([−r, r]))
1
p

∫
[−r,r]

[(
sup

θ∈[t−h,t]
L(θ)

)p
dµ(t)

] 1
p

,

where I, Aεr(u2), Bεr(u2) are given in Theorem 2.1.
On the other hand, it follows from Theorem 2.1 that

lim
r→∞

µ(Aεr(u2))

µ([−r, r])
= 0.

So we get

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖F (s)‖pds

) 1
p

 dµ(t) = 0.

Therefore, F b ∈ ε (Lp(0, 1;X), µ) .
Next we prove that Hb ∈ ε (Lp(0, 1;X), µ). K2 = {u1(t) : t ∈ R} is compact

in X, g(t, x) is uniformly continuous in any bounded subset K
′ ⊂ X uniformly for

t ∈ R. Thus for any ε > 0, there is a constant δ ∈ (0, ε) such that(∫ t+1

t

‖g(s, u)− g(s, v)‖pds
) 1
p

< ε,

t ∈ R, u, v ∈ K2 with ‖u− v‖ ≤ δ. By (i) we have(∫ t+1

t

‖φ(s, u)− φ(s, v)‖pds
) 1
p

≤
(∫ t+1

t

‖f(s, u)− f(s, v)‖pds
) 1
p

+

(∫ t+1

t

‖g(s, u)− g(s, v)‖pds
) 1
p

≤ (L(t) + 1)ε.
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For all t ∈ R and u, v ∈ K2 with ‖u− v‖ ≤ δ. Noting that (L(t) + 1) ∈ Lp(µ,R+),
we know from Lemma 3.1 that

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ (s, u1(s)) ‖pds

) 1
p

 dµ(t) = 0,

which means that Hb ∈ ε (Lp(0, 1;X), µ, h). This completes the proof.

Theorem 3.3. Let µ ∈ M and let f := g + φ ∈ PAAp (R× X,X, µ, h) with
g ∈ ASp (R× X,X), and φb ∈ ε (X, Lp(0, 1;X), µ, h). Assume that the following
conditions satisfied:

(1) f(t, x) is uniformly continuous in any bounded subset K
′ ⊂ X uniformly for

t ∈ R,

(2) g(t, x) is uniformly continuous in any bounded subset K
′ ⊂ X uniformly for

t ∈ R,

(3) For every bounded subset K
′ ⊂ X,{f(·, x) : x ∈ K ′} is bounded in PAAp(R×

X,X, µ, h).

If x = α+β ∈ PAAp(X, µ, h)∩B(R,X), with α ∈ ASp(X), βb ∈ ε (Lp(0, 1;X), µ, h)
and Q1 = {α(t) : t ∈ R} is compact, then f (·, x(·)) belongs to PAAp(X, µ, h).

Proof. Since f ∈ PAAp(R × X,X, µ, h) and x(t) ∈ PAAp(X, µ, h), we have by
definition that f = g+φ where g ∈ ASp (R× X,X) and φb ∈ ε (X, Lp(0, 1;X), µ, h).
So, the function f can be written in the form

f (t, x(t)) = g (t, α(t)) + f (t, x(t))− g (t, α(t))

= g (t, α(t)) + f (t, x(t))− f (t, α(t)) + φ (t, α(t)) .

Define

G(t) = g (t, α(t)) , H(t) = f (t, x(t))− f (t, α(t)) , Λ(t) = φ (t, α(t)) .

Then f (t, x(t)) = G(t) + H(t) + Λ(t). Since the function g satisfies condition (2)
and Q1 = {α(t) : t ∈ R} is compact, it follows from Lemma 2.8 that the function
g (·, α(·)) ∈ ASp(X). To show that f (·, x(·)) ∈ PAAp(X, µ, h), it is enough to show
that Hb + Λb ∈ ε (Lp(0, 1;X), µ, h).

First we prove that Hb ∈ ε (Lp(0, 1;X), µ, h). Since x(·) and α(·) are bounded,
we can choose a bounded subset K

′ ⊆ X, such that x(R), α(R) ⊆ K
′
. Under

assumption (3) that H(·) ∈ BSp(X), from (1) we can see f is uniformly continuous
on the bounded subset K

′ ⊆ X uniformly for t ∈ R. So given ε > 0, there exists
δ > 0, such that u, v ∈ K ′ and ‖u− v‖ ≤ δ imply that

(∫ t+1

t

‖f(s, u)− f(s, v)‖pds
) 1
p

≤ ε.

Hence, for each t ∈ R, ‖β(s)‖Sp < δ, s ∈ [t, t+ 1] implies that for all t ∈ R,

(∫ t+1

t

‖H(s)‖pds
) 1
p

=

(∫ t+1

t

‖f (s, x(s))− f (s, α(s)) ‖pds
) 1
p

≤ ε.
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We can obtain

sup
θ∈[t−h,t]

(∫ θ+1

θ

‖H(s)‖pds

) 1
p

= sup
θ∈[t−h,t]

(∫ θ+1

θ

‖f (s, x(s))− f (s, α(s)) ‖pds

) 1
p

≤ ε.

Therefore the following inequality holds

µ

{
t ∈ [−r, r] : supθ∈[t−h,t]

(∫ θ+1

θ
‖f(s, x(s))− f(s, α(s))‖pds

) 1
p

> ε

}
µ([−r, r])

≤
µ

{
t ∈ [−r, r] : supθ∈[t−h,t]

(∫ θ+1

θ
‖β(s)‖pds

) 1
p

> δ

}
µ([−r, r])

.

Since βb ∈ ε (Lp(0, 1;X), µ, h), Theorem 2.1 yields that for the above-mentioned δ
we have

lim
r→+∞

µ

{
t ∈ [−r, r] : supθ∈[t−h,t]

(∫ θ+1

θ
‖β(s)‖pds

) 1
p

> δ

}
µ([−r, r])

= 0,

and then we obtain

lim
r→+∞

µ

{
t ∈ [−r, r] : supθ∈[t−h,t]

(∫ θ+1

θ
‖f(s, x(s))− f(s, α(s))‖pds

) 1
p

> ε

}
µ([−r, r])

= 0. (3.8)

With the help of Theorem 2.1, Eq. (3.8) shows that t→ Hb ∈ ε (Lp(0, 1;X), µ, h) .
Now to complete the proof, it is enough to prove that Λb ∈ ε (Lp(0, 1;X), µ, h) .

Since f, g satisfy conditions (1) and (2), then for any ε > 0, exists δ > 0, such that
u, v ∈ Q1 imply that(∫ t+1

t

‖f(s, u)− f(s, v)‖pds
) 1
p

<
ε

16
, t ∈ R,

and (∫ t+1

t

‖g(s, u)− g(s, v)‖pds
) 1
p

<
ε

16
, t ∈ R.

Now, we put δ0 = min(ε, δ), then(∫ t+1

t

‖φ(s, u)− φ(s, v)‖pds
) 1
p

≤
(∫ t+1

t

‖f(s, u)− f(s, v)‖pds
) 1
p

+

(∫ t+1

t

‖g(s, u)− g(s, v)‖pds
) 1
p

≤ ε

8
,
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for all t ∈ R, and u, v ∈ Q1 with ‖u− v‖ ≤ δ0.

SinceQ1 = {α(t) : t ∈ R} is compact, we find finite open ballsOk(k = 1, 2, · · · ,m)
with center uk ∈ Q1 and radius δ0 given above, such that {α(t) : t ∈ R} ⊂ ∪mk=1Ok.
Define and choose Bk such that Bk = {t ∈ R : ‖α(t)− uk‖ < δ0}, k = 1, 2, · · · ,m,
R = ∪mk=1Bk, and set E1 = B1, Ek = Bk \ (∪k−1j=1Bj) (2 ≤ k ≤ m). Then
R = ∪mk=1Ek and Ei

⋂
Ej = ∅, i 6= j, 1 ≤ i, j ≤ m. Define a function u : R →

X by u(t) = uk for t ∈ Ek, k = 1, 2, · · ·m. Then ‖α(t) − u(t)‖ < δ0 for all
t ∈ R, it is easy to get from(

m∑
k=1

∫
Ek

⋂
[t,t+1]

‖φ (s, α(s))− φ(s, uk)‖pds

) 1
p

=

(∫ t+1

t

‖φ (s, α(s))− φ (s, u(s)) ‖pds
) 1
p

<
ε

8
.

Since φb ∈ ε (X, Lp(0, 1;X), µ), there exists a constant r0 > 0, such that

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ(s, uk)‖pds

) 1
p

 dµ(t) <
ε

8m2

for all r > r0 and 1 ≤ k ≤ m.

Now combing these estimates, we deduce that for all r > r0,

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖Λ(s)‖pds

) 1
p

 dµ(t)

=
1

µ([−r, r])

∫
[−r,r]

[
sup

θ∈[t−h,t]

(
m∑
k=1

(∫
Ek

⋂
[θ,θ+1]

‖φ (s, α(s))− φ(s, uk)

+φ(s, uk)‖p ds))
1
p

]
dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

[
sup

θ∈[t−h,t]
2p

m∑
k=1

(∫
Ek

⋂
[θ,θ+1]

‖φ (s, α(s))− φ(s, uk)‖pds

+

∫
Ek

⋂
[θ,θ+1]

‖φ(s, uk)‖pds
)] 1

p

dµ(t)

≤ 21+
1
p

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ (s, α(s))− φ (s, u(s))‖p ds

) 1
p

 dµ(t)

+
21+

1
p

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(
m∑
k=1

∫
Ek

⋂
[θ,θ+1]

‖φ(s, uk)‖pds

) 1
p

 dµ(t)

<
4

µ([−r, r])

∫
[−r,r]

ε

8
dµ(t)
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+

m∑
k=1

4m
1
p

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖φ(s, uk)‖pds

) 1
p

 dµ(t)

<
ε

2
+m

1
p
ε

2m
< ε,

which implies that Λb ∈ ε (Lp(0, 1;X), µ, h). This completes the proof.

4. Existence of µ-pseudo almost automorphic solu-
tions

In this section, we consider the existence of µ-pseudo almost automorphic mild
solutions for the problem (1.1).

Definition 4.1. A continuous function u : (−∞, σ + a) → X, a > 0, is a mild
solution of the neutral system (1.1) on [σ, σ + a), if uσ ∈ B and

u(t) = T (t− σ)(u(σ) + f(σ, uσ))− f(t, ut) +

∫ t

σ

T (t− s)g(s, us)ds,

for t ∈ [σ, σ + a).

To prove our main theorems, we need the next results on composition of µ-sp-
pseudo almost automorphic functions and µ-pseudo almost automorphic functions
of class infinity.

Lemma 4.1. Let u ∈ PAA(X, µ,∞) satisfy (H0) where µ ∈ M and assume
that B is a uniform fading memory space. Then the function t → ut belongs to
PAA(B, µ,∞).

Proof. Let h ∈ AA(X) and g ∈ ε(X, µ,∞) be such that u = h + g, clearly,
ut = ht+gt and from [25, Lemma 3.1]. we have that t→ ht is almost automorphic.

Now, we prove that t → gt ∈ ε(X, µ,∞). Let h > 0 and ε > 0. Since B is a
uniform fading memory space, from Lemma 2.9 there is τε > h such that M(τ) < ε
for every τ > τε. Consequently, for r > 0 and τ > τε we find that

1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−h,t]

‖gθ‖Bdµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−h,t]

(
M(τ)‖gθ−τ‖B +K(τ) sup

s∈[θ−τ,θ]
‖g(s)‖

)
dµ(t)

≤ ς‖g‖∞ε+
<

µ([−r, r])

∫
[−r,r]

sup
s∈[t−2τ,t]

‖g(s)‖dµ(t),

where ς, < are defined as in Remark 2.6. Meanwhile, we get

1

µ([−r, r])

∫
[−r,r]

sup
s∈[t−2τ,t]

‖g(s)‖dµ(t)

≤ 1

µ([−r, r])

∫
[−r−τ,r−τ ]

(
sup

s∈[t−τ,t]
‖g(s)‖+ sup

s∈[t,t+τ ]
‖g(s)‖

)
dµ(t)
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≤ 1

µ([−r, r])

∫
[−r−τ,r−τ ]

(
sup

s∈[t−τ,t]
‖g(s)‖

)
dµ(t)

+
1

µ([−r, r])

∫
[−r−τ,r−τ ]

(
sup

s∈[t,t+τ ]
‖g(s)‖

)
dµ(t)

≤ µ([−r − τ, r + τ ])

µ([−r, r])
1

µ([−r − τ, r + τ ])

∫
[−r−τ,r+τ ]

(
sup

s∈[t−τ,t]
‖g(s)‖

)
dµ(t)

+
1

µ([−r, r])

∫
[−r,r]

(
sup

s∈[t−τ,t]
‖g(s)‖

)
dµ(t).

Thus,

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−h,t]

‖gθ‖Bdµ(t)

≤ ς‖g‖∞ε

+ lim
r→∞

µ([−r − τ, r + τ ])

µ([−r, r])
<

µ([−r − τ, r + τ ])

∫
[−r−τ,r+τ ]

(
sup

s∈[t−τ,t]
‖g(s)‖

)
dµ(t)

+ lim
r→∞

<
µ([−r, r])

∫
[−r,r]

(
sup

s∈[t−τ,t]
‖g(s)‖

)
dµ(t).

These inequalities allow us to prove the assertion since ε is arbitrary, g ∈ ε(X, µ, τ)
and by using Lemma 2.7. The proof is completed.

Theorem 4.1. Let µ ∈ M. and f = g + φ ∈ PAA(R × X,X, µ, h) with g ∈
AA(R× X,X), φ ∈ ε(R× X,X, µ, h). Assume that the following conditions (i) and
(ii) are satisfied:

(i) f(t, x) satisfies a Lipschitz condition in x ∈ X uniformly in t ∈ R, that is,

there exists a constant L̃ > 0 such that

‖f(t, x)− f(t, y)‖ ≤ L̃‖x− y‖,

for all x, y ∈ X and t ∈ R.

(ii) g(t, x) is uniformly continuous in any bounded subset K ′ ⊂ X uniformly for
t ∈ R.

If u = u1 + u2 ∈ PAA(X, µ, h), with u1 ∈ AA(X), u2 ∈ ε(X, µ, h). Then f(·, u(·))
belongs to PAA(X, µ, h).

Proof. Since f ∈ PAA(R×X,X, µ, h) and u ∈ PAA(X, µ, h), we have by definition
that f = g + φ and u = u1 + u2 where g ∈ AA(R × X,X), φ ∈ ε(R × X,X, µ, h),
u1 ∈ AA(X) and u2 ∈ ε(X, µ, h). The function f can be decomposed as

f(t, u(t)) = g(t, u1(t)) + f(t, u(t))− g(t, u1(t))

= g(t, u1(t)) + f(t, u(t))− f(t, u1(t)) + φ(t, u1(t)).

Define

G(t) = g(t, u1(t)), F (t) = f(t, u(t))− f(t, u1(t)), H(t) = φ(t, u1(t)).
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Then f(t, u(t)) = G(t) +F (t) +H(t). Since the function g satisfies condition (ii), it
follows from [19, Lemma 2.2] that the function g(·, u1(·)) ∈ AA(X). To show that
f(·, u(·)) ∈ PAA(X, µ, h), it is sufficient to show that F +H ∈ ε(X, µ, h).

Initially, we prove that F ∈ ε(X, µ, h). Clearly, f(t, u(t))−f(t, u1(t)) is bounded
and continuous. Now, by (i), we have

‖f(t, u(t))− f(t, u1(t))‖ ≤ L̃‖u(t)− u1(t)‖ ≤ L̃‖u2(t)‖.

Hence, by the fact that u2 ∈ ε(X, µ, h), we obtain

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖F (θ)‖

)
dµ(t)

≤ lim
r→∞

L̃

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖u2(θ)‖

)
dµ(t)

= 0,

which shows that F (·) ∈ ε(X, µ, h).
Next, we show that H ∈ ε(X, µ, h). Since u(t), u1(t) are bounded, we can choose

a bounded subset B ⊂ X such that u(R), u1(R) ⊂ B. Since g satisfies condition (ii),
then for any ε > 0, there is a δ > 0 such that x, y ∈ B and ‖x− y‖ ≤ δ imply that
‖g(t, x)− g(t, y)‖ ≤ ε for all t ∈ R.

Put δ0 = min{ε, δ}. then

‖φ(t, x)− φ(t, y)‖ ≤ ‖f(t, x)− f(t, y)‖+ ‖g(t, x)− g(t, y)‖ ≤ (L̃+ 1)ε

for all x, y ∈ B with ‖x− y‖ ≤ δ0.
Set I = u1([−r, r]). Then I is compact in R since the image of a compact

set under a continuous mapping is compact, and so one can find finite open balls
Ok, (k = 1, 2, · · · ,m) with center xk ∈ I and radius δ0 small enough such that
I ⊂ ∪mk=1Ok and

‖φ(t, u1(t))− φ(t, xk)‖ ≤ (L̃+ 1)ε, u1(t) ∈ Ok, t ∈ [−r, r].

Suppose ‖φ(t, xp)‖ = max1≤k≤m{‖φ(t, xk)‖}, where p is an index number among
{1, 2, · · · ,m}. The set Bk = {t ∈ [−r, r] : u1(t) ∈ Ok} is open in [−r, r] and
[−r, r] = ∪mk=1Bk. Let

E1 = B1, Ek = Bk \
k−1⋃
j=1

Bj , (2 ≤ k ≤ m).

Then Ei ∩ Ej = ∅ when i 6= j, 1 ≤ i, j ≤ m. Observe

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖φ(θ, u1(θ))‖

)
dµ(t)

=
1

µ([−r, r])

∫
∪mk=1Ek

(
sup

θ∈[t−h,t]
‖φ(θ, u1(θ))‖

)
dµ(t)

≤ 1

µ([−r, r])

m∑
k=1

∫
Ek

(
sup

θ∈[t−h,t]
(‖φ(θ, u1(θ))− φ(θ, xk)‖+ ‖φ(θ, xk)‖)

)
dµ(t)
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≤ 1

µ([−r, r])

m∑
k=1

∫
Ek

ε(L̃+ 1)dµ(t)

+
1

µ([−r, r])

m∑
k=1

∫
Ek

(
sup

θ∈[t−h,t]
‖φ(θ, xk)‖

)
dµ(t)

≤ (L̃+ 1)ε+
1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖φ(θ, xp)‖

)
dµ(t).

Using the same arguments as above, we obtain

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖φ(θ, u1(θ))‖

)
dµ(t) = 0.

That is, φ(t, u1(t)) ∈ ε(X, µ, h). Hence f(t, u(t)) ∈ PAA(X, µ, h), which ends the
proof.

Corollary 4.1. Let µ ∈ M, f ∈ PAA(R × X,X, µ,∞) and u ∈ PAA(X, µ,∞).
Assume that the conditions of Theorem 4.1 are satisfied for every h > 0, then the
function t 7→ f(t, u(t)) belongs to PAA(X, µ,∞).

Lemma 4.2. Let µ ∈M, u ∈ PAAp(X, µ,∞),X) satisfy (H0) and assume that B is
a uniform fading memory space. Then the function t→ ut belongs to PAAp(B, µ,∞).

Proof. Let φ ∈ ASp(X) and gb ∈ ε (Lp(0, 1;X), µ,∞) be such that u = φ + g.
Clearly, ut = φt + gt. Hence the translation property of ASp(X) allows us to write
φt ∈ ASp(X).

Now, we prove that t → gbt ∈ ε (Lp(0, 1;X), µ,∞). Let h > 0 and ε > 0. Since
B is a uniform fading memory space, from Lemma 2.9 there is τε > h such that
M(τ) < ε for every τ > τε. Consequently, for r > 0 and τ > τε we find that

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖gθ‖pBds

) 1
p

 dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

sup
θ∈[t−h,t]

M(τ)

(∫ θ+1

θ

‖gθ−τ‖pBds

) 1
p

+K(τ) sup
s∈[θ−τ,θ]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t)

≤ ς‖g‖Spε+
<

µ([−r, r])

∫
[−r,r]

(
sup

s∈[t−2τ,t]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t),

where ς, < are defined as in Remark 2.6. Meanwhile, we get

1

µ([−r, r])

∫
[−r,r]

(
sup

s∈[t−2τ,t]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t)

≤ 1

µ([−r, r])

∫
[−r−τ,r−τ ]

(
sup

s∈[t−τ,t]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p
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+ sup
s∈[t,t+τ ]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t)

≤ 1

µ([−r, r])

∫
[−r−τ,r−τ ]

(
sup

s∈[t−τ,t]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t)

+
1

µ([−r, r])

∫
[−r−τ,r−τ ]

(
sup

s∈[t,t+τ ]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t)

≤ µ([−r − τ, r + τ ])

µ([−r, r])
1

µ([−r − τ, r + τ ])

×
∫
[−r−τ,r+τ ]

(
sup

s∈[t−τ,t]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t)

+
1

µ([−r, r])

∫
[−r,r]

(
sup

s∈[t−τ,t]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t).

Thus,

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ+1

θ

‖gθ‖pBds

) 1
p

 dµ(t)

≤ ς‖g‖∞ε+ lim
r→∞

µ([−r − τ, r + τ ])

µ([−r, r])
<

µ([−r − τ, r + τ ])

×
∫
[−r−τ,r+τ ]

(
sup

s∈[t−τ,t]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t)

+ lim
r→∞

<
µ([−r, r])

∫
[−r,r]

(
sup

s∈[t−τ,t]

(∫ s+1

s

‖g(σ)‖pdσ
) 1
p

)
dµ(t).

This inequality proves the assertion since ε is arbitrary, gbt ∈ ε (Lp(0, 1;X), µ, τ) and
by using Lemma 2.7. The proof is completed.

The consequences of Lemma 4.2 are the following modified version of Theorem
3.1 and Theorem 3.3:

Corollary 4.2. Let µ ∈ M, f ∈ PAAp(R × X,X, µ,∞) and φ ∈ PAAp(X, µ,∞).
Assume that the condition of (I) in Theorem 3.1 is satisfied and there exists a
continuous function LF (·) : R 7→ [0,∞) satisfying the relation (3.1). If condition
(3.2) and (3.3) hold for every h > 0, then the function t 7→ f(t, φ(t)) belongs to
PAAp(X, µ,∞).

Corollary 4.3. Let µ ∈ M, f ∈ PAAp(R × X,X, µ,∞) and x ∈ PAAp(X, µ,∞).
Assume that the conditions of Theorem 3.2 are satisfied for every h > 0, then the
function t 7→ f(t, x(t)) belongs to PAAp(X, µ,∞).

Now, we can establish the existence and uniqueness of µ-pseudo almost auto-
morphic solutions.
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Let q > 1 such that 1
p + 1

q = 1. Denote

α0 = M

(
eq$−1

q$

) 1
q

, α = α0

∞∑
k=1

e−$k.

First, we list the following basic assumptions:

(A1) The operator A is the infinitesimal generator of an exponentially stable C0-
semigroup {T (t)}t≥0 on X; that is, there exist constants M > 0, $ > 0 such
that ‖T (t)‖ ≤Me−$t for all t ≥ 0.

(A2) B is a uniform fading memory spaces. The function g = h2 +φ2 ∈ PAAp(R×
X,X, µ,∞) and there exists a positive constant Lg such that(∫ t+1

t

‖g(s, x)− g(s, y)‖pds
) 1
p

≤ Lg‖x− y‖B,

for all t ∈ R and each x, y ∈ B, and for each ξb(·) ∈ ε (R, Lp(0, 1;X), µ) ,

lim
r→∞

1

µ([−r, r])

∫
[−r,r]

ξ(t)dµ(t) = 0.

(A3) B is a uniform fading memory spaces, and there exists a positive constant Lf
such that

‖f(t, x)− f(t, y)‖ ≤ Lf‖x− y‖B,
for all t ∈ R and each x, y ∈ B.

(A4) The function f = h1 + φ1 ∈ PAA(R× X,X, µ,∞) where h1 ∈ AA(R× X,X)
are uniformly continuous in any bounded subset K

′ ⊂ X uniformly on t ∈ R
and φ1 ∈ ε(X,X, µ,∞).

(A5) The function g = h2 +φ2 ∈ PAAp(R×X,X, µ,∞) where h2 ∈ ASp(R×X,X)
are uniformly continuous in any bounded subset K

′ ⊂ X uniformly on t ∈ R
and φb2 ∈ ε (X, Lp(0, 1;X), µ,∞).

(A6) B is a uniform fading memory spaces. The function g = h2 +φ2 ∈ PAAp(R×
X,X, µ,∞) and there exists a nonnegative function Lg(·) ∈ Lp(µ,R+)∩Lp(R)
with p > 1 such that for all t ∈ R and each x, y ∈ B,(∫ t+1

t

‖g(s, x)− g(s, y)‖pds
) 1
p

≤ Lg(t)‖x− y‖B,

and

lim
r→∞

1

(µ([−r, r]))
1
p

∫
[−r,r]

[(
sup

θ∈[t−h,t]
Lg(θ)

)p
dµ(t)

] 1
p

<∞

holds for every h > 0.

Lemma 4.3. Let µ ∈M. Assume that (A1) hold. u ∈ PAAp (X, µ,∞), v(t) be the
function defined by

v(t) =

∫ t

−∞
T (t− s)u(s)ds, t ∈ R. (4.1)

Then v ∈ PAA (X, µ,∞) .
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Proof. Let us investigate the existence. Since u ∈ PAAp (X, µ,∞) , there exist
g ∈ ASp(X) and φb ∈ ε (Lp(0, 1;X), µ,∞) such that u = g + φ. Now, we consider
for each n = 1, 2, 3 · · · , the integrals

xn(t) =

∫ n

n−1
T (σ)u(t− σ)dσ

=

∫ n

n−1
T (σ)g(t− σ)dσ +

∫ n

n−1
T (σ)φ(t− σ)dσ

= Φn(t) + Ψn(t),

where Φn(t) =
∫ n
n−1 T (σ)g(t − σ)dσ, and Ψn(t) =

∫ n
n−1 T (σ)φ(t − σ)dσ. In order

to prove each xn is µ-pseudo almost automorphic function, we only need to verify
Φn ∈ AA(X) and Ψn ∈ ε (X, µ,∞) for each n = 1, 2, 3 · · · .

Now, let us show that each Φn ∈ AA(X). The proof of this part follows from the
proof of [31, Theorem 3.1]. We omit the details.

Next, we intend to verify that each Ψn ∈ ε (X, µ,∞) . For this, we have the
following estimations(

sup
θ∈[t−h,t]

‖Ψn(θ)‖

)

≤ sup
θ∈[t−h,t]

∫ θ−n+1

θ−n
‖T (θ − τ)‖‖φ(τ)‖dτ

≤ M sup
θ∈[t−h,t]

∫ θ−n+1

θ−n
e−$(θ−τ)‖φ(τ)‖dτ

≤ M sup
θ∈[t−h,t]

e$h
∫ θ−n+1

θ−n
e−$(t−τ)‖φ(τ)‖dτ

≤ Me$h
(∫ t−n+1

t−n
e−$q(t−τ)dτ

) 1
q

 sup
θ∈[t−h,t]

(∫ θ−n+1

θ−n
‖φ(τ)‖pdτ

) 1
p


≤ Me−$(n−h) q

√
e$q − 1

$q

 sup
θ∈[t−h,t]

(∫ θ−n+1

θ−n
‖φ(τ)‖pdτ

) 1
p

 .

Then, for r > 0, we see that

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖Ψn(θ)‖

)
dµ(t)

≤ Me−$(n−h) q
√
e$q − 1

δq

1

µ([−r, r])

∫
[−r,r]

 sup
θ∈[t−h,t]

(∫ θ−n+1

θ−n
‖φ(s)‖pds

) 1
p

 dµ(t).

Since φb ∈ ε (Lp(0, 1;X), µ,∞), the above inequality leads to Ψn ∈ ε (X, µ,∞) for
each n = 1, 2, 3 · · · . Furthermore, the last estimation lead also to

‖Ψn(t)‖ ≤Me−$(n−h) q
√
e$q − 1

δq
‖h‖Sp .
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Notice that Me$h q

√
e$q−1
$q

∑∞
n=1 e

−$n <∞. Then we deduce from the Weierstrass

test that the series
∑∞
n=1 Ψn(t) is uniformly convergent on R. Moreover, Ψ(t) =∫ t

−∞ T (t− s)φ(s)ds =
∑∞
n=1 Ψn(t). Clearly, Ψ(t) ∈ C(R,X) and

‖Ψ(t)‖ ≤
∞∑
n=1

‖Ψn(t)‖ ≤ K1(M,$, q, h),

whereK1(M,$, q, h) > 0 is a constant that depends only on the constantsM,$, q, h.
Applying Ψn ∈ ε (X, µ,∞) and the inequality

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖Ψn(θ)‖

)
dµ(t)

≤ 1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
(‖Ψ(θ)−

n∑
k=1

Ψk(θ)‖)

)
dµ(t)

+

n∑
k=1

1

µ([−r, r])

∫
[−r,r]

(
sup

θ∈[t−h,t]
‖Ψk(θ)‖

)
dµ(t),

we deduce that the uniformly limit Ψ(t) =
∑∞
n=1 Ψn(t) ∈ ε (X, µ,∞). Therefore,

u(t) = Φ(t) + Ψ(t) is µ-pseudo almost automorphic of class infinity.

Theorem 4.2. Assume that µ ∈M, the conditions (H0) and (A1)-(A5) are satis-
fied, then (1.1) has a unique µ-pseudo almost automorphic mild solution, if

Θ := ς (Lf + αLg) < 1,

where ς is defined as in Remark 2.6.

Proof. Let Γ : PAA(X, µ,∞)→ BC(R,X) be the nonlinear operator defined by

Γu(t) = −f(t, ut) +

∫ t

−∞
T (t− s)g(s, us)ds, t ∈ R.

It is easy to see that Γu is well defined and continuous. Moreover, from Theorem 4.1,
Lemma 4.1 and Corollary 4.1 we obtain f(t, ut) ∈ PAA(X, µ,∞). Furthermore, from

Theorem 2.5, Lemma 4.2, Corollary 4.2 and Lemma 4.3 we can infer that
∫ t
−∞ T (t−

s)g(s, us)ds ∈ PAA(X, µ,∞). That is Γ maps PAA(X, µ,∞) into PAA(X, µ,∞).
On the other hand, for u, v ∈ PAA(X, µ,∞) we get

‖Γu(t)− Γv(t)‖

≤ Lf‖ut − vt‖B +M

∞∑
k=1

(∫ k

k−1
e−$qsds

) 1
q
(∫ k

k−1
‖g(s, us)− g(s, vs)‖pds

) 1
p

≤ Lf‖ut − vt‖B

+α0

∞∑
k=1

e−$k‖g(t+ k − 2 + ·, ut+k−2+·)− g(t+ k − 2 + ·, vt+k−2+·)‖p

≤ Lf‖ut − vt‖B + αLg‖ut+k−2+· − vt+k−2+·‖B
≤ ς (Lf + αLg) ‖u− v‖∞,
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which permits us concluding that there exists a unique µ-pseudo almost automor-
phic solution for the problem (1.1).

Owing to Corollary 4.3 and similar proof as Theorem 4.2, we can deduce the
following result.

Theorem 4.3. Assume that µ ∈M, the conditions (H0), (A1) and (A3)-(A6) are
satisfied, then (1.1) admits a unique µ-pseudo almost automorphic mild solution, if

Θ := ς

[
Lf +

M

1− e−$

(
1− e−q$

$q

) 1
q

‖Lg‖Lp
]
< 1,

or
Θ := ς (Lf + α‖Lg‖Lp) < 1,

where ς is defined as in Remark 2.6.
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