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Abstract In this paper, we study two-level iteration penalty and variational
multiscale method for the approximation of steady Navier-Stokes equations at
high Reynolds number. Comparing with classical penalty method, this new
method does not require very small penalty parameter ε. Moreover, two-level
mesh method can save a large amount of CPU time. The error estimates in
H1 norm for velocity and in L2 norm for pressure are derived. Finally, two
numerical experiments are shown to support the efficiency of this new method.
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1. Introduction

It is well known that the steady incompressible flows are governed by the following
nonlinear Naveir-Stokes equations:−µ∆u + (u · ∇)u +∇p = f, in Ω,

div u = 0, in Ω.
(1.1)

Here Ω ⊂ R2 ia a bounded domain with Lipschitz continuous boundary ∂Ω. u =
(u1, u2) denotes the velocity vector of the flows, p the pressure and f = (f1, f2)
the body force vector. The constant µ = 1/Re > 0 is the viscosity with Reynolds
number Re. The solenoidal condition div u = 0 means that the flows are incom-
pressible. For simplicity, in this paper, we consider the homogeneous Dirichlet
boundary conditions

u = 0, on ∂Ω. (1.2)

There have a large amount of papers about searching the efficient algorithms to solve
the numerical solutions of the system (1.1)-(1.2). However, when Reynolds number
is very high, many algorithms do not work well. The reason is that Navier-Stokes
equations (1.1) are the domination of the convection in the case of high Reynolds
number and the incompressible flows become very unstable. Thus, it is a challenging
task for searching efficient algorithms to solve (1.1)-(1.2) at high Reynolds number.
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Usually, many stabilized methods are studied to overcome the difficulties from high
Reynolds number, such as Galerkin least square methods in [3, 4, 11], residual-
free bubbles methods in [5, 6], large eddy simulation methods in [14, 23], subgrid
scale methods in [9, 18], the defect-correction method [16, 17, 19, 22], variational
multiscale (VMS) methods in [12, 13, 28, 29]. In classical VMS method, the large
scales are defined by projections into appropriate finite element space on the same
mesh for the velocity deformation tensor. Recently, Zheng et al. studied a new
VMS scheme based on two local Gauss integrations in [28]. This new scheme avoids
constructing the projection operator, and does not add extra storage, and keeps the
same efficiency as the classical VMS method.

On the other hand, the velocity u and the pressure p in (1.1) are coupled by the
incompressible condition div u = 0, which makes the Navier-Stokes system being
difficult to solve numerically. A popular strategy to overcome this difficulty is to
relax the incompressible condition in an appropriate way and result in a pesudo-
compressible system, such as the penalty method and the artificial compressible
method [25]. For penalty finite element method based on Taylor-Hood finite ele-
ment pair, if we suppose the solution (u, p) ∈ H3(Ω) × H2(Ω), then the penalty
parameter ε is required to satisfy ε = O(h2) so that the convergence rates are op-
timal. However, in this case, the condition number of the numerical discretization
for the penalty finite element method is O(ε−1h−2), which result in a very ill-
conditioned problem when mesh size h tends to zero. In order to avoid the choice
of very small penalty parameter, Cheng & Abdul [1] studied the iteration penalty
method which can be viewed as the time discretization of the artificial compressible
method and also has been simply discussed for time-dependent Navier-Stokes equa-
tions by Shen [24]. From the error estimates for iteration penalty finite element
method, the penalty parameter ε and mesh size h only satisfy εk = O(h2) with
iteration number k ∈ N+. Thus for any ε < 1, the optimal convergence rates can

reach if and only if the iteration number k satisfies k ≥ [
2 ln |h|
ln |ε|

] + 1. We also note

that the iteration penalty method has been applied to Navier-Stokes equations with
friction boundary conditions by Dai et al. [2] for one-level method and Li & An [20]
for two-level method.

In this paper, we combine the iteration penalty method and VMS method based
on two local Gauss integrations with two-level discretization technique to solve the
numerical solutions of the system (1.1)-(1.2) at high Reynolds number. Two-level
discretizaion technique has become a powerful tool in solving nonlinear partial d-
ifferential equations. The basic idea is to capture ”large eddies” by computing the
initial approximation on the coarse mesh. and then to obtain the fine approxima-
tion by solving a linearized problem corresponding to nonlinear partial differential
equations on the fine mesh. More details can be referred to the work of Xu [26,27].
The two-level methods studied in this paper can be described as follows. In the first
step, we solve Navier-Stokes system (1.1)-(1.2) by classical penalty method on the
coarse mesh with mesh size H. In the second step, we solve Navier-Stokes system by
iteration penalty method and VMS method on the coarse mesh. In the third step,
we solve a linearized Navier-Stokes problem corresponding to Newton iteration by
iteration penalty method on the fine mesh.
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2. Preliminaries

In this paper, we use the standard notations H l(Ω) and || · ||l with l ∈ N to de-
note the Sobolev spaces and the Sobolev norms. Especially for l = 0, we denote
L2(Ω) and || · || instead of H0(Ω) and || · ||0, respectively. We also use the boldface
type notations Hl(Ω) and L2(Ω) to denote the vector Sobolev spaces H l(Ω)2 and
L2(Ω)2, respectively. The symbol c always denotes some positive constant which is
independent of µ and the mesh parameter h,H and the stable parameter α below,
and may be a different constant even in the same formulation. In addition, we will
use A . B to denote A ≤ cB for some generic positive constant.

Introduce the following function spaces frequently used in this paper:

V = H1
0(Ω), M = L2

0(Ω) = {q ∈ L2(Ω) :

∫
Ω

qdx = 0}.

The norm in V is equipped by

||v||V = (

∫
Ω

|∇v|2dx)1/2, ∀ v ∈ V.

It follows from Poincaré inequality that || · ||V is equivalent to || · ||1.
For the mathematical setting of the system (1.1)-(1.2), we introduce the follow-

ing continuous bilinear forms a(·, ·) and d(·, ·) on V×V and V×M , respectively,
by

a(u,v) = µ

∫
Ω

∇u : ∇vdx, ∀ u,v ∈ V,

d(v, q) =

∫
Ω

qdiv vdx, ∀ v ∈ V, q ∈M,

and a trilinear form on V×V×V by

b(u,v,w) =

∫
Ω

(u · ∇)v ·wdx+
1

2

∫
Ω

(div u)v ·wdx

=
1

2

∫
Ω

(u · ∇)v ·wdx− 1

2

∫
Ω

(u · ∇)w · vdx, ∀ u,v,w ∈ V.

It is obvious that

b(u,v,w) = −b(u,w,v), ∀ u,v,w ∈ V. (2.1)

Moreover, b(u,v,w) satisfies the following inequalities:

b(u,v,w) ≤ N ||u||V ||v||V ||w||V , ∀ u,v,w ∈ V, (2.2)

b(u,v,w) ≤ N ||u||V ||v||2||w||, ∀ u ∈ V,v ∈ H2(Ω),w ∈ L2(Ω), (2.3)

where N > 0 depends only on Ω.
Under the above notations, for given f ∈ L2(Ω), the variational formulation of

(1.1)-(1.2) reads as follows: find (u, p) ∈ V×M such that for all (v, q) ∈ V×Ma(u,v) + b(u,u,v)− d(v, p) = (f,v),

d(u, q) = 0.
(2.4)
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If we introduce a generalized bilinear form on (V,M)× (V,M) defined by

B(u, p ;v, q) = a(u,v)− d(v, p) + d(u, q),

then the problem (2.4) can be rewritten as

B(u, p ;v, q) + b(u,u,v) = (f,v). (2.5)

We recall the classical existence and uniqueness result [25] of the solution to the
problem (2.5) .

Theorem 2.1. Assume that µ and f satisfy the following uniqueness condition:

2µ−2N ||f|| < 1, (2.6)

then the problem (2.5) exists a unique solution (u, p) ∈ V×M satisfying

||u||V ≤
1

µ
||f||. (2.7)

3. Iteration penalty and VMS methods

As mentioned in Section 1, the standard Galerkin finite element methods do not
work well for the system (1.1)-(1.2) at high Reynolds number. In this section,
we will give the VMS finite element approximation based on the iteration penalty
method. Let Th be a family of quasi-uniform triangular partition of Ω into triangles
of diameter not greater than 0 < h < 1. Let Pr(K) be the space of the polynomials
on K ∈ Th of degree at most r. Define the finite element subspaces of V and M ,
respectively, by

Wh = {vh ∈ C(Ω), vh|K ∈ P2(K), ∀ K ∈ Th}, Vh = Wh ∩V,

Mh = {qh ∈ C(Ω), qh|K ∈ P1(K), ∀ K ∈ Th} ∩M.

Then the following discrete inf-sup condition holds, i.e., there exists some posi-
tive constant β > 0 such that

β||qh|| ≤ sup
wh∈Vh

d(wh, qh)

||wh||V
. (3.1)

In order to obtain the error estimates, we denote Rh and Qh the L2 orthogonal
projections onto Vh and Mh, respectively, which satisfy

||v−Rhv||+ h||v−Rhv||V . hi||v||i, ∀ v ∈ H3(Ω) ∩ V, i = 1, 2, 3, (3.2)

||q −Qhq|| . hj ||q||j , ∀ q ∈ H2(Ω) ∩M, j = 0, 1, 2. (3.3)

Following [15,18], the classical VMS method relies on the choice of the scale space
Lh ⊂ L = L2(Ω)2×2, where Lh = R0(Ω)2×2 with R0(Ω) = {vh ∈ L2(Ω), vh|K ∈
P0(Ω), ∀ K ∈ Th}, and the stable parameter α < 1. Then the classical VMS
method for (2.4) reads as follows: find (uh, ph) ∈ Vh ×Mh and gh ∈ Lh such that

(1 + α)a(uh,vh)− α(gh,∇vh) + b(uh,uh,vh)− d(vh, ph) = (f,vh), ∀ vh ∈ Vh,

d(uh, qh) = 0, ∀ qh ∈Mh,

(gh −∇uh, lh) = 0, ∀ lh ∈ Lh.

(3.4)
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Although this VMS method preserves the stabilization at high Reynolds number,
but it brings the space Lh which needs the extra storage in the numerical compu-
tation. To avoid it, Zheng studied a new VMS method based on two local Gauss
integrations [28]. Their method avoids adding extra storage and keeps the same
accuracy as the classical VMS method (3.4). Define the orthogonal projection op-
erator Π : L→ Lh with the following properties:

((I −Π)l,gh) = 0, ∀ l ∈ L,gh ∈ Lh, (3.5)

||Πl|| . ||l||, ∀ l ∈ L, (3.6)

||(I −Π)l|| . hi||l||i, ∀ l ∈ L ∩Hi(Ω)2×2, i = 0, 1. (3.7)

Then the discrete problem (3.4) is equivalent to: find (uh, ph) ∈ Vh×Mh such thata(uh,vh) + b(uh,uh,vh)− d(vh, ph) +G(uh,vh) = (f,vh), ∀ vh ∈ Vh,

d(uh, qh) = 0, ∀ qh ∈Mh,
(3.8)

where the stabilized term G(uh,vh) is given by

G(uh,vh) = α ((I −Π)∇uh, (I −Π)∇vh) .

It has been shown that G(uh,vh) is of the following equivalent form based on two
local Gauss integrations [28]:

G(uh,vh) = α
∑
T∈Th

{∫
T,k

∇uh · ∇vhdx−
∫
T,1

∇uh · ∇vhdx

}
,

where
∫
T,i
g(x)dx describes an appropriate Gauss integral over T ∈ Th which is

exact for polynomials of degree i ∈ N+. Denote

Bh(uh, ph;vh, qh) = B(uh, ph ;vh, qh) +G(uh,vh).

Then an alternative to the problem (3.8) is

Bh(uh, ph;vh, qh) + b(uh,uh,vh) = (f,vh). (3.9)

Moreover, Bh is of the following matrix formA B

BT 0

 ,

where the matrices A and B are from a(·, ·)+G(·, ·) and d(·, ·) according to the bases
of Vh and Mh, respectively. The matrix BT is the transpose of B. The matrix 0 is
the zero matrix, which brings the difficulty in solving (3.9) numerically. A popular
strategy to overcome this difficulty is the use of stabilized terms. Different stabilized
terms gives different stabilized methods. Here, we use the iteration penalty method
introduced by Cheng & Abdul [1]. Let ε > 0 the small penalty parameter. First,
we give one-level iteration penalty method for the problem (3.8).

Step I: Find (u0
εh, p

0
εh) ∈ Vh ×Mh such that for all (vh, qh) ∈ Vh ×Mha(u0

εh,vh) + b(u0
εh,u

0
εh,vh)− d(vh, p

0
εh) = (f,vh),

d(u0
εh, qh) + ε(p0

εh, qh) = 0.
(3.10)
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Step II: For k = 1, 2, · · · , find (uk
εh, p

k
εh) ∈ Vh×Mh such that for all (vh, qh) ∈

Vh ×Mha(uk
εh,vh) + b(uk

εh,u
k
εh,vh)− d(vh, p

k
εh) +G(uk

εh,vh) = (f,vh),

d(uk
εh, qh) + ε(pkεh, qh) = ε(pk−1

εh , qh).
(3.11)

Remark 3.1. The problem (3.10) is the classical penalty finite element approxi-
mation for (2.4). Moreover, it has been shown that the solution (u0

εh, p
0
εh) is of the

following optimal error estimate

||u− u0
εh||V + ||p− p0

εh|| ≤ c(||u−Rhu||V + ||p−Qhp||+ ε||p||). (3.12)

Since the discrete inf-sup condition (3.1) holds for our choices of Vh and Mh,
then it is easy to show that the problems (3.10) and (3.11) exist unique solutions
(u0

εh, p
0
εh) and (uk

εh, p
k
εh) by the classical arguments [8].

Theorem 3.1. Suppose that (uk
εh, p

k
εh) ∈ Vh ×Mh is the solution to the problem

(3.11), then it satisfies

µ||uk
εh||2V + ε||pkεh||2 ≤

2k + 1

2µ
||f||2, (3.13)

for k ∈ N+.

Proof. Setting vh = u0
εh and qh = p0

εh in (3.10), using (2.1) and Young inequality
leads to

µ||u0
εh||2V + ε||p0

εh||2 = (f,u0
εh) ≤ µ

2
||u0

εh||2V +
1

2µ
||f||2.

Then µ||u0
εh||2V +2ε||p0

εh||2 ≤
1

µ
||f||2. For k = 1, 2, · · · , setting vh = uk

εh and qh = pkεh

in (3.11), it yields

µ||uk
εh||2V + ε||pkεh||2 +G(uk

εh,u
k
εh)

=(f,uk
εh) + ε(pk−1

εh , pkεh)

≤µ
2
||u0

εh||2V +
1

2µ
||f||2 +

ε

2
||pkεh||2 +

ε

2
||pk−1

εh ||
2.

Noticing G(uk
εh,u

k
εh) ≥ 0, we obtain

µ||uk
εh||2V + ε||pkεh||2 ≤

1

µ
||f||2 + ε||pk−1

εh ||
2 ≤ · · · ≤ k

µ
||f||2 + ε||p0

εh||2 ≤
2k + 1

2µ
||f||2.

Since Vh ⊂ V and Mh ⊂M , subtracting (2.4) from (3.11) gives
a(u− uk

εh,vh) + b(u,u,vh)− b(uk
εh,u

k
εh,vh)− d(vh, p− pkεh)

+G(u− uk
εh,vh) = G(u,vh),

d(u− uk
εh, qh) = ε(pkεh − p

k−1
εh , qh).

(3.14)
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Taking vh = Rhu− uk
εh in the first equation of (3.14), we get

µ||Rhu− uk
εh||2V + α||(I −Π)∇(Rhu− uk

εh)||2

= a(Rhu− u, Rhu− uk
εh)︸ ︷︷ ︸

I1

+ b(uk
εh,u

k
εh, Rhu− uk

εh)− b(u,u, Rhu− uk
εh)︸ ︷︷ ︸

I2

+ d(Rhu− uk
εh, p− pkεh)︸ ︷︷ ︸
I3

+G(u, Rhu− uk
εh) +G(Rhu− u, Rhu− uk

εh)︸ ︷︷ ︸
I4

.

(3.15)

From Young inequality, the terms I1 and I4 are bounded, respectively, by

I1 ≤ µ||Rhu− u||V ||Rhu− uk
εh||V ≤

µ

8
||Rhu− uk

εh||2V + 2µ||Rhu− u||2V (3.16)

and

I4 ≤α(||(I −Π)∇u||+ ||(I −Π)(Rhu− u)||)||(I −Π)∇(Rhu− uk
εh)||

≤α
2
||(I −Π)∇(Rhu− uk

εh)||2 + α(||(I −Π)∇u||2

+ ||(I −Π)∇(Rhu− u)||2). (3.17)

Using (2.1), the term I2 can be rewritten as

b(uk
εh,u

k
εh, Rhu− uk

εh)− b(u,u, Rhu− uk
εh)

=b(u−Rhu,u,u
k
εh −Rhu) + b(Rhu− uk

εh,u,u
k
εh −Rhu)

+ b(uk
εh,u−Rhu,u

k
εh −Rhu).

Then under the following stable condition√
2(2k + 1)µ−2N ||f|| < 1, k ∈ N+, (3.18)

from (2.2) one has

I2 ≤ N(||u||V + ||uk
εh||V )||u−Rhu||V ||uk

εh −Rhu||V +N ||u||V ||uk
εh −Rhu||2V

≤ µ||u−Rhu||V ||uk
εh −Rhu||V +

µ

2
||uk

εh −Rhu||2V

≤ µ

8
||uk

εh −Rhu||2V + 2µ||u−Rhu||2V +
µ

2
||uk

εh −Rhu||2V . (3.19)

Setting qh = Qhp− pkεh in the second equation of (3.14), it yields

I3 = d(Rhu− uk
εh, p−Qhp) + d(Rhu− uk

εh, Qhp− pkεh)

= d(Rhu− uk
εh, p−Qhp) + d(Rhu− u, Qhp− pkεh) + d(u− uk

εh, Qhp− pkεh)

= d(Rhu− uk
εh, p−Qhp) + d(Rhu− u, Qhp− pkεh)

+ ε(Qhp− pk−1
εh , Qhp− pkεh)− ε||Qhp− pkεh||2

≤ µ

8
||uk

εh −Rhu||2V +
2

µ
||p−Qhp||2 + η||Qhp− pkεh||2 +

1

2η
||Rhu− u||2V

+
ε2

2η
||Qhp− pk−1

εh ||
2, (3.20)
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where η > 0 is some small constant determined later. Combining (3.16)-(3.20) into
(3.15), we get

µ

8
||Rhu− uk

εh||2V

≤4µ||Rhu− u||2V +
1

2η
||Rhu− u||2V + α||(I −Π)∇u||2 + α||(I −Π)∇(Rhu− u)||2

+
2

µ
||p−Qhp||2 +

ε2

2η
||Qhp− pk−1

εh ||
2 + η||Qhp− pkεh||2.

Then from triangular inequality, we have

||u− uk
εh||V

.||Rhu− u||V +
1
√
µη
||Rhu− u||V +

√
α

µ
||(I −Π)∇u||+

√
α

µ
||(I −Π)(Rhu− u)||

+
1

µ
||p−Qhp||+

ε
√
µη
||Qhp− pk−1

εh ||) +

√
8η

µ
||Qhp− pkεh||. (3.21)

On the other hand, using (2.1), (3.7) and (3.14), we can estimate d(vh, p− pkεh) by

d(vh, p− pkεh) ≤ (2µ||u− uk
εh||V + cα||(I −Π)∇u||)||vh||V ,

which together with the discrete inf-sup condition (3.1) yields

||Qhp− pkεh|| ≤
2µ

β
||u− uk

εh||V + ||Qhp− p||+ cα||(I −Π)∇u||. (3.22)

Substituting (3.22) into (3.21) and choosing η satisfying

√
32ηµ

β2
=

1

2
and using

(3.7), (3.19), we obtain

||u− uk
εh||V . ||u−Rhu||V + α1/2||(I −Π)∇u||+ ||p−Qhp||+ ε||p− pk−1

εh ||.

Using (3.22) again, we obtain

||p− pkεh|| . ||u−Rhu||V + α1/2||(I −Π)∇u||+ ||p−Qhp||+ ε||p− pk−1
εh ||.

Combining the above discussion, we conclude the following lemma.

Lemma 3.1. Let (u, p) ∈ V ×M and (uk
εh, p

k
εh) ∈ Vh ×Mh be the solutions of

(2.4) and (3.11). Under the stable condition (3.18), they satisfy

||u−uk
εh||V +||p−pkεh|| . ||u−Rhu||V +α1/2||(I−Π)∇u||+||p−Qhp||+ε||p−pk−1

εh ||.
(3.23)

As a direct consequence of (3.23), we immediately obtain the following theorem.

Theorem 3.2. Under the assumptions in Lemma 3.1, if (u, p) ∈ H3(Ω)×H2(Ω),
then we have the following error estimate:

||u− uk
εh||V + ||p− pkεh|| . h2 + α1/2h+ εk+1. (3.24)

Proof. The estimate (3.24) follows from (3.2), (3.3), (3.7) and (3.12).
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Remark 3.2. If the solution (u, p) ∈ H3(Ω) ×H2(Ω), the classical penalty finite
element approximation (3.10) satisfies the following error estimate:

||u− u0
εh||V + ||p− p0

εh|| . h2 + ε.

As discussed in Section 1, if we only use the classical penalty method to solve Navier-
Stokes system, then the penalty parameter is required to satisfy ε = O(h2) such
that the optimal convergence rate holds. If we use iteration penalty method (3.10)-
(3.11), from the error estimate derived in Theorem 3.2, the penalty parameter only
satisfies εk = O(h2) for some iteration number k ∈ N+. Thus, the iteration penalty

method works well for any ε < 1 if the iteration number k satisfies k ≥ [
2 ln |h|
ln |ε|

]+1.

4. Two-level mesh method

In terms of iteration penalty and VMS method in Section 3, two subproblems (3.10)
and (3.11) both need the iteration procedures to solve (u0

εh, p
0
εh) and (uk

εh, p
k
εh).

Especially, when h tends to zero, these iteration procedures need to consume a
large amount of CPU time (see the first numerical experiment in Section 5). In
order to obtain the efficient algorithm, in this section, we will study two-level mesh
method based on iteration penalty and VMS method. From now on, H and h
with h < H are two real positive parameter. The coarse mesh triangulation TH is
made as like in Section 3. And a fine mesh triangulation Th is generated by a mesh
refinement process to TH . The conforming finite element space pairs (Vh,Mh) and
(VH ,MH) ⊂ (Vh,Mh) corresponding to the triangulations Th and TH , respectively,
are constructed as like in Section 3. With the above notations, we propose the
following two-level mesh method corresponding to Newton iteration.

At Steps I and II, we solve (3.10) and (3.11) on the coarse mesh.
Step I: Find (u0

εH , p
0
εH) ∈ VH ×MH such that for all (vH , qH) ∈ VH ×MHa(u0

εH ,vH) + b(u0
εH ,u

0
εH ,vH)− d(vH , p

0
εH) = (f,vH),

d(u0
εH , qH) + ε(p0

εH , qH) = 0.
(4.1)

Step II: For k = 1, 2, · · · ,M , find (uk
εH , p

k
εH) ∈ VH ×MH such that for all

(vH , qH) ∈ VH ×MHa(uk
εH ,vH) + b(uk

εH ,u
k
εH ,vH)− d(vH , p

k
εH) +G(uk

εH ,vH) = (f,vH),

d(uk
εH , qH) + ε(pkεH , qH) = ε(pk−1

εH , qH),
(4.2)

where M ∈ N+ satisfies M ≥ [
2 ln |H|

ln |ε|
] + 1 according to (3.24).

At final step, we solve a linearized Navier-Stokes problem on the fine mesh in
terms of Newton iteration.

Step III: Find (uεh, pεh) ∈ Vh ×Mh such that for all (vh, qh) ∈ Vh ×Mh
a(uεh,vh) + b(uεh,u

M
εH ,vh) + b(uM

εH ,uεh,vh)− d(vh, pεh)

= (f,vh) + b(uM
εH ,u

M
εH ,vh),

d(uεh, qh) + ε(pεh, qh) = ε(pMεH , qh).

(4.3)
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According to the results derived in Theorems 3.1 and 3.2, under the stable
condition (3.19), the solution (uk

εH , p
k
εH) ∈ VH ×MH to the problem (4.2) satisfies

µ||uk
εH ||2V + ε||pkεH ||2 ≤

2k + 1

2µ
||f||2, k = 1, 2 · · · ,M (4.4)

and

||u− uk
εH ||V + ||p− pkεH || . H2 + α1/2H + εk+1, k = 1, 2 · · · ,M. (4.5)

Now, we begin to estimate (uεh, pεh) under a strong stable condition:

2
√

2(2M + 1)µ−2N ||f|| < 1, (4.6)

under which there holds ||uM
εH ||V ≤

µ

4N
. Taking (vh, qh) = (uεh, pεh) in (4.3) yields

a(uεh,uεh) + b(uεh,u
M
εH ,uεh) + ε||pεh||2 = (f,uεh) + b(uM

εH ,u
M
εH ,uεh) + ε(pMεH , pεh).

(4.7)

Then the left-hand side of (4.7) satisfies

a(uεh,uεh) + b(uεh,u
M
εH ,uεh) + ε||pεh||2

≥ µ||uεh||2V +N ||uM
εH ||V ||uεh||2V + ε||pεh||2

≥ 3µ

4
||uεh||2V + ε||pεh||2.

The right-hand side of (4.3) satisfies

(f,uεh) + b(uM
εH ,u

M
εH ,uεh) + ε(pMεH , pεh)

≤ ||f||||uεh||V +
µ

4
||uM

εH ||V ||uεh||V + ε||pMεH ||||pεh||

≤ µ

4
||uεh||2V + ε||pεh||2 +

2

µ
||f||2 +

µ

8
||uM

εH ||2V +
ε

4
||pMεH ||2.

Thus, it follows from (4.7) and (4.4) that

µ||uεh||2V ≤
4

µ
||f||2 +

µ

4
||uM

εH ||2V +
ε

2
||pMεH ||2 <

7(2M + 1)

4µ
||f||2.

Moreover, under the stable condition (4.6) there holds

||uεh||V <

√
2(2M + 1)

µ
||f|| ≤ µ

2N
. (4.8)

Next, we give the error estimate for (uεh, pεh).

Theorem 4.1. Let (u, p) ∈ V∩H3(Ω)×M ∩H2(Ω) and (uεh, pεh) ∈ Vh×Mh be
the solutions of (2.4) and (4.3). Under the stable condition (4.6), there exists some
h0, H0 and ε0 such that when h < h0, H < H0, ε < ε0, there holds

||u− uεh||V + ||p− pεh|| . h2 +H4 + εα1/2H + εH2 + εM+2. (4.9)
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Proof. Subtracting (2.4) from (4.3) leads to
a(u− uεh,vh) + b(u,u,vh)− b(uM

εH ,uεh,vh)− b(uεh,u
M
εH ,vh)

+b(uM
εH ,u

M
εH ,vh)− d(vh, p− pεh) = 0,

d(u− uεh, qh) = ε(pεh − pMεH , qh).

(4.10)

Taking vh = Rhu− uεh in the first equation of (4.10), we get

µ||Rhu− uεh||2V = a(Rhu− u, Rhu− uεh)︸ ︷︷ ︸
J1

+ d(Rhu− uεh, p− pεh)︸ ︷︷ ︸
J2

+ b(uM
εH ,uεh, Rhu− uεh) + b(uεh,u

M
εH , Rhu− uεh)︸ ︷︷ ︸

−b(u,u, Rhu− uεh)− b(uM
εH ,u

M
εH , Rhu− uεH)︸ ︷︷ ︸

J3

.

(4.11)

Then using the similar methods for I1 and I3 in the proof of Lemma 3.1, J1 and J2

satisfy

J1 ≤
µ

8
||Rhu− uεh||2V + 2µ||Rhu− u||2V (4.12)

and

J2 = d(Rhu− uεh, p−Qhp) + d(Rhu− uεh, Qhp− pεh)

= d(Rhu− uM
εh, p−Qhp) + d(Rhu− u, Qhp− pεh) + d(u− uεh, Qhp− pεh)

= d(Rhu− uεh, p−Qhp) + d(Rhu− u, Qhp− pεh)

+ ε(Qhp− pMεH , Qhp− pεh)− ε||Qhp− pεh||2

≤ µ

8
||uεh −Rhu||2V +

2

µ
||p−Qhp||2 + η||Qhp− pεh||2 +

1

2η
||Rhu− u||2V

+
ε2

2η
||Qhp− pMεH ||2, (4.13)

for some small positive constant η > 0. Concerning J3, we rewrite it as

J3 =b(uεh − u,u, Rhu− uεh) + b(uεh,uεh − u, Rhu− uεh)

− b(uεh − uH ,uεh − uM
εH , Rhu− uεh)

= b(uεh −Rhu,u, Rhu− uεh) + b(Rhu− u,u, Rhu− uεh)︸ ︷︷ ︸
J4

+ b(uεh, Rhu− u, Rhu− uεh)︸ ︷︷ ︸
J5

+ b(Rhu− uεh, Rhu− uM
εH , Rhu− uεh)︸ ︷︷ ︸

J6

+ b(uM
εH −Rhu, Rhu− uM

εH , Rhu− uεh).︸ ︷︷ ︸
J7

(4.14)

Then using (2.2), all terms in the right-hand side of (4.14) are estimated, respec-
tively, by

J4 ≤ N ||u||V ||uεh −Rhu||2V +N ||u||V ||u−Rhu||V ||uεh −Rhu||V

≤ µ

4
||uεh −Rhu||2V +

µ

16
||uεh −Rhu||2V +

µ

4
||u−Rhu||2V (4.15)
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and

J5 ≤ N ||uεh||V ||u−Rhu||V ||uεh −Rhu||V

≤ µ

16
||uεh −Rhu||2V + µ||u−Rhu||2V (4.16)

and

J6 ≤ N ||Rhu− uM
εH ||V ||uεh −Rhu||2V

≤ N(||u−Rhu||V + ||u− uM
εH ||V )||uεh −Rhu||2V

≤ C2(h2 +H2 + α1/2H + εM+1)||uεh −Rhu||2V (4.17)

with C2 > 0 independent of µ, h,H and ε, and

J7 ≤ N ||uM
εH −Rhu||2V ||uεh −Rhu||V

≤ µ

16
||uεh −Rhu||2V +

N2

4µ
(||u− uM

εH ||4V + ||u−Rhu||4V ). (4.18)

Substituting these estimates (4.12)-(4.18) into (4.11), there exists some h1, H0 and
ε0 such that when h < h1, H < H0, ε < ε0, there holds C2(h2+H2+α1/2H+εk+1) <
µ

16
. Then we get

µ

4
||uεh −Rhu||2V

≤η||Qhp− pεh||2 + 4µ||u−Rhu||2V +
1

2η
||u−Rhu||2V

+
2

µ
||p−Qhp||2 +

ε2

2η
||Qhp− pMεH ||2 +

N2

4µ
(||u− uM

εH ||4V + ||u−Rhu||4V ).

Thus, from triangular inequality one has

||u− uεh||V

≤
√

4η

µ
||Qhp− pεh||+ 4||u−Rhu||V +

√
2

µη
||u−Rhu||V +

3

µ
||p−Qhp||

+

√
2

µη
ε||Qhp− pMεH ||+

N

µ
||u−Rhu||2V +

N

µ
||u− uM

εH ||2V . (4.19)

Next, we estimate ||Qhp − pεh|| according to the discrete inf-sup condition (3.1).
First, we note that

b(u,u,vh)− b(uM
εH ,uεh,vh)− b(uεh,u

M
εH ,vh) + b(uM

εH ,u
M
εH ,vh)

=b(u− uεh,u,vh) + b(u,u−Rhu,vh)− b(u− uεh,u−Rhu,vh)

+ b(uεh − uM
εH , Rhu− uM

εH ,vh)− b(uM
εH ,uεh −Rhu,vh)

≤(N ||u||V ||u− uεh||V +N ||u||V ||u−Rhu||V +N ||u−Rhu||V ||u− uεh||V )||vh||V
+N(||u− uεh||V + ||u− uM

εH ||V )(||u−Rhu||V + ||u− uM
εH ||V )||vh||V

+N ||uM
εH ||V (||u− uεh||V + ||u−Rhu||V )||vh||V

≤3µ

4
||u− uεh||V ||vh||V +

3µ

4
||u−Rhu||V ||vh||V +NC3h

2||u− uεh||V ||vh||V
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+ C2(H2 + α1/2H + εM+1)||u− uεh||V ||vh||V
+N ||u− uM

εH ||V (||u−Rhu||V + ||u− uM
εH ||V )||vh||V

≤13µ

16
||u− uεh||V ||vh||V +

3µ

4
||u−Rhu||V ||vh||V +NC3h

2||u− uεh||V ||vh||V

+N ||u− uM
εH ||V (||u−Rhu||V + ||u− uM

εH ||V )||vh||V , (4.20)

with some positive constant C3 independent of µ, h,H and ε. Then there exists

some h2 such that when h < h2, there holds NC3h
2 <

3µ

16
. Then it follows from

the first equation in (4.10) that

d(vh, p− pεh) ≤2µ||u− uεh||V ||vh||V +
3µ

4
||u−Rhu||V ||vh||V

+N ||u− uM
εH ||V (||u−Rhu||V + ||u− uM

εH ||V )||vh||V .

Using (3.1), we obtain

β||Qhp− pεh|| ≤ sup
vh∈Vh

d(vh, Qhp− p) + d(vh, p− pεh)

||vh||V

≤||p−Qhp||+ 2µ||u− uεh||V +
3µ

4
||u−Rhu||V

+N ||u− uM
εH ||V (||u−Rhu||V + ||u− uM

εH ||V ). (4.21)

We choose sufficiently small η such that

√
16ηµ

β2
=

1

2
then substituting (4.21) into

(4.19) yields

||u− uεh||V
.||u−Rhu||V + ||u−Rhu||2V + ||p−Qhp||+ ε||Qhp− pMεH ||+ ||u− uM

εH ||2V .

Therefore, we get from (3.2), (3.3), (3.7) and (4.5) that

||u− uεh||V . h2 +H4 + εα1/2H + εH2 + εM+2.

Using triangular inequality and (4.23) again, we obtain

||p− pεh|| . h2 +H4 + εα1/2H + εH2 + εM+2.

We complete the proof of this theorem by choosing h0 = min{h1, h2}.

Remark 4.1. From the error estimate derived in Theorem 4.1, if h,H and α satisfy
h = O(H2), α = O(H2) and εM+1 = O(H2), then

||u− uεh||V + ||p− pεh|| . h2 + εh. (4.22)

To obtain the optimal convergence order O(h2), the penalty parameter is required
to satisfy ε = O(h), which together with εM+1 = O(H2) = O(h) implies that the
iteration number M = 1 at Step II. Thus, the two-level mesh method (4.1)-(4.3)
becomes

Step I: Find (u0
εH , p

0
εH) ∈ VH ×MH such that for all (vH , qH) ∈ VH ×MHa(u0

εH ,vH) + b(u0
εH ,u

0
εH ,vH)− d(vH , p

0
εH) = (f,vH),

d(u0
εH , qH) + ε(p0

εH , qH) = 0.
(4.23)
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Step II: Find (u1
εH , p

1
εH) ∈ VH ×MH such that for all (vH , qH) ∈ VH ×MHa(u1

εH ,vH) + b(u1
εH ,u

1
εH ,vH)− d(vH , p

1
εH) +G(u1

εH ,vH) = (f,vH),

d(u1
εH , qH) + ε(p1

εH , qH) = ε(p0
εH , qH).

(4.24)

Step III: Find (uεh, pεh) ∈ Vh ×Mh such that for all (vh, qh) ∈ Vh ×Mh
a(uεh,vh) + b(uεh,u

1
εH ,vh) + b(u1

εH ,uεh,vh)− d(vh, pεh)

= (f,vh) + b(u1
εH ,u

1
εH ,vh),

d(uεh, qh) + ε(pεh, qh) = ε(p1
εH , qh).

(4.25)

Remark 4.2. From the two-level mesh methods (4.23)-(4.25), we can see that the
VMS method is only used in solving the approximation solution on the coarse mesh.
It is different to the two-level mesh methods in [21] where VMS method is used on
the coarse mesh and the fine mesh.

5. Numerical results

In this section, we will give two different numerical experiments. The first numer-
ical is used to verify the convergence rate derived in the above sections. In the
second numerical experiment, we will test a popular benchmark problem-lid driven
cavity flow. In these experiments, we implement all algorithms by the finite element
software FreeFem++ [10].

5.1. Analytical solution

Consider Ω as the unit square in R2. We choose the exact solution as follows:

u(x, y) = (u1(x, y), u2(x, y)), p(x, y) = x2 − y2,

u1(x, y) = x2(x− 1)2y(y − 1)(2y − 1), u2(x, y) = −x(x− 1)(2x− 1)y2(y − 1)2.

The force f(x, y) is determined by the original system (1.1). First, we use one-level

Table 1. One-level iteration penalty and VMS method with ε = 0.5

1/h
||u− uk

εh||V
||u||V

rate
||p− pkεh||
||p||

rate iteration numbers CPU (s)

42 1.18764e-02 / 9.76563e-04 / 33 19.694
62 2.28303e-03 2.034 1.92901e-04 2.000 11 43.984
82 7.23476e-04 1.997 6.10352e-05 2.000 7 107.031
102 2.95837e-04 2.004 2.50000e-05 2.000 6 252.936
122 1.42494e-04 2.003 1.20563e-05 2.000 6 553.135

iteration penalty and VMS method (3.10)-(3.11) to verify the convergence order
derived in Theorem 3.2 for different ε < 1. We take 1/h = 42, 62, · · · , 122, Re =
10000, α = 0.1h2 and ε = 0.5, 0.1 and 0.01. The numerical results for different ε are
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Table 2. One-level iteration penalty and VMS method with ε = 0.1

1/h
||u− uk

εh||V
||u||V

rate
||p− pkεh||
||p||

rate iteration numbers CPU (s)

42 1.16156e-02 / 9.76563e-04 / 30 17.225
62 2.28987e-03 2.002 1.92901e-04 2.000 10 38.253
82 7.23196e-04 2.002 6.10354e-05 2.000 6 90.754
102 2.95468e-04 2.006 2.50001e-05 2.000 5 212.151
122 1.42343e-04 2.003 1.20563e-05 2.000 5 472.061

Table 3. One-level iteration penalty and VMS method with ε = 0.01

1/h
||u− uk

εh||V
||u||V

rate
||p− pkεh||
||p||

rate iteration numbers CPU (s)

42 1.15942e-02 / 9.76563e-04 / 25 15.143
62 2.28760e-03 2.001 1.92901e-04 2.000 8 33.652
82 7.22579e-04 2.003 6.10352e-05 2.000 5 82.346
102 2.96354e-04 1.997 2.50001e-05 2.000 4 191.469
122 1.42389e-04 2.010 1.20563e-05 2.000 4 422.199

shown in Tables 1-3, from which we can see that although the optimal convergence
order O(h2) are obtained, however, the much more CPU time are consumed in
solving (uk

εh, p
k
εh) since there need some iterative procedures in (3.11). Comparing

the numerical results in Table 4 below, which are solved by the classical penalty
method (3.10), the one-level iteration penalty method is not efficient enough.

Recall (u0
εh, p

0
εh) the approximation solution of the one-level classical penalty

and VMS method defined by (3.10). If we choose ε = O(h2), then (u0
εh, p

0
εh) is of

the optimal error estimate

||u− u0
εh||V + ||p− p0

εh|| . h2.

Table 2 displays the numerical results by using the one-level classical penalty method
with ε = 0.1h2. By comparing the CPU times in Tables 1-3 and Table 4, the classical
penalty method is much more efficient than the one-level iteration penalty method.

Next, we give the numerical results by using the two-level iteration penalty and
VMS method (4.23)-(4.25). In this experiment, we select Re = 10000, α = 0.1h2

and ε = h. The numerical results are displayed in Table 5, from which we can see
that two-level iteration penalty and VMS method can reach the theoretical conver-
gence rates of O(h2). Moreover, from the view of computational cost, we can obvi-
ously observe from Table 6 that two-level iteration penalty and VMS method saves
about 60% ∼ 70% CPU time than one-level classical penalty and VMS method,
and obtains nearly the same approximation results.

In Table 7, we display the numerical results about the solution (u1
εH , p

1
εH) defined

by (4.24) on the coarse mesh. It follows from (4.5) that the approximation solution
(u1

εH , p
1
εH) satisfies

||u− u1
εH ||V + ||p− p1

εH || . H2,
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Table 4. One-level classical penalty and VMS method

1/h
||u− u0

εh||V
||u||V

rate
||p− p0

εh||
||p||

rate CPU (s)

42 1.19698e-02 / 9.76563e-04 / 1.577
62 2.36148e-03 2.001 1.92902e-04 2.000 8.219
82 7.46985e-04 2.001 6.10353e-05 2.000 25.969
102 3.05946e-04 2.000 2.50001e-05 2.000 66.188
122 1.47539e-04 2.000 1.20563e-05 2.000 150.394

Table 5. Two-level iteration penalty and VMS method

1/H 1/h
||u− uεh||V
||u||V

rate
||p− pεh||
||p||

rate CPU (s)

4 42 1.20102e-02 / 9.76563e-04 / 1.659
6 62 2.31947e-03 2.028 1.92901e-04 2.000 3.349
8 82 7.29082e-04 2.011 6.10352e-05 2.000 9.078
10 102 2.98035e-04 2.004 2.50000e-05 2.000 21.982
12 122 1.43615e-04 2.002 1.20563e-05 2.000 46.547
14 142 7.74901e-05 2.001 6.50771e-06 2.000 89.632

due to ε = O(h), h = O(H2) and α = 0.1h2. The predict convergence rates of
O(H2) for velocity and pressure are derived for different coarse meshes.

Table 6. Comparison of CPU Time

1/h 62 82 102 122

one-level classical method 8.219 25.969 66.188 150.394
two-level method 3.349 9.078 21.982 46.547

save time 59.2% 65.0% 66.8% 69.1%

Table 7. Numerical results on coarse mesh

1/H
||u− u1

εH ||V
||u||V

rate
||p− p1

εH ||
||p||

rate

4 1.72488e-01 / 1.56250e-02 /
6 8.04284e-02 1.882 6.94444e-03 2.000
8 4.58990e-02 1.950 3.90625e-03 2.000
10 2.95220e-02 1.978 2.50000e-03 2.000
12 2.05302e-02 1.992 1.73611e-03 2.000
14 1.50867e-02 1.999 1.27551e-03 2.000
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5.2. Lid-driven cavity flow
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Figure 1. Results for x component of velocity along vertical centerline (left) and y component of velocity
along horizontal centerline (right) at Re = 1000
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Figure 2. Results for x component of velocity along vertical centerline (left) and y component of velocity
along horizontal centerline (right) at Re = 3200

For the test of two-level iteration penalty and VMS method, in this numerical
experiment, we consider the well known benchmark problem-the incompressible lid-
driven cavity flow. The flow domain is the unit square. On the top boundary, the
velocity of flow is u = (1, 0). On the other boundaries, the zero Dirichlet boundary
conditions are imposed. In order to show the efficiency of our method for high
Reynolds number flow, we set Re = 1000, 3200, 5000 and 10000. In all experiments,
we choose H = 1/64, h = 1/128, α = 0.1H, ε = h. The numerical results are shown
in Figs 1-4 compared with the results obtained by Ghia, Ghia & Shin in [7]. In
particular, we draw the x component of velocity along the vertical centerline and y
component of velocity along the horizontal centerline. Good agreements with the
benchmark results in [7] verify the efficiency of our method. To show the stability
of our method, we present the streamlines and the pressure contours of the cavity
flows at different Reynolds numbers in Figs 5-8. From these figures, we can see that
the main vortex moves towards the center of the cavity when Reynolds number
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Figure 3. Results for x component of velocity along vertical centerline (left) and y component of velocity
along horizontal centerline (right) at Re = 5000
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Figure 4. Results for x component of velocity along vertical centerline (left) and y component of velocity
along horizontal centerline (right) at Re = 10000
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Figure 5. Streamline of velocity and pressure contour at Re = 1000

increases. The second vortex appears in the right bottom corner of the cavity and
the third vortex appears in the left bottom corner of the cavity at Re = 1000. When
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Figure 6. Streamline of velocity and pressure contour at Re = 3200
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Figure 7. Streamline of velocity and pressure contour at Re = 5000

X

Y

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0.00127647

0.000347285

1.51479E-06

-1.07809E-05

-7.31579E-05

-0.01

-0.05

-0.09

-0.10686

X

Y

0 0.2 0.4 0.6 0.8 1
0

0

Figure 8. Streamline of velocity and pressure contour at Re = 10000

Reynolds numbers are chosen as 3200 and 5000, addition vortexes appear in the left
top corner and in the right bottom corner. At Re = 10000, the second vortex in
the right bottom corner becomes large, meanwhile, new vortex appears in the left
bottom corner. All numerical results coincide with the results in [7].
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