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1. Introduction

The study of asymptotic stability of positive solutions in difference equations is ex-
tremely useful in the behavior analysis of mathematical models in various biological
systems and other applications. In recent years, the global asymptotic behavior
of the difference equations of exponential form has been one of the main topics in
the theory of difference equations [1–6]. In particular, in [3] the authors studied
the existence of the equilibrium and the boundedness of solutions of the difference
equation

xn+1 = α+ βxn−1e−xn ,

where α, β are positive constants and the initial values x−1, x0 are positive numbers.
Inspired by the [3], in this paper, we extend the above equation and investigate

the global stability, boundedness nature of the positive solutions of the difference
equation

xn+1 = a+ bxn−1 + cxn−1e−xn , (1.1)

where the parameters a ∈ (0,∞), b ∈ (0, 1), c ∈ (0,∞), and the initial conditions
x−1, x0 are arbitrary nonnegative numbers. Equation (1.1) could have applications
in biology if we consider it as a model for the reproduction of some biennial plant.
In fact, the total amount of this plant xn+1 at the end of year n + 1 consists of
three components. The first term a is a certain planting in each year, the amount
remaining from the year n− 1 is bxn−1, and the last term cxn−1e−xn describes the

†the corresponding author. Email address:mahuili@nwnu.edu.cn(H. Ma)
1Department of Mathematics, Northwest Normal University, Lanzhou Gansu
730070, China

2Department of Mathematical Sciences, Middle Tennessee State University,
Murfreesboro TN 37130, USA
∗The authors were supported by the National Natural Science Foundation
of China(61363058), the Scientific Research Fund for Colleges and Universi-
ties of Gansu Province(2013B-007,2013A-016), Natural Science Foundation of
Gansu Province(145RJZA232,145RJYA259) and Promotion Funds for Young
Teachers in Northwest Normal University (NWNU-LKQN-12-14).

http://dx.doi.org/10.11948/2016041


Global asymptotic behavior of positive solutions... 601

plant produced in year n + 1, which is inhibited by the plant xn currently on the
ground, but increased by the recycling of the previous year’s plant xn−1.

2. Preliminaries

Let I be an interval of real numbers, and let f : I×I −→ I be a continuous function.
Consider the difference equation

xn+1 = f(xn, xn−1), n = 0, 1, · · · , (2.1)

where the initial values x−1, x0 ∈ I.
The linearized equation of (2.1) about the equilibrium point x̄ is the linear

difference equation

xn+1 + pxn + qxn−1 = 0, n = 0, 1, · · · , (2.2)

where p =
∂f

∂x
(x̄, x̄) and q =

∂f

∂y
(x̄, x̄).

The characteristic equation of (2.2) is the equation

λ2 + pλ+ q = 0. (2.3)

The following well-known lemma, called the Linearized Stability Theorem, we
just present part of results which will be used in this paper.

Lemma 2.1 (Theorem A, [1]). (The Linearized Stability Theorem). The following
statements are true.

(i) If both solutions of (2.3) have absolute value less than one, then the equilibrium
x̄ of (2.1) is locally asymptotically stable.

(ii) A necessary and sufficient condition for both roots of (2.3) to have absolute
value less tan one is

|p| < 1 + q < 2.

The main tool we will use is the following lemma.

Lemma 2.2 (Theorem D, [1]). Support that f satisfies the following conditions:

(i) There exist positive number a and b with a < b such that a ≤ f(x, y) ≤ b for
all x, y ∈ [a, b].

(ii) f(x, y) is decreasing in x ∈ [a, b] for each y ∈ [a, b], and f(x, y) is increasing
in y ∈ [a, b] for each x ∈ [a, b].

(iii) (2.1) has no solutions of prime period two in [a, b]. Then there exists exactly
one equilibrium solution x̄ (2.1) which lies in [a, b]. Moreover, every solution
of (2.1) with initial conditions x−1, x0 ∈ [a, b] converges to x̄.

Before we give the main result of this paper, we establish the existence and
uniqueness of equilibrium of (1.1).
Proof. Suppose that

ce−a < 1− b. (2.4)

Then (1.1) has a unique positive equilibrium x̄.
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Proof. Observe that the equilibrium points of (1.1) are the solutions of the equa-
tion

x̄ = a+ bx̄+ cx̄e−x̄. (2.5)

Set
g(x) = a+ bx+ cxe−x − x. (2.6)

Then
g(0) = a, lim

x→∞
g(x) = −∞

and
g′(x) = (b− 1) + ce−x(1− x).

It suffices to show that
g′(x) < 0.

Now
g′(x̄) = ce−x̄(1− x̄) + (b− 1)

and x̄ > a, so
g′(x̄) < 0.

As g′ is continuous, there exists an ε such that for x ∈ (x̄− ε, x̄+ ε)

g′(x) < 0. (2.7)

Therefore from (2.7), g is decreasing in the interval (x̄ − ε, x̄ + ε). Suppose that g
has roots greater than the root x̄. Let x1 be the smallest root of g such that x1 > x̄.
Similar to the argument above, we can show that there exists an ε1 such that g
is decreasing in the interval (x1 − ε1, x1 + ε1). Since g(x̄ + ε) < 0, g(x1 − ε1) > 0
and g is continuous, we see that g must have a root in the interval (x̄+ ε, x1 − ε1).
This is clearly a contradiction since x1 is the smallest root of g such that x1 > x̄.
Similarly we can prove that g has no solutions in (a, x̄). Therefore equation g(x) = 0
must have a unique solution in (a,+∞). So (1.1) has exactly one solution x̄, and
furthermore x̄ > a.

3. Boundedness and the asymptotic behavior of So-
lutions

The following theorem gives a sufficient condition for every positive solution of (1.1)
to be bounded.

Theorem 3.1. Every positive solution of (1.1) is bounded if

c < (1− b)ea. (3.1)

Proof. Let {xn}∞n=−1 be an arbitrary solution of Eq.(1.1). Observe that for all
n ≥ 2,

xn+1 = a+ bxn−1 + cxn−1e−xn ≤ a+ bxn−1 + cxn−1e−a. (3.2)

We will now consider the non-homogeneous difference equations

yn+1 = a+ byn−1 + cyn−1e−a, n = 2, 3, · · · . (3.3)
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From (3.3), an arbitrary solution {yn}∞n=−1 of (3.3) is given by

yn = r1(
√
b+ ce−a)n + r2(−1)n(

√
b+ ce−a)n +

a

1− b− ce−a
, (3.4)

where r1, r2 depends on the initial values y−1, y0. Thus we see that relations (3.1)
and (3.4) imply that yn is a bounded sequence. Now we will consider the solution
yn of (3.3) such that

y1 = x1. (3.5)

Thus from (3.2) and (3.5) we get

xn ≤ yn, n ≥ 1.

Therefore it follows that xn is bounded.
In the following, we will study the asymptotic behavior of the positive solutions

of (1.1).

Theorem 3.2. Consider (1.1) where the initial values x−1, x0 are positive constants
and a, b are positive constants satisfying

c < ea(
−a(1− 2b) +

√
a2(1− 2b)2 + 4(1− b)2

2
). (3.6)

Then (1.1) has a unique positive equilibrium x̄ is a global attractor.

Proof. It suffices to show that any positive solution xn converges to the unique
positive equilibrium x̄ of (1.1).

Let xn be a solution of (1.1) with initial values x−1, x0 such that

x−1, x0 ∈ [a,
a

1− b− ce−a
]. (3.7)

Then from (1.1), we get

a ≤ x1 = a+bx0+cx0e−x−1 ≤ a+b
a

1− b− ce−a
+c

a

1− b− ce−a
e−a =

a

1− b− ce−a
.

It follows by induction that

a ≤ xn ≤
a

1− b− ce−a
, n = 1, 2, · · · .

Let x, y ∈ (a,∞) and

f(x, y) = a+ by + cye−x.

It is obviously that f(x, y) is decreasing in x and is increasing in y.
By lemma 2.2, it suffices to show that (1.1) has no positive solutions with prime

period two.
Let x, y ∈ (a,∞) be such that

x = a+ bx+ cxe−y, y = a+ by + cye−x. (3.8)

It suffices to show that x = y, x > a, y > a.
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From (3.7) we get

x = ln
cy

(1− b)y − a
, y = ln

cx

(1− b)x− a

and so

(1− b− ce−y) ln
cy

(1− b)y − a
= a = (1− b− ce−x) ln

cx

(1− b)x− a
.

Set
F (u) = (1− b− ce−u) ln

cu

(1− b)u− a
− a. (3.9)

Clearly F (x̄) = 0. It suffices to show that F (u) has exactly one z-intercept greater
than a. Let u > a be such that F (u) = 0. We claim that

F ′(u) < 0. (3.10)

From (3.8), then

F ′(u) =
−a(1− b− ce−u)

u((1− b)u− a)
+ ce−u ln

cu

(1− b)u− a
. (3.11)

As F (u) = 0, so

ln
cu

(1− b)u− a
=

a

1− b− ce−u
.

We have

F ′(u) =
−a(1− b− ce−u)

u((1− b)u− a)
+

ace−u

1− b− ce−u
.

Since 1− b− ce−u > 0, (1− b)u− a > 0, F ′(u) < 0 if and only if

acue−u((1− b)u− a)− a(1− b− ce−u)2 < 0,

that is
c(1− b)u2 − acu < eu + b2eu + c2e−u − 2beu − 2c+ 2bc. (3.12)

To prove (3.11), it suffices to show that

g(u)− h(u) > 0,

g(u) = eu + b2eu + c2e−u − 2beu − 2c+ 2bc,

h(u) = c(1− b)u2 − acu.

(3.13)

From (3.12) we have

g′(u) = eu + b2eu − c2e−u − 2beu, h′(u) = 2cu(1− b)− ac,

g′′(u) = eu + b2eu + c2e−u − 2beu, h′′(u) = 2c(1− b),

g′′′(u) = eu + b2eu − c2e−u − 2beu, h′′′(u) = 0.

(3.14)

From (3.13), as u > a we have

g′′′(u)− h′′′(u) = eu + b2eu − c2e−u − 2beu > 0.
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Since u > a > 0, then

g′′(u)− h′′(u) > g′′(a)− h′′(a) = ea + b2ea + c2e−a − 2bea − 2c(1− b)
= ea((1− b)2 + (ce−a)2)− 2c(1− b) > 0.

(3.15)

From (3.14) and (3.6) we get

g′(u)−h′(u) > g′(a)−h′(a) = ea +b2ea−c2e−a−2bea−2ca(1−b)+ac > 0. (3.16)

From (3.15) as u > a,

g(u)− h(u) > g(a)− h(a) = ea + b2ea + c2e−a − 2bea − 2c+ 2bc− c(1− b)a2 + a2c

= e−a(ea − bea − c)2 + bca2 > 0,

it follows that F ′(u) < 0. So, (1.1) has no positive solutions of prime period two.
The proof is complete.

Theorem 3.3. Suppose that

c <
(1− b)(−a+

√
a2 + 4a(1− b))

a+
√
a2 + 4a(1− b)

e
a+
√

a2+4a(1−b)
2(1−b) . (3.17)

Then the equilibrium x̄ of (1.1) is locally asymptotically stable.

Proof. The linearized equation of (1.1) at the equilibrium x̄ is

zn+1 + ((1− b)x̄− a)zn − (1− a

x̄
)zn−1 = 0, (3.18)

the characteristic equation is

λ2 + ((1− b)x̄− a)λ− (1− a

x̄
) = 0. (3.19)

Now, we need to prove that the equilibrium x̄ of (1.1) is locally asymptotically
stable, then by Lemma 2.1, it suffices to show that the roots of (3.17) is |λ| < 1 if
and only if

x̄ <
a+

√
a2 + 4a(1− b)
2(1− b)

. (3.20)

That is, combining the proof of Proposition 2.1, by direct computation, we have

c <
(1− b)(−a+

√
a2 + 4a(1− b))

a+
√
a2 + 4a(1− b)

e
a+
√

a2+4a(1−b)
2(1−b) .

Remark 3.1. If c >
(1−b)(−a+

√
a2+4a(1−b))

a+
√

a2+4a(1−b)
e

a+
√

a2+4a(1−b)
2(1−b) , the equilibrium x̄ is un-

stable.

Theorem 3.4. If the relation (3.6) was hold, then the equilibrium x̄ of (1.1) is
globally asymptotically stable.
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Proof. It follows by a simple computation that

ea(
−a(1− 2b) +

√
a2(1− 2b)2 + 4(1− b)2

2
) <

(1− b)(−a +
√

a2 + 4a(1− b))

a +
√

a2 + 4a(1− b)
e
a+
√

a2+4a(1−b)

2(1−b) .

Thus it follows immediately from Theorem 3.2 and Theorem 3.3.

Example 3.1. See Figure 1, (a) shows the stability of equilibrium of (1.1) and (b)
shows the unstable case whenever (3.6) is not satisfied.
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Figure 1.
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