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PSEUDOSYMMETRIC LIGHTLIKE
HYPERSURFACES IN INDEFINITE

SASAKIAN SPACE FORMS
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Abstract We study pseudosymmetric lightlike hypersurfaces of an indefinite
Sasakian space form, tangent to the structure vector field. We obtain sufficient
conditions for a lightlike hypersurface to be pseudosymmetric, pseudoparallel
and Ricci-pseudosymmetric in an indefinite Sasakian space form. We also find
certain conditions for a pseudosymmetric lightlike hypersurface of an indefi-
nite Sasakian space form to be totally geodesic and check the effect of Weyl
projective pseudosymmetry conditions on the geometry of a lightlike hyper-
surface of an indefinite Sasakian space form. Moreover we give some physical
interpretations of pseudo-symmetry conditions.
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1. Introduction

A semi-Riemannian manifold (M, g) is said to be a pseudosymmetric manifold if at
every point of M the following condition is satisfied:

the tensor R ·R and Q(g,R) are linearly dependend. (1.1)

The condition (1.1) is equivalent to the fact that the equality R · R = LQ(g,R)
holds on the set U = {x ∈ M | Q(g,R) 6= 0 at x}, where L is some function
on U . Peudosymmetric manifolds have been discovered during the study of total-
ly umbilical submanifolds of semi-symmetric manifolds [1]. It is clear that every
semi-symmetric Riemannian manifold which is defined by the condition R ◦ R = 0
is pseudosymmetric manifold but the converse is not true. For pseudosymmetric
manifolds, see also [6, 28].

The Einstein equations are a complicated set of coupled partial differential e-
quations. These equations are a set of ten nonlinear partial differential equations in
four spacetime variables and to solve them in full generality is an impossible task.
In order to simplify the problem, one usually assumes that some weaker symmetry
of space-time is present. In this respect pseudosymmetric manifolds have applica-
tions in spacetime models of general relativity. The Robertson-Walker space-time,
the Schwarzschild space-time, the Reissner-Nordströom space-time and the Kottler
space-time are pseudosymmetric warped product manifolds [10].

Based on the properties of the Weyl tensor ( depending on the number of distinc-
t principal null directions), Petrov [27] gave an algebraic classification of Einstein
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spacetimes to study gravitational radiation. Also many more exact solutions of E-
instein’s equations are found for a particular Petrov’s type. In [8] the authors found
certain conditions for Einstein space-times to be pseudo-symmetric by applying
Petrov’s type classification. In 1949, Gödel found a new solution to the field equa-
tions of Einsteins theory of General Relativity. This new solution gives a possibility
of traveling back in time in the Gödel spacetime. This model was the first interest-
ing spinning universe model. In [12], the authors showed that Gödel spacetime is a
special type of Ricci generalized pseudosymmetric (i.e., R ◦R = Q(S,R)).

On the other hand, lightlike hypersurfaces of a semi-Riemannian manifold have
been studied by Duggal-Bejancu and they obtained a transversal bundle for such
hypersurfaces to overcome anomaly occurred due to degenerate metric. After their
book [13], many authors studied lightlike hypersurfaces by using their approach.
In [29], the second author has introduced the notion of semi-symmetric lightlike hy-
persurfaces of a semi-Riemannian manifold and obtained many new results. Symme-
try conditions in lightlike geometry have been studied by many authors (see [21–25]).
More recently, the authors of the present paper have studied pseudosymmetric light-
like hypersurfaces of semi-Riemannian manifolds by supporting examples, [17].

In this paper, we study pseudosymmetric lightlike hypersurfaces of indefinite
Sasakian space forms such that its sectional curvature c = 1. In Section 3, we
first obtain integrability conditions for screen distribution of a lightlike hypersur-
face and then we find sufficient conditions for a lightlike hypersurface to be pseu-
dosymmetric under integrable screen distribution. We also give a characterization
of a pseudosymmetric lightlike hypersurface and investigate relations between pseu-
dosymmetric lightlike hypersurface and its screen distribution. In Section 4, we give
sufficient conditions for a lightlike hypersurface of an indefinite Sasakian space form
M̄(1) to be pseudoparallel and obtain characterizations for such hypersurfaces. In
Section 5, we investigate the Ricci-pseudosymmetry conditions for a lightlike hy-
persurface. Moreover, we show that a Ricci-pseudosymmetric lightlike hypersurface
is totally geodesic under certain geometric conditions. In Section 6, we check the
effect of Weyl projective pseudosymmetry conditions on the geometry of lightlike
hypersurfaces. In section 7, we show that the results of this paper have physical
interpretations by recalling certain horizons of spacetimes.

2. Preliminaries

In this section, we give a review on manifolds with pseudosymmetry type and light-
like hypersurfaces.

Let (M, g) be a connected n-dimensional, n ≥ 3, semi-Riemannian manifold of
class C∞. For a (0, k)-tensor field T on M , k ≥ 1, we define the (0, k + 2)-tensors
R · T and Q(g, T ) by

(R · T )(X1, ..., Xk;X,Y )

=− T (R̃(X,Y )X1, X2, ..., Xk)− ...− T (X1, ..., Xk−1, R̃(X,Y )Xk) (2.1)

and

Q(g, T )(X1, ..., Xk;X,Y ) = −T ((X ∧ Y )X1, X2, ..., Xk), (2.2)

respectively, for X1, ..., Xk, X, Y ∈ Γ(TM), where R̃ is the curvature tensor field of
M and R is the Riemannian Christoffel tensor field given by R(X1, X2, X3, X4) =
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g(R̃(X1, X2)X3, X4), the endomorfizms are defined by R̃(X,Y )Z = [∇X ,∇Y ]Z −
∇[X,Y ]Z, (X ∧ Y )Z = g(Y,Z)X − g(X,Z)Y . Curvature conditions, involving the
form R · T = 0, are called curvature conditions of semi-symmetric type [7]. Then,
a semi-Riemannian manifold (M, g) is said to be semi-symmetric if it satisfies the
condition R · R = 0. It is well known that the class of semisymmetric manifolds
includes the set of locally symmetric manifolds (∇R = 0) as a proper subset [2],
here, we suppose that (M, g) is a Riemmanian manifold. If M satisfies∇R = 0, then
M is called locally symmetric manifold [28]. A semi-Riemannian manifold (M, g)
is said to be a pseudosymmetric manifold, if at every point of M the tensor R ·R
and Q(g,R) are linearly dependet. This is equivalent to the fact that the equality
R ·R = LRQ(g,R) hold on UR = {x ∈M : Q(g,R) 6= 0}, for some function LR on
UR [9].

Also, (M, g) is said to be a Ricci-pseudosymmetric manifold if at every point of
M the tensor R ·S and Q(g, S) are linearly dependet. This is equivalent to the fact
that the equality R · S = LSQ(g, S) holds on the set US = {x ∈ M : Q(g, S) 6= 0},
for some function LS on US , where S is the Ricci tensor [11].

Let M be a semi-Riemannian manifold of n-dimensional, with metric tensor g.
Then, the Weyl projective curvature tensor field W of M defined by

W (X,Y )Z) = R(X,Y )X − 1

n− 1
[S(Y,Z)X − S(X,Z)Y )] (2.3)

for X,Y and Z on M [26].
A hypersurface M of a semi-Riemannian manifold (M̄m+k, ḡ) is called a lightlike

hypersurface if it admits a degenerate metric g induced from ḡ. In this case the
radical distribution Rad(TM) is of rank 1. We note that Rad(TM) = TM∩TM⊥ =
TM⊥, where

TM⊥ = ∪x∈M{u ∈ Tx M̄/ḡ(u, v) = 0, ∀v ∈ TxM}.

Let S(TM) be a screen distribution which is a semi-Riemannian complementary
distribution of TM⊥ in TM , i.e.,

TM = TM⊥ ⊥ S(TM).

Since, for any local basis {ξ} of TM⊥, there exists a local frame {N} of sections
with values in the [S(TM)]⊥ such that ḡ(ξ,N) = 1 and ḡ(N,N) = 0, it follows
that there exists a lightlike transversal vector bundle tr(TM) locally spanned by
{N} [13, page 79]. Let tr(TM) be complementary (but not orthogonal) vector
bundle to TM in TM̄ |M . Then we have the following decomposition

TM̄ |M = S(TM) ⊥ [TM⊥ ⊕ tr(TM)] (2.4)

= TM ⊕ tr(TM). (2.5)

Although S(TM) is not unique, it is canonically isomorphic to the factor vector
bundle TM/RadTM [20].

Suppose ∇ and ∇̄ are the induced linear connection and the Levi-Civita con-
nection of lightlike hypersurface M and semi-Riemannian manifold M̄ , respectively.
According to the (2.5), we have

∇̄XY = ∇XY + h(X,Y ) and ∇̄XN = −ANX +∇tXN (2.6)
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for any X,Y ∈ Γ(TM), N ∈ Γ(tr(TM)), where ∇XY,ANX ∈ Γ(TM) and h(X,Y ),
∇tXN ∈ Γ(tr(TM)). We note that although the induced connection is torsion
free, it is not a Levi-Civita connection. If we set B(X,Y ) = g(h(X,Y ), ξ) and
τ(X) = ḡ(∇tXN, ξ), then, from (2.6), we have

∇̄XY = ∇XY +B(X,Y )N and ∇̄XN = −ANX + τ(X)N (2.7)

for any X,Y ∈ Γ(TM), N ∈ Γ(tr(TM)), AN and B are called the shape operator
and the second fundamental form of the lightlike hypersurface M , respectively.

Let P be the projection of Γ(TM) on Γ(S(TM)). Then, we have

∇XPY = ∇∗XPY + C(X,PY )ξ and ∇Xξ = −A∗ξX + τ(X)ξ (2.8)

for any X,Y ∈ Γ(TM), where ∇∗XPY,A∗ξX ∈ Γ(S(TM)) and C is a 1-form on
U defined by C(X,PY ) = ḡ(∇XPY,N). C,A∗ξX and ∇∗ are called the local
second fundamental form, the local shape operator and the induced connection
on S(TM), respectively. Then, we have the following assertions,

g(ANY, PW ) = C(Y, PW ), g(ANY,N) = 0, B(X, ξ) = 0, (2.9)

g(A∗ξX,PY ) = B(X,PY ), g(A∗ξX,N) = 0 (2.10)

for X,Y,W ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)).
Let M be a lightlike hypersurface of a semi-Riemannian manifold M̄ . Denote

by R̄ and R the Riemann curvature tensors of M̄ and M , respectively. From Gauss-
Codazzi equations [13], we have the following, for any X,Y, Z ∈ Γ(TM|U ),

R̄(X,Y )Z

=R(X,Y )Z +B(X,Z)ANY −B(Y,Z)ANX

+ {(∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y,Z)− τ(Y )B(X,Z)}N. (2.11)

LetM be a lightlike hypersurface of a semi-Riemannian manifold M̄ . We say thatM
is a semi-symmetric if the following condition is satisfied (R(X,Y )·R)(X1, X2, X3, X4) =
0 for any X,Y,X1, X2, X3, X4 ∈ Γ(TM) [29], also a lightlike hypersurface M is
called Ricci semi-symmetric lightlike hypersurface if the following condition is sat-
isfied (R(X,Y ) ·Ric)(X1, X2) = 0 for any X,Y,X1, X2 ∈ Γ(TM) [29].

For the geometry of lightlike hypersurfaces, we refer to [13,15,29].
Also, let us recall some general notions about indefinite Sasakian manifolds: Let

M̄ be a (2m+1)-dimensional manifold endowed with an almost contact structure
(φ̄, ξ, η), i.e. φ̄ is a tensor field of type (1,1), ξ is a vector field and η is a 1-form
satisfying

φ̄2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0 and rankφ̄ = 2m. (2.12)

Then (φ̄, ξ, η, ḡ) is called an almost contact metric structure on M̄ if (φ̄, ξ, η) is an
almost contact structure on M̄ and ḡ is a semi-Riemannian metric on M̄ such that,
for any vector field X̄, Ȳ on M̄,

ḡ(ξ, ξ) = ε = ±1, η(X̄) = εḡ(ξ, X̄),

ḡ(φ̄X̄, φ̄Ȳ ) = ḡ(X̄, Ȳ )− εη(X̄)η(Ȳ ). (2.13)

If dη(X̄, Ȳ ) = −ḡ(φ̄X̄, Ȳ ) and (∇̄X̄ φ̄)Ȳ = ḡ(X̄, Ȳ )ξ − εη(Ȳ )X̄, where ∇̄ is the
Levi-Civita connection for the semi-Riemannian metric ḡ, we call M̄ an indefinite
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Sasakian manifold. From the first equation of (2.13), ξ is never a lightlike vector
field on M̄ .

Since Takahashi [34] shows that it suffices to consider indefinite almost contact
manifolds with space-like ξ [21]. In this paper, we will restrict ourselves to the case
of ξ a space-like unit vector (that is ḡ(ξ, ξ) = 1).

A plane section σ in TpM̄ is called a φ̄-section if it is spanned by X̄ and φ̄X̄,
where X̄ is a unit tangent vector field orthogonal to ξ. The sectional curvature of a
φ̄-section σ is called a φ̄-sectional curvature. A Sasakian manifold M with constant
φ̄-sectional curvature c is said to be a Sasakian space form and is denoted by M̄(c).
The curvature tensor R̄ of a Sasakian space form M̄(c) is

R̄(X̄, Ȳ )Z̄

=
c+ 3

4
{g(Ȳ ¯, Z)X̄ − g(X̄, Z̄)Ȳ }+

c− 1

4
{η(X̄)η(Z̄)Ȳ − η(Ȳ )η(Z̄)X̄ + g(X̄, Z̄)η(Y )ξ

− g(Ȳ , Z̄)η(X̄)ξ + ḡ(φ̄Ȳ , Z̄)φ̄X̄ − ḡ(φ̄X̄, Z̄)φ̄Y − 2ḡ(φ̄X̄, Ȳ )φ̄Z̄}, (2.14)

where X̄, Ȳ , Z̄ ∈ Γ(TM̄) [21].

3. Pseudosymmetric Lightlike Hypersurfaces in In-
definite Sasakian Space Forms

In this section, we investigate pseudosymmetric lightlike hypersurfaces in an indef-
inite Sasakian space form. We obtain sufficient condition for lightlike hypersurface
to be pseudosymmetric and show that under certain conditions, a pseudosymmetric
lightlike hypersurface is totally geodesic. Firstly, let us recall some general notions
about lightlike hypersurfaces of indefinite Sasakian manifolds:

Let(M̄, φ̄, ξ, η, ḡ) be an indefinite Sasakian manifold and (M, g) a lightlike hyper-
surface, tangent to the structure vector field ξ ∈ Γ(TM). If E is a local section of
TM⊥, then ḡ(φ̄E,E) = 0, and φ̄E is tangent to M . Thus φ̄(TM⊥) is a distribution
on M of rank 1 such that φ̄(TM⊥)∩TM⊥ = {0}. This enables us to choose a screen
distribution S(TM) such that it contains φ̄(TM⊥) as a vector subbundle. If we con-
sider a local section N of tr(TM). Since ḡ(φ̄N,E) = −ḡ(N, φ̄E) = 0 , we deduce
that φ̄E belongs to S(TM). On the other hand, since ḡ(φ̄N,N) = 0, we see that
the component of φ̄N with respect to E vanishes. Thus φ̄N ∈ Γ(S(TM)). From the
last equation of (2.13), we have ḡ(φ̄N, φ̄E) = 1. Therefore, φ̄(TM⊥) ⊕ φ̄(tr(TM))
direct sum (but not orthogonal) is a non-degenerate vector subbundle of S(TM) of
rank two [21].

IfM is tangent to the structure vector field ξ, then ξ belongs to S(TM) [4]. Using
this and since ḡ(φ̄E, ξ) = ḡ(φ̄N, ξ) = 0, there exists a non-degenerate distribution
D0 of rank 2n− 4 on M such that

S(TM) = {φ̄(TM⊥)⊕ φ̄(tr(TM))} ⊥ D0 ⊥< ξ >, (3.1)

where < ξ >= Spanξ. It is easy to check that the distribution D0 is invariant under
φ̄, i.e. φ̄(D0) = D0 [21].

Moreover, from (2.5), we obtain the decompositions

TM = {φ̄(TM⊥)⊕ φ̄(tr(TM))} ⊥ D0 ⊥< ξ >⊥ TM⊥ (3.2)
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and

TM̄ |M = {φ̄(TM⊥)⊕ φ̄(tr(TM))} ⊥ D0 ⊥< ξ >⊥ (TM⊥ ⊕ tr(TM)). (3.3)

Now, we consider the distributions on M , D := TM⊥ ⊥ φ̄(TM⊥) ⊥ D0 and
D′ := φ̄(tr(TM)). Then D is invariant under φ̄ and

TM = (D ⊕D′) ⊥< ξ > . (3.4)

Let us consider the local lightlike vector fields U := −φ̄N and V := −φ̄E. Then,
from (3.4), X ∈ Γ(TM) is written as

X = RX +QX + η(X)ξ, QX = u(X)U, (3.5)

where R and Q are the projection morphisms of TM into D and D′, respectively,
and u is a differential 1-form locally defined on M by u(X) = g(X,V ). Applying φ̄
to (3.5), using (2.12) and noting that φ̄2N = −N , we obtain

φ̄X = φX + u(X)N, (3.6)

where φ is a tensor field of type (1, 1) defined on M by φX := φ̄RX, for any
X ∈ Γ(TM). Again, applying φ̄ to (3.6) and using (2.12), we also have

φ2X = −X + η(X)ξ + u(X)U, ∀X ∈ Γ(TM). (3.7)

More precisely, by using (2.13) and (3.6) we derive that, for any X,Y ∈ Γ(TM)

g(φX, φY ) = g(X,Y )− η(X)η(Y )− u(Y )v(X)− u(X)v(Y ), (3.8)

where v is a 1-form locally defined on M by v(X) = g(X,U), ∀X ∈ Γ(TM) [21].
By direct calculations, we have the following useful identities

∇Xξ = −φX, B(X, ξ) = −u(X), (3.9)

C(X, ξ) = −v(X), B(X,U) = C(X,V ). (3.10)

Let M be a lightlike hypersurface of an indefinite Sasakian space form M(c) with
ξ ∈ Γ(TM). Let us consider the pair {E,N} on U ⊂ M . By using (2.14), (2.11)
and (3.6), and comparing the tangential and transversal parts of the both sides, we
have, for any X,Y, Z ∈ Γ(TM),

R(X,Y )Z =
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }+

c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ + ḡ(φ̄Y, Z)φX − ḡ(φ̄X, Z)φY

− 2ḡ(φ̄X, Y )φZ}+B(Y,Z)ANX −B(X,Z)ANY. (3.11)

Here, if c = 1, then we have

R(X,Y )Z = g(Y, Z)X − g(X,Z)Y +B(Y,Z)ANX −B(X,Z)ANY. (3.12)

On the other hand, using Gauss and Weingarten equations, we have for anyX,Y, Z ∈
Γ(S(TM)), E ∈ Γ(RadTM),

R(X,Y )Z

=R∗(X,Y )Z + C(X,Z)A∗EY − C(Y,Z)A∗EX

+ {(∇XC)(Y,Z)− (∇Y C)(X,Z) + τ(Y )C(X,Z)− τ(X)C(Y,Z)}E. (3.13)
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A submanifold M of a semi-Riemannian manifold is said to be (φ̄(TM⊥), D ⊕
D′)-mixed totally geodesic if its second fundamental form h satisfies h(X,Y ) = 0
(equivalently B(X,Y ) = 0), for any X ∈ Γ(φ̄(TM⊥)) and Y ∈ Γ(D ⊕D′) [21].

A submanifold M is said to be an η-totally umbilical lightlike hypersurface of
a semi-Riemannian manifold M̄ if the second fundamental form h of M satisfies
( [21]), for any X,Y ∈ Γ(TM),

h(X,Y ) = λ{g(X,Y )− η(X)η(Y )}N. (3.14)

We have, for any X,Y ∈ Γ(TM),

Ric(X,Y ) = ag(X,Y )− bη(X)η(Y ) +B(X,Y )trAN −B(ANX,Y ), (3.15)

where a = (2n+1)(c+3)−8
4 and b = (2n+1)(c−1)

4 and trace tr is written with respect to
g restricted to S(TM) [23]. For symmetry properties of lightlike hypersurfaces in
indefinite Sasakian manifolds, we refer to [21,22,35].

Now, we can give main definition:

Definition 3.1. Let M̄(c) be an indefinite Sasakian space form and M a lightlike
hypersurface of M̄(c) with ξ ∈ Γ(TM). We say that M is a pseudosymmetric
lightlike hypersurface, if the tensors of R ·R and Q(g,R) are linearly dependent at
∀p ∈ M . This is equivalent to R · R = LRQ(g,R) on UR = {p ∈ M |Q(g,R) 6= 0},
where LR is some function on UR.

A condition for integrable screen distribution of a lightlike hypersurface in an
indefinite Sasakian space form is given by following lemma.

Lemma 3.1. Let M̄(c) be an indefinite Sasakian space form and M a lightlike
hypersurface of M̄(c) with ξ ∈ Γ(TM). Then S(TM) is integrable if and only if

g(∇∗XφY −∇∗Y φX, φN) = g(u(Y )ANX − u(X)ANY + η(X)Y − η(Y )X,φN).

Proof. For X,Y ∈ ΓS(TM), using (2.12) and (2.13) , we have

ḡ([X,Y ], N) = ḡ(∇̄X φ̄Y, φ̄N) + η(Y )g(X, φ̄N)− ḡ(∇̄Y φ̄X, φ̄N)− η(X)g(Y, φ̄N).

On the other hand, using φ̄Y = φY + u(Y )N and Gauss formulas (2.7) and (2.8),
we get

ḡ([X,Y ], N) =g(∇∗XφY + C(X,φY )E, φN)− u(Y )g(ANX,φN) + η(Y )g(X,φN)

− g(∇∗Y φX + C(Y, φX)E, φN)− u(X)g(ANY, φN)− η(X)g(Y, φN).

Thus, proof is complete.

Now, we can give the following theorem for a lightlike hypersurface in an indef-
inite Sasakian space form:

Theorem 3.1. Let M̄(c = 1) be an indefinite Sasakian space form and M a light-
like hypersurface of M̄(c) with ξ ∈ Γ(TM). If B(X,Y )A2

NZ = g(X,Y )ANZ,
B(X,Y )A∗EANZ = g(X,Y )A∗EZ and C(X,Y )Z = C(X,Z)Y , then M is a pseu-
dosymmetric lightlike hypersurface such that LR = 2, where X,Y, Z ∈ Γ(TM),
E ∈ Γ(RadTM).
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Proof. From the hypothesis, for X,Y, Z,W,U ∈ Γ(TM), we get

B(X,Y )g(A2
NZ,W ) = g(X,Y )g(ANZ,W ) (3.16)

and
B(X,Y )B(ANZ,U) = g(X,Y )B(Z,U). (3.17)

For c = 1, from (3.12), we have

(R ·R)(X1, X2, X3, X4;X,Y )

=− g(Y,X1)g(X2, X3)g(X,X4) + g(Y,X1)g(X,X3)g(X2, X4)

− g(Y,X1)B(X2, X3)g(ANX,X4) + g(Y,X1)B(X,X3)g(ANX2, X4)

+ g(X,X1)g(X2, X3)g(Y,X4)− g(X,X1)g(Y,X3)g(X2, X4)

+ g(X,X1)B(X2, X3)g(ANY,X4)− g(X,X1)B(Y,X3)g(ANX2, X4)

−B(Y,X1)g(X2, X3)g(ANX,X4) +B(Y,X1)g(ANX,X3)g(X2, X4)

−B(Y,X1)B(X2, X3)g(A2
NX,X4) +B(Y,X1)B(ANX,X3)g(ANX2, X4)

+B(X,X1)g(X2, X3)g(ANY,X4)−B(X,X1)g(ANY,X3)g(X2, X4)

+B(X,X1)B(X2, X3)g(A2
NY,X4)−B(X,X1)B(ANY,X3)g(ANX2, X4)

− g(Y,X2)g(X,X3)g(X1, X4) + g(Y,X2)g(X1, X3)g(X,X4)

− g(Y,X2)B(X,X3)g(ANX1, X4) + g(Y,X2)B(X1, X3)g(ANX,X4)

+ g(X,X2)g(Y,X3)g(X1, X4)− g(X,X2)g(X1, X3)g(Y,X4)

+ g(X,X2)B(Y,X3)g(ANX1, X4)− g(X,X2)B(X1, X3)g(ANY,X4)

−B(Y,X2)g(ANX,X3)g(X1, X4) +B(Y,X2)g(X1, X3)g(ANX,X4)

−B(Y,X2)B(ANX,X3)g(ANX1, X4) +B(Y,X2)B(X1, X3)g(A2
NX,X4)

+B(X,X2)g(ANY,X3)g(X1, X4)−B(X,X2)g(X1, X3)g(ANY,X4)

+B(X,X2)B(ANY,X3)g(ANX1, X4)−B(X,X2)B(X1, X3)g(A2
NY,X4)

− g(Y,X3)g(X2, X)g(X1, X4) + g(Y,X3)g(X1, X)g(X2, X4)

− g(Y,X3)B(X2, X)g(ANX1, X4) + g(Y,X3)B(X1, X)g(ANX2, X4)

+ g(X,X3)g(X2, Y )g(X1, X4)− g(X,X3)g(X1, Y )g(X2, X4)

+ g(X,X3)B(X2, Y )g(ANX1, X4)− g(X,X3)B(X1, Y )g(ANX2, X4)

−B(Y,X3)g(X2, ANX)g(X1, X4) +B(Y,X3)g(X1, ANX)g(X2, X4)

−B(Y,X3)B(X2, ANX)g(ANX1, X4) +B(Y,X3)B(X1, ANX)g(ANX2, X4)

+B(X,X3)g(X2, ANY )g(X1, X4)−B(X,X3)g(X1, ANY )g(X2, X4)

+B(X,X3)B(X2, ANY )g(ANX1, X4)−B(X,X3)B(X1, ANY )g(ANX2, X4)

− g(Y,X4)g(X2, X3)g(X1, X) + g(Y,X4)g(X1, X3)g(X2, X)

− g(Y,X4)B(X2, X3)g(ANX1, X) + g(Y,X4)B(X1, X3)g(ANX2, X)

+ g(X,X4)g(X2, X3)g(X1, Y )− g(X,X4)g(X1, X3)g(X2, Y )

+ g(X,X4)B(X2, X3)g(ANX1, Y )− g(X,X4)B(X1, X3)g(ANX2, Y )

−B(Y,X4)g(X2, X3)g(X1, ANX) +B(Y,X4)g(X1, X3)g(X2, ANX)

−B(Y,X4)B(X2, X3)g(ANX1, ANX) +B(Y,X4)B(X1, X3)g(ANX2, ANX)

+B(X,X4)g(X2, X3)g(X1, ANY )−B(X,X4)g(X1, X3)g(X2, ANY )

+B(X,X4)B(X2, X3)g(ANX1, ANY )−B(X,X4)B(X1, X3)g(ANX2, ANY ).
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Hence, we have

(R ·R)(X1, X2, X3, X4;X,Y )

=Q(g,R)(X1, X2, X3, X4;X,Y )

−B(Y,X1)g(X2, X3)g(ANX,X4) +B(Y,X1)g(ANX,X3)g(X2, X4)

−B(Y,X1)B(X2, X3)g(A2
NX,X4) +B(Y,X1)B(ANX,X3)g(ANX2, X4)

+B(X,X1)g(X2, X3)g(ANY,X4)−B(X,X1)g(ANY,X3)g(Y,X4)

+B(X,X1)B(X2, X3)g(A2
NY,X4)−B(X,X1)B(ANY,X3)g(ANX2, X4)

−B(Y,X2)g(ANX,X3)g(X1, X4) +B(Y,X2)g(X1, X3)g(ANX,X4)

−B(Y,X2)B(ANX,X3)g(ANX1, X4) +B(Y,X2)B(X1, X3)g(A2
NX,X4)

+B(X,X2)g(ANY,X3)g(X1, X4)−B(X,X2)g(X1, X3)g(ANY,X4)

+B(X,X2)B(ANY,X3)g(ANX1, X4)−B(X,X2)B(X1, X3)g(A2
NY,X4)

−B(Y,X3)g(X2, ANX)g(X1, X4) +B(Y,X3)g(X1, ANX)g(X2, X4)

−B(Y,X3)B(X2, ANX)g(ANX1, X4) +B(Y,X3)B(X1, ANX)g(ANX2, X4)

+B(X,X3)g(X2, ANY )g(X1, X4)−B(X,X3)g(X1, ANY )g(X2, X4)

+B(X,X3)B(X2, ANY )g(ANX1, X4)−B(X,X3)B(X1, ANY )g(ANX2, X4)

−B(Y,X4)g(X2, X3)g(X1, ANX) +B(Y,X4)g(X1, X3)g(X2, ANX)

−B(Y,X4)B(X2, X3)g(ANX1, ANX) +B(Y,X4)B(X1, X3)g(ANX2, ANX)

+B(X,X4)B(X2, X3)g(ANX1, ANY )−B(X,X4)B(X1, X3)g(ANX2, ANY )

+B(X,X4)g(X2, X3)g(X1, ANY )−B(X,X4)g(X1, X3)g(X2, ANY ), (3.18)

where X,Y,X1, X2, X3, X4 ∈ Γ(TM). Here, from the hypothesis and using (3.16),
(3.17) and C(X,Y )Z = C(X,Z)Y , we obtain

(R ·R)(X1, X2, X3, X4;X,Y ) = 2Q(g,R)(X1, X2, X3, X4;X,Y ).

Thus, proof is complete.
Here, we give sufficient conditions for a ligtlike hypersurface to be totally geodesic

in an indefinite Sasakian space form:

Theorem 3.2. Let M̄(c = 1) be an indefinite Sasakian space form and M a pseu-
dosymmetric (LR = 1) lightlike hypersurface of M̄(c) with ξ ∈ Γ(TM), ANE ∈
Γ(D0). Then either M is totally geodesic or

g(g(ANE,ANX)Y − g(ANE,ANY )X,A∗φ̄N) = 0,

where X,Y ∈ Γ(TM), N ∈ Γ(tr(TM)).

Proof. Suppose that M is a pseudosymmetric lightlike hypersurface of an indefi-
nite Sasakian space form (c = 1). Then, for X1 ∈ Γ(RadTM) and X4 = U = −φ̄N ,
we have

(R ·R)(E,X2, X3,−φ̄N ;X,Y ) = LRQ(g,R)(E,X2, X3,−φ̄N ;X,Y ).

Thus, we get

Q(g,R)(E,X2, X3,−φ̄N ;X,Y ) +B(Y,X2)B(ANX,X3)g(ANE, φ̄N)

−B(X,X2)B(ANY,X3)g(ANE, φ̄N) +B(Y,X3)B(X2, ANX)g(ANE, φ̄N)

−B(X,X3)B(X2, ANY )g(ANE, φ̄N) +B(Y, φ̄N)B(X2, X3)g(ANE,ANX)

−B(X, φ̄N)B(X2, X3)g(ANE,ANY )− LRQ(g,R)(E,X2, X3,−φ̄N ;X,Y ) = 0.
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By using Q(g,R) in the above equation, we obtain

(1− LR)[g(Y,X2)B(X,X3)g(ANE, φ̄N)− g(X,X2)B(Y,X3)g(ANE, φ̄N)

+ g(Y,X3)B(X2, X)g(ANE, φ̄N)− g(X,X3)B(X2, Y )g(ANE, φ̄N)

+ g(Y, φ̄N)B(X2, X3)g(ANE,X)− g(X, φ̄N)B(X2, X3)g(ANE, Y )]

+B(Y, φ̄N)B(X2, X3)g(ANE,ANX)−B(X, φ̄N)B(X2, X3)g(ANE,ANY ) = 0.

Since (LR = 1), from the hypothesis, we get

B(X2, X3)g(g(ANE,ANX)Y − g(ANE,ANY )X,A∗φ̄N) = 0,

where X,Y,X1, X2, X3, X4 ∈ Γ(TM). This completes proof.
Now, we give the following theorem for (LR 6= 1) a lightlike hypersurface.

Theorem 3.3. Let M̄(c = 1) be an indefinite Sasakian space form and M a η-
totally umbilical pseudosymmetric (LR 6= 1) lightlike hypersurface of M̄(c) with
ξ ∈ Γ(TM), ANE ∈ Γ(D0). Then either M is totally geodesic or η(Y )C(E,X) =
η(X)C(E, Y ), where X,Y ∈ Γ(TM).

Proof. Suppose that M is a pseudosymmetric lightlike hypersurface of an indef-
inite Sasakian space form (c = 1). Then, for X1 ∈ Γ(RadTM) and X4 = ξ, we
have

(R ·R)(E,X2, X3, ξ;X,Y ) = LRQ(g,R)(E,X2, X3, ξ;X,Y ).

Hence, we obtain

B(X2, X3){(1− LR)[−g(Y, ξ)g(ANE,X) + g(X, ξ)g(ANE, Y )]

−B(Y, ξ)g(ANE,ANX) +B(X, ξ)g(ANE,ANY )} = 0.

Since M , η-totally umbilical and from the hypothesis, we get

B(X2, X3){(1− LR)[−η(Y )g(ANE,X) + η(X)g(ANE, Y )]

− λ[g(Y, ξ)− η(Y )η(ξ)]g(ANE,ANX) + λ[g(X, ξ)− η(X)η(ξ)]g(ANE,ANY )} = 0.

Therefore, we obtain

B(X2, X3)(1− LR)[−η(Y )g(ANE,X) + η(X)g(ANE, Y )] = 0,

where X1, X2, X3, X4, X, Y ∈ Γ(TM), which completes proof.
For totally geodesic pseudosymmetric lightlike hypersurface, we can give the

following result:

Corollary 3.1. Let M̄(c) be an indefinite Sasakian space form and M a pseu-
dosymmetric lightlike hypersurface of M̄(c) an indefinite Sasakian space form. If
M is totally geodesic, then M is semi-symmetric.

Proof. Proof is obvious from (3.18).
Next theorem shows that pseudosymmetry condition of a lightlike hypersurface

is related to pseudosymmetry of its screen distribution:

Theorem 3.4. Let M̄(c = 1) be an indefinite Sasakian space form and (M, g) a
pseudosymmetric lightlike hypersurface of M̄(c). If C = 0, then M is pseudosym-
metric if and only if the integral manifold of screen distribution is pseudosymmetric.
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Proof. For (c = 1), using (3.13) and by straightforward computations, we have

(R ·R)(X1, X2, X3, X4;X,Y )

=(R∗ ·R∗)(X1, X2, X3, X4;X,Y )− C(R∗(X,Y )X1, X3)g(A∗NX2, X4)

+ C(X2, X3)g(R∗(X,Y )X1, X4)− C(X,X1)[g(R∗(A∗NY,X2)X3, X4)

+ C(A∗NY,X3)g(A∗NX2, X4)− C(X2, X3)g(A∗2NX2, X4)]

+ C(Y,X1)[g(R∗(A∗NX,X2)X3, X4) + C(A∗NX,X3)g(A∗NX2, X4)

− {(∇XC)(Y,X1)− (∇Y C)(X,X1) + τ(Y )C(X,X1)

− τ(X)C(Y,X1)}B(X2, X3)C(E,X4)

− C(X2, X3)g(A∗2NX,X4)]− C(X1, X3)g(A∗NR
∗(X,Y )X2, X4)

+ C(R∗(X,Y )X2, X3)g(A∗NX1, X4)− C(X,X2)[g(R∗(X1, A
∗
NY )X3, X4)

+ C(X1, X3)g(A∗2N Y,X4)− C(A∗NY,X3)g(A∗NX1, X4)]

+ C(Y,X2)[g(R∗(X1, A
∗
NX)X3, X4) + C(X1, X3)g(A∗2NX,X4)

− {(∇XC)(Y,X2)− (∇Y C)(X,X2) + τ(Y )C(X,X2)

− τ(X)C(Y,X2)}B(X1, X3)C(E,X4)

− C(A∗NX,X3)g(A∗NX1, X4)]− C(X1, R
∗(X,Y )X3)g(A∗NX2, X4)

+ C(X2, R
∗(X,Y )X3)g(A∗NX1, X4)− C(X,X3)[g(R∗(X1, X2)A∗NY,X4)

+ C(X1, A
∗
NY )g(A∗NX2, X4)− C(X2, A

∗
NY )g(A∗NX1, X4)]

+ C(Y,X3)[g(R∗(X1, X2)A∗NX,X4) + C(X1, A
∗
NX)g(A∗NX2, X4)

− C(X2, A
∗
NX)g(A∗NX1, X4)]− C(X1, X3)g(A∗NX2, R

∗(X,Y )X4)

+ C(X2, X3)g(A∗NX1, R
∗(X,Y )X4)− C(X,X4)[g(R∗(X1, X2)X3, A

∗
NY )

+ C(X1, X3)g(A∗NX2, A
∗
NY )− C(X2, X3)g(A∗NX1, A

∗
NY )]

+ C(Y,X4)[g(R∗(X1, X2)X3, A
∗
NX) + C(X1, X3)g(A∗NX2, A

∗
NX)

− C(X2, X3)g(A∗NX1, A
∗
NX)].

On the other hand, we get

Q(g,R)(X1, X2, X3, X4;X,Y )

=−R((X ∧g Y )X1, X2, X3, X4)−R(X1, (X ∧g Y )X2, X3, X4)

−R(X1, X2, (X ∧g Y )X3, X4)−R(X1, X2, X3, (X ∧g Y )X4)

= Q(g,R∗)(X1, X2, X3, X4;X,Y )− g(Y,X1)[C(X,X3)g(A∗NX2, X4)

− C(X2, X3)g(A∗NX,X4)] + g(X,X1)[C(Y,X3)g(A∗NX2, X4)

− C(X2, X3)g(A∗NY,X4)]− g(Y,X2)[C(X1, X3)g(A∗NX,X4)

− C(X,X3)g(A∗NX1, X4)] + g(X,X2)[C(X1, X3)g(A∗NY,X4)

− C(Y,X3)g(A∗NX1, X4)]− g(Y,X3)[C(X1, X)g(A∗NX2, X4)

− C(X2, X)g(A∗NX1, X4)] + g(X,X3)[C(X1, Y )g(A∗NX2, X4)

− C(X2, Y )g(A∗NX1, X4)]− g(Y,X4)[C(X2, X3)g(A∗NX1, X)

− C(X1, X3)g(A∗NX2, X)] + g(X,X4)[C(X2, X3)g(A∗NX1, Y )

− C(X1, X3)g(A∗NX2, Y )],

where X1, X2, X3, X4, X, Y ∈ Γ(S(TM)). Thus, since second fundemental form of
screen distribution (S(TM)) vanishes, proof is complete.
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Now, we can give the following result for a lightlike Einstein (see [15]) hypersur-
face to be pseudosymmetric in an indefinite Sasakian space form:

Corollary 3.2. Let M̄(c) be an indefinite Sasakian space form and M a lightlike
Einstein hypersurface of M̄(c). If R · R = Q(S,R), then M is a pseudosymmetric
lightlike hypersurface, where S is the Ricci tensor of M .

Proof. Proof comes from Corollary 3.8 in [17].

Theorem 3.5. Let M̄(c = 1) be an indefinite Sasakian space form and M a lightlike
Einstein hypersurface of M̄(c) with ξ ∈ TM such that ANE ∈ Γ(D0) is non-null
vector field. For X ∈ Γ(TM) such that u(X) 6= 0, if R ·R = Q(S,R), M is totally
geodesic.

Proof. From (3.12), for c = 1, we have

Q(S,R)(X1, X2, X3, X4;X,Y )

=− [αg(Y,X1) +B(Y,X1)trAN −B(ANY,X1)]R(X,X2, X3, X4)

+ [αg(X,X1) +B(X,X1)trAN −B(ANX,X1)]R(Y,X2, X3, X4)

− [αg(Y,X2) +B(Y,X2)trAN −B(ANY,X2)]R(X1, X,X3, X4)

+ [αg(X,X2) +B(X,X2)trAN −B(ANX,X2)]R(X1, Y,X3, X4)

− [αg(Y,X3) +B(Y,X3)trAN −B(ANY,X3)]R(X1, X2, X,X4)

+ [αg(X,X3) +B(X,X3)trAN −B(ANX,X3)]R(X1, X2, Y,X4)

− [αg(Y,X4) +B(Y,X4)trAN −B(ANY,X4)]R(X1, X2, X3, X)

+ [αg(X,X4) +B(X,X4)trAN −B(ANX,X4)]R(X1, X2, X3, Y ),

where X1, X2, X3, X4, X, Y ∈ Γ(TM). Then, using R ·R = Q(S,R), we obtain

− [(α− 1)g(Y,X1) +B(Y,X1)trAN −B(ANY,X1)][g(X2, X3)g(X,X4)

− g(X,X3)g(X2, X4) +B(X2, X3)g(ANX,X4)−B(X,X3)g(ANX2, X4)]

+ [(α− 1)g(X,X1) +B(X,X1)trAN −B(ANX,X1)][g(X2, X3)g(Y,X4)

− g(Y,X3)g(X2, X4) +B(X2, X3)g(ANY,X4)−B(Y,X3)g(ANX2, X4)]

− [(α− 1)g(Y,X2) +B(Y,X2)trAN −B(ANY,X2)][g(X,X3)g(X1, X4)

− g(X1, X3)g(X,X4) +B(X,X3)g(ANX1, X4)−B(X1, X3)g(ANX,X4)]

+ [(α− 1)g(X,X2) +B(X,X2)trAN −B(ANX,X2)][g(Y,X3)g(X1, X4)

− g(X1, X3)g(Y,X4) +B(Y,X3)g(ANX1, X4)−B(X1, X3)g(ANY,X4)]

− [(α− 1)g(Y,X3) +B(Y,X3)trAN −B(ANY,X3)][g(X2, X)g(X1, X4)

− g(X1, X)g(X2, X4) +B(X2, X)g(ANX1, X4)−B(X1, X)g(ANX2, X4)]

+ [(α− 1)g(X,X3) +B(X,X3)trAN −B(ANX,X3)][g(X2, Y )g(X1, X4)

− g(X1, Y )g(X2, X4) +B(X2, Y )g(ANX1, X4)−B(X1, Y )g(ANX2, X4)]

− [(α− 1)g(Y,X4) +B(Y,X4)trAN −B(ANY,X4)][g(X2, X3)g(X1, X)

− g(X1, X3)g(X2, X) +B(X2, X3)g(ANX1, X)−B(X1, X3)g(ANX2, X)]

+ [(α− 1)g(X,X4) +B(X,X4)trAN −B(ANX,X4)][g(X2, X3)g(X1, Y )

− g(X1, X3)g(X2, Y ) +B(X2, X3)g(ANX1, Y )−B(X1, X3)g(ANX2, Y )]

+B(Y,X1)[g(X2, X3)g(ANX,X4)− g(ANX,X3)g(X2, X4)

+B(X2, X3)g(A2
NX,X4)−B(ANX,X3)g(ANX2, X4)]
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−B(X,X1)[g(X2, X3)g(ANY,X4)− g(ANY,X3)g(X2, X4)

+B(X2, X3)g(A2
NY,X4)−B(ANY,X3)g(ANX2, X4)]

+B(Y,X2)[g(ANX,X3)g(X1, X4)− g(X1, X3)g(ANX,X4)

+B(ANX,X3)g(ANX1, X4)−B(X1, X3)g(A2
NX,X4)]

−B(X,X2)[g(ANY,X3)g(X1, X4)− g(X1, X3)g(ANY,X4)

+B(ANY,X3)g(ANX1, X4)−B(X1, X3)g(A2
NY,X4)]

+B(Y,X3)[g(X2, ANX)g(X1, X4)− g(X1, ANX)g(X2, X4)

+B(X2, ANX)g(ANX1, X4)−B(X1, ANX)g(ANX2, X4)]

−B(X,X3)[g(X2, ANY )g(X1, X4)− g(X1, ANY )g(X2, X4)

+B(X2, ANY )g(ANX1, X4)−B(X1, ANY )g(ANX2, X4)]

+B(Y,X4)[g(X2, X3)g(X1, ANX)− g(X1, X3)g(X2, ANX)

+B(X2, X3)g(ANX1, ANX)−B(X1, X3)g(ANX2, ANX)]

−B(X,X4)[g(X2, X3)g(X1, ANY )− g(X1, X3)g(X2, ANY )

+B(X2, X3)g(ANX1, ANY )−B(X1, X3)g(ANX2, ANY )] = 0.

Here, taking X1 = Y = E ∈ Γ(RadTM), we have

B(ANE,X2)B(X,X3)g(ANE,X4)−B(ANE,X2)B(X2, X)g(AE,X4)

−B(ANE,X4)B(X2, X3)g(ANE,X)−B(X,X2)B(ANE,X3)g(ANE,X4)

−B(X,X3)B(X2, ANE)g(AE,X4)−B(X,X4)B(X2, X3)g(ANE,ANE) = 0.

Thus, for X4 = ξ, we get

u(X)B(X2, X3)g(ANE,ANE) = 0.

Hence, from the hypothesis, proof is complete.

4. Pseudoparalllel Lightlike Hypersurfaces in Indef-
inite Sasakian Space Forms

In this section, we investigate pseudoparallel lightlike hypersurfaces in an indefinite
Sasakian space form and give some characterizations about such hypersurfaces.

Definition 4.1. Let M̄(c) be an indefinite Sasakian space form and M a lightlike
hypersurface of M̄(c) with ξ ∈ Γ(TM). We say that M is a pseudoparallel lightlike
hypersurface, if the tensors of R · h and Q(g, h) are linearly dependent at ∀p ∈M .
This is equivalent to R · h = LhQ(g, h) on Uh = {p ∈ M |Q(g, h) 6= 0}, where Lh is
some function on Uh and h is the second fundamental form of M .

Theorem 4.1. Let M̄(c = 1) be an indefinite Sasakian space form and M a lightlike
hypersurface of M̄(c) with ξ ∈ Γ(TM) such that AN is a symmetric with respect to
B. If τ is parallel and B(X,Y )A∗EANZ = g(X,Y )A∗EZ, then M is a pseudoparallel
lightlike hypersurface such that Lh = 2, where X,Y, Z ∈ Γ(TM), E ∈ Γ(RadTM)
and τ is 1-form on M .
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Proof. For c = 1, we have

(R(X,Y ) · h)(X1, X2)

=R⊥(X,Y )h(X1, X2)− h(R(X,Y )X1, X2)− h(X1, R(X,Y )X2)

=− h(g(Y,X1)X − g(X,X1)Y +B(Y,X1)ANX −B(X,X1)ANY,X2)

− h(X1, g(Y,X2)X − g(X,X2)Y +B(Y,X2)ANX −B(X,X2)ANY ).

Thus, we get

(R(X,Y ) · h)(X1, X2)

=− g(Y,X1)h(X,X2) + g(X,X1)h(Y,X2)−B(Y,X1)h(ANX,X2)

+B(X,X1)h(ANY,X2)− g(Y,X2)h(X1, X) + g(X,X2)h(X1, Y )

−B(Y,X2)h(X1, ANX) +B(X,X2)h(X1, ANY ),

where X1, X2, X, Y ∈ Γ(TM). If we write the second fundamental tensor field h,
then

(R(X,Y ) · h)(X1, X2)

=− g(Y,X1)B(X,X2)N + g(X,X1)B(Y,X2)N −B(Y,X1)B(ANX,X2)N

+B(X,X1)B(ANY,X2)N − g(Y,X2)B(X1, X)N + g(X,X2)B(X1, Y )N

−B(Y,X2)B(X1, ANX)N +B(X,X2)B(X1, ANY )N

=Q(g,R)(X1, X2;X,Y )−B(Y,X1)B(ANX,X2)N +B(X,X1)B(ANY,X2)N

−B(Y,X2)B(X1, ANX)N +B(X,X2)B(X1, ANY )N.

Thus, from (3.17), we obtain that

(R(X,Y ) · h)(X1, X2) = 2Q(g, h)(X1, X2;X,Y ),

which completes proof.
As a result, we have the following corollary.

Corollary 4.1. Let M̄(c = 1) be an indefinite Sasakian space form and M a
lightlike hypersurface of M̄(c) with ξ ∈ Γ(TM). If M is transversal flat and
B(X,Y )A∗EANZ = g(X,Y )A∗EZ, then M pseudoparallel lightlike hypersurface such
that Lh = 2, where X,Y, Z ∈ Γ(TM) and τ is 1-form on M .

Theorem 4.2. Let M̄(c = 1) be an indefinite Sasakian space form and M a pseu-
doparallel (Lh = 1) lightlike hypersurface of M̄(c) such that AN is symmetric with
respect to B, ξ ∈ Γ(TM). If τ is parallel and

B(Y,X2)B(ANξ, φ̄E)N = −u(X2)B(φ̄E,ANY )N,

then either M is (φ̄(TM⊥), D ⊕ D
′
)-mixed totally geodesic or B(ANξ,X2) = 0,

where X2 ∈ Γ(TM), Y ∈ Γ(D ⊕D′
), E ∈ Γ(RadTM), N ∈ Γ(tr(TM)).

Proof. Suppose that M is a pseudoparallel lightlike hypersurface of an indefinite
Sasakian space form (c = 1), i.e.,

(R(X,Y ) · h)(X1, X2) = LhQ(g, h)(X1, X2;X,Y ),
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where X1, X2, X ∈ Γ(TM), Y ∈ Γ(D ⊕ D′
). Here, taking X = ξ and X1 = V =

−φ̄E for (c = 1), we have

(R(ξ, Y ) · h)(−φ̄E,X2) = LhQ(g, h)(−φ̄E,X2; ξ, Y ).

Thus, we get

(1− Lh)[g(Y, φ̄E)B(ξ,X2)− g(ξ,X2)B(φ̄E, Y )]N − g(ξ, φ̄E)B(Y,X2)N

+B(Y, φ̄E)B(ANξ,X2)N −B(ξ, φ̄E)B(ANY,X2)N + g(Y,X2)B(φ̄E, ξ)N

+B(Y,X2)B(ANξ, φ̄E)N −B(ξ,X2)B(φ̄E,ANY )N = 0.

Therefore, taking account into Lh = 1 and B(ξ, φ̄E) = −u(φ̄E) = g(φ̄E, φ̄E) = 0,
we obtain

B(Y, φ̄E)B(ANξ,X2)N +B(Y,X2)B(ANξ, φ̄E)N −B(ξ,X2)B(φ̄E,ANY )N = 0.

Hence, from the hypothesis, we get

B(Y, φ̄E)B(ANξ,X2)N = 0.

So, this completes proof.

Corollary 4.2. Let M̄(c) be an indefinite Sasakian space form and M a pseudopar-
allel lightlike hypersurface of M̄(c). If M is totally geodesic, then M is semi-parallel.

Proof. Proof is clear.

5. Ricci-pseudosymmetric Lightlike Hypersurfaces
in Indefinite Sasakian Space Forms

In this section, we investigate Ricci-pseudosymmetric lightlike hypersurfaces in an
indefinite Sasakian space form and give some characterizations about such hyper-
surfaces.

Definition 5.1. Let M̄(c) be an indefinite Sasakian space form and M a lightlike
hypersurface of M̄(c) with ξ ∈ Γ(TM). We say that M is a Ricci-pseudosymmetric
lightlike hypersurface, if the tensors of R · S and Q(g, S) are linearly dependent at
∀p ∈ M . This is equivalent to R · S = LSQ(g, S) on US = {p ∈ M |Q(g, S) 6= 0},
where LS is some function on US and S is Ricci tensor.

Theorem 5.1. Let M be a lightlike hypersurface of an indefinite Sasakian space
form M̄(1) with ξ ∈ Γ(TM) such that AN is symmetric with respect to B. If
B(X,Y )A∗EANZ = g(X,Y )A∗ξZ and C(X,Y )A∗EZ = g(X,Y )Z, then M is a Ricci-
pseudosymmetric lightlike hypersurface such that LS = 2, where X,Y, Z ∈ Γ(TM),
E ∈ Γ(RadTM).
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Proof. For c = 1, we have

(R · S)(X1, X2;X,Y )

=− S(R(X,Y )X1, X2)− S(X1, R(X,Y )X2)

=− S(g(Y,X1)X − g(X,X1)Y +B(Y,X1)ANX −B(X,X1)ANY,X2)

− S(X1, g(Y,X2)X − g(X,X2)Y +B(Y,X2)ANX −B(X,X2)ANY )

=− g(Y,X1)S(X,X2) + g(X,X1)S(Y,X2) +B(Y,X1)S(ANX,X1)

−B(X,X1)S(ANY,X2)− g(Y,X2)S(X1, X) + g(X,X2)S(X1, Y )

−B(Y,X2)S(X1, ANX) +B(X,X2)S(X1, ANY ) (5.1)

where X1, X2, X, Y ∈ Γ(TM). Then, we obtain

(R · S)(X1, X2;X,Y )

=Q(g, S)(X1, X2;X,Y )

+B(Y,X1)[αg(ANX,X2) +B(ANX,X2)trAN −B(A2
NX,X2)]

−B(X,X1)[αg(ANY,X2) +B(ANY,X2)trAN −B(A2
NY,X2)]

−B(Y,X2)[αg(X1, ANX) +B(X1, ANX)trAN −B(ANX1, ANX)]

+B(X,X2)[αg(X1, ANY ) +B(X1, ANY )trAN −B(ANX1, ANY )]. (5.2)

Thus, from the hypothesis and using (5.2), we obtain

(R · S)(X1, X2;X,Y ) = 2Q(g, S)(X1, X2;X,Y ),

where α = 2n− 1. So, proof is complete.

Theorem 5.2. Let M̄(c = 1) be an indefinite Sasakian space form and M a Ricci-
pseudosymmetric (LS = 1) lightlike hypersurface of M(c) with ξ ∈ Γ(TM). If
B(ξ,X2) = 0, then either M is totally geodesic or S(E,ANξ) = 0.

Proof. Suppose that M is a Ricci-pseudosymmetric lightlike hypersurface of a
M̄(c = 1) an indefinite Sasakian space form. Thus, from (2.13), we have

(1− LS)Q(g, S)(X1, X2;X,Y ) +B(Y,X1)[αg(ANX,X2) +B(ANX,X2)trAN

−B(A2
NX,X2)]−B(X,X1)[αg(ANY,X2) +B(ANY,X2)trAN −B(A2

NY,X2)]

−B(Y,X2)[αg(X1, ANX) +B(X1, ANX)trAN −B(ANX1, ANX)]

+B(X,X2)[αg(X1, ANY ) +B(X1, ANY )trAN −B(ANX1, ANY )] = 0,

where X1, X2, X, Y ∈ Γ(TM). Here, taking X1 = E ∈ Γ(RadTM), we obtain

(1− LS)Q(g, S)(E,X2;X,Y ) +B(Y,E)[αg(ANX,X2) +B(ANX,X2)trAN

−B(A2
NX,X2)]−B(X,E)[αg(ANY,X2) +B(ANY,X2)trAN −B(A2

NY,X2)]

−B(Y,X2)[αg(E,ANX) +B(E,ANX)trAN −B(ANE,ANX)]

+B(X,X2)[αg(E,ANY ) +B(E,ANY )trAN −B(ANE,ANY )] = 0.

Thus, we have

(1− LS)[g(Y,X2)B(ANE,X) + g(X,X2)B(ANE, Y )]

+B(Y,X2)B(ANE,ANX)−B(X,X2)B(ANE,ANY ) = 0.
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Here, since (LS = 1), using X = ξ, the above equation is

B(Y,X2)B(ANE,ANξ)−B(ξ,X2)B(ANE,ANY ) = 0.

Thus, we obtain

B(Y,X2)B(ANE,ANξ) = 0.

Since S(E,ANξ) = −B(ANE,ANξ), proof is complete.

Corollary 5.1. Let M̄(c) be an indefinite Sasakian space form and (M, g) a Ricci-
pseudosymmetric lightlike hypersurface of M(c). If M is totally geodesic, then M
is Ricci semi-symmetric.

Proof. Proof is obvious from (5.2).

6. Weyl Projective Pseudosymmetric Lightlike Hy-
persurfaces in Indefinite Sasakian Space Forms

In this section, we investigate the effect of Weyl projective pseudosymmetry con-
dition on the geometry of lightlike hypersurfaces in an indefinite Sasakian space
form.

Definition 6.1. Let (M, g) be a lightlike hypersurface of an indefinite Sasakian
space form M̄(c) with ξ ∈ Γ(TM). We say that M is a Weyl projective pseu-
dosymmetric lightlike hypersurface, if the tensors of R · W and Q(g,W ) are lin-
early dependent at ∀p ∈ M . This is equivalent to R · W = LWQ(g,W ) on
UW = {p ∈M |Q(g,W ) 6= 0}, where LW is some function on UW .

For a Weyl-prjective pseudosymmetric lightlike hypersurface, we have the fol-
lowing result.

Theorem 6.1. Let M̄(c = 1) be an indefinite Sasakian space form and (M, g) a
Weyl projective pseudosymmetric lightlike hypersurface of M̄(c) with ξ ∈ Γ(TM)
and ANE ∈ Γ(D0) is non-null vector field. If u(Y ) 6= 0, then M is totally geodesic.

Proof. For X2, X3, X4, Y ∈ Γ(TM) and X1 = X = E ∈ Γ(RadTM), we have

(R ·W )(E,X2, X3, X4;E, Y )

=Q(g,W )(E,X2, X3, X4;E, Y )−B(Y,X2)B(ANE,X3)g(ANE,X4)

+B(E,X2)B(ANY,X3)g(ANE,X4)−B(Y,X3)B(X2, ANE)g(ANE,X4)

+B(E,X3)B(X2, ANY )g(ANE,X4)−B(Y,X4)B(X2, X3)g(ANE,ANE)

− 1

n− 1
{−B(Y,X2)g(ANE,X4)B(ANE,X3)−B(Y,X3)g(X2, X4)B(ANE,ANE)

−B(Y,X4)g(X2, ANE)B(ANE,X3)}.

Then, taking account into Q(g,W )(E,X2, X3, X4;E, Y ) = 0 and putting X4 = ξ
and X2 = V = −φ̄E, we obtain

B(Y, ξ)B(X2, X3)g(ANE,ANE)− 1

n− 1
{B(Y,X3)g(φ̄E, ξ)B(ANE,ANE)

+B(Y, ξ)g(φ̄E,ANE)B(ANE,X3)} = 0.
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Thus, we have

B(Y, ξ)B(X2, X3)g(ANE,ANE) = 0,

which gives proof.

7. Physical Interpretations

In this section we remark that there is a close relation between lightlike hyper-
surfaces and certain horizons of spacetimes. This section is taken from a book [15]
which may be consulted for the details which we can not discuss in this paper. Light-
like hypersurfaces are interesting in general relativity since they produce models of
different types of horizons (event horizons, Cauchys horizons, Kruskals horizons).
We only mention Killing horizon as a special event horizon. An event horizon is
a general term for a boundary in a spacetime, defined with respect to an observ-
er, beyond which events cannot affect the observer. An event horizon is called a
Killing horizon if its null hypersurface admits a Killing vector field. Solutions of the
highly non-linear Einsteins field equations require the assumption that they admit
Killing or homothetic vector fields. This is due to the fact that the Killing sym-
metries leave invariant the metric connection, all the curvature quantities and the
matter tensor of the Einstein field equations of a spacetime. Asymptotically flat
spacetimes are best physical systems for the non-flat stationary spacetimes, many of
them do have Killing horizons. Among stationary spacetimes, Schwarzchild, Reiss-
ner - Nordström, and Kerr spacetimes, all have Killing horizons. We note that there
is also relation between local isometry horizon and Killing horizon. We recall that
a lightlike hypersurface M is said to be a local isometry horizon (LIH) with respect
to a group of isometry if (a) M is invariant under the group. (b) Each null geodesic
generator is a trajectory of the group. In particular, a lightlike hypersurface (M, γ)
which is an LIH with respect to a 1-parameter group (or sub-group) is said to be
a Killing horizon. This means that a Killing horizon is a lightlike hypersurface M
whose generating null vector can be normalized so as to coincide with one of the
Killing vectors ξa. Physically, an LIH, with respect to a 4 - dimensional spacetime
manifold M , has the following significant role. A particle on an LIH, of M , may
immediately be traveling at the speed of light along the single null generator but
standing still relative to its surroundings. A vector field ξ on (M, g) is called a
conformal Killing vector field, briefly denoted by CKV, with conformal function σ
if

(£ξ g)ij = 2σ gij , or ξi;j + ξj;i = 2σ gij , 1 ≤ i, j ≤ n = dim(M),

which reduces to homothetic or Killing vector field whenever σ is non-zero constant
or zero respectively. X is called proper CKV if σ is non-constant.

The real formal mathematical formalism of black holes was initiated by by
Kruskal [19] and by Szekeres [32]). They extended the Schwartzschild solution
into the region of the nascent black hole. Kruskal-Szekeres formulation is now
well-known as a reliable fundamental theory for the justification of the existence
of black holes and there has been a large body of research papers on this subject.
Geometrically, the surface of a black hole has been traditionally described in terms
of a Killing (isolated) horizon, briefly denoted by IH. This relation has its roots in
Hawking’s area theorem, which states that if matter satisfies the dominant energy



Pseudosymmetric lightlike hypersurfaces 717

condition, then, the area of the black hole IH cannot decrease [16]. The most exten-
sively studied family of black holes are the Kerr-Newman black holes, all of which
have IH’s. However, in reality, since the black holes are surrounded by a local mass
distribution and expand by the inflow of galactic debris as well as electromagnetic
and gravitational radiation, their area increase in a given physical situation. Con-
sequently, one needs to know the geometry of the surrounding of a given black hole
to find an explicit formula for the increase in area. To address this issue of expand-
ing black holes, recently, a new concept of dynamical horizons was introduced by
Ashtekar and Krishnan [3, 18] which are a special type of 3-dimensional spacelike
hypersurfaces of a spacetime whose asymptotic states are the IH’s.

More precisely, a smooth, three dimensional, spacelike submanifold Σ in a space-
time M is said to be a dynamical horizon if it can be foliated by a family of closed
2-surfaces such that, on each leaf L (i) one of its future directed null normal, say `,
has zero expansion, θ(`) = 0; (ii) the other future directed null normal, n, has nega-
tive expansion θ(n) < 0. We note that an expanded black hole (whose area increase)
will not be time independent and so the event horizon cannot be defined as a Killing
horizon. In another words, an expanding universe does not admit a global timelike
Killing vector field needed to generate a Killing horizon. This suggests the use of
those spacetimes which admit a higher symmetry defined by a timelike conformal
Killing vector (CKV) field. We know from above discussion that an isolated hori-
zon(IH) is not a realistic model and dynamical horizon models are needed to under-
stand the properties of black holes of expanding spacetimes. Therefore one should
consider those null hypersurfaces of spacetimes whose null geodesic trajectories co-
incide with conformal Killing trajectories of a null CKV field (instead of Killing
trajectories of classical isolated horizons(IHs)). This happens when a spacetime
admits a timelike CKV field which becomes null on a boundary as a null geodesic
hypersurface. Such a horizon is called conformal Killing horizon(CKH) [30,31]. We
use (1+3)-splitting ADM spacetime (M, g) with a CKV field ξ and evolved out of a
complete spacelike hypersurface Σ which is totally umbilical in M and assume that
ξ is a null vector field. The following result shows that there is one to one corre-
sponding between totally umbilical hypersurfaces and conformal Killing vector field
(CKV). Let (M, g) be a lightlike hypersurface of a Lorentzian manifold M̄ . Then
M is totally umbilical if and only if every section ξ ∈ Γ(RadTM)|U ) is a conformal
killing vector field on U , see: [14, Proposition 4.2]. For Killing horizons, dynamical
horizons, conformal Killing horizons and their relations, see:( [15, Chapter 3]).

It is known [13, page 88] that a lightlike hypersurface M of a semi-Riemannian
manifold is totally geodesic if and only if ξ is a Killing vector field on M . This
is equivalent to the condition that A∗ξ vanishes identically on M , for any ξ ∈
Γ(RadTM). Thus the existence of Killing horizon is related with A∗ξ . One can
see from our results Theorem 3.2, Theorem 3.3, Theorem 3.5, Theorem 5.2 and
Theorem 6.1), pseudo-symmetry conditions for a lightlike hypersurface implies that
either hypersurface is totally geodesic or the induced structures have some special
forms. In another words our results give sufficient conditions for having Killing hori-
zons. On the other hand, a lightlike hypersurface is totally umbilical [13, page 107]
if and only on each U ⊂ M there exists a smooth ρ such that A∗ξPX = ρX, for
ξ ∈ Γ(Rad(TM)) and X ∈ Γ(TM |U ). But from above result of Duggal-Gimenez,
we see that the existence of totally umbilical lightlike hypersurfaces are related to
the existence of conformal null Killing vector field. In this respect our results The-
orem 3.1, Theorem 4.2 and Theorem 5.1 relate pseudo-symmetry conditions for
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a lightlike hypersurface with conformal Killing horizon.
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Cuza” din Iaşi (S.N.) Matematică, Tomul LV., 2(2009), 275–284.

[27] A. Z. Petrov, Einstein Spaces, Pergamon, Oxford, 1969.
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[29] B. Şahin, Lightlike hypersurfaces of semi-Euclidean spaces satisfying curvature
conditions of semisymmetry type, Turk J. Math., 31(2007), 139–162.

[30] J. Sultana and C. C. Dyer, Conformal Killing horizons, J. Math. Phys.,
45(2004)(12), 4764–4776.

[31] J. Sultana and C. C. Dyer, Cosmological black holes: A black hole in the
Einstein-de Sitter universe, Gen. Relativ. Gravit., 37(2005)(8), 1349–1370.

[32] G. Szekeres, On the singularities of a Riemannian manifold, Publ. Math. De-
brecen, 7(1960), 285–301.

[33] R. Takagi, An example of Riemannian manifold satisfying R(X,Y ).R = 0 but
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