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Abstract In this paper, considering series system of masked data under sim-
ple successive censored and multiple successive censored life test, the likelihood
function and maximum likelihood estimate are respectively proposed for se-
ries system composed of two units under two kinds of situations. One is the
series system composed of two units with constant failure rate, and the other
is the series system composed of two units with linear failure rate through the
origin. The approximate interval estimates of parameters are given by using
the method of likelihood ratio. Besides, the examples show the feasibility of
the methods through Monte-Carlo simulations.

Keywords Masked data, series system, successive censored, maximum like-
lihood estimate, approximate interval estimate.

MSC(2010) 62N05.

1. Introduction

In reliability analysis, we often estimate unknown parameters of the life distribution
of the system components through the analysis of the systems data. System life
test data includes two aspects, one is the failure time and the other is the failure
reason. Ideally, system life data should include both the failure time of the system
and the information of the specific unit which causes the entire unit and system to
fail. But most of the time, the unit that results in the system failure is not able to
be accurately identified, and people can only attribute the cause of system failure
to a collection of certain units, thus the real reason of system failure is masked. In
real life, since the cost of fault diagnosis and fault detection is expensive, especially
modular design is increasingly used in the modern system, the exact unit that
results in system failure is often unknown. We also encounter similar problems
when we study on the reliability of system in computer or integrated circuit and
so on. There are various reasons that result in masked data, such as inadequate
funding, time constraints, record errors, and lack of diagnostic tools and so on.
Therefore the statistical analysis of masked data becomes one of the hot topics in
recent years, and many scholars have done a very good job and made a series of
studies, specifically seeing [1–5,7–19,22–24].

In this paper, considering series system of masked data under simple succes-
sive censored and multiple successive censored life test, the likelihood function and
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maximum likelihood estimate are respectively proposed for series system composed
of two units under two kinds of situations. One is the series system composed of
two units with constant failure rate, and the other is the series system composed of
two units with linear failure rate through the origin. The approximate interval esti-
mates of parameters are given by using the method of likelihood ratio. Besides, the
examples show the feasibility of the methods through Monte - Carlo simulations.

2. Likelihood Function of Series System for Masked
Data

In order to establish models, we usually give following basic assumptions:

Assumption 1: The system is composed of J(≥ 1) independent units in series.

Assumption 2: The occurrence of masking is independent of the failure reason
and time.

Assumption 3: In system i, the lifetime of the jthunit is denoted by Tij , and
its corresponding density function, distribution function, failure rate function and
reliability function are respectively fij(t), Fij(t), hij(t) and F̄ij(t).

Since the random variable Tij does not depend on i, above density function, dis-
tribution function, failure rate function and reliability function can be respectively
denoted by fj(t), Fj(t), hj(t) and F̄j(t).

Considering that n series systems are put in the life test, each system has J
units. Let the random variable Tij be the lifetime of the jth unit in the ith system,
and its observation value is denoted by tij , i = 1, 2, · · · , n, j = 1, 2, · · · , J . Then
the lifetime Ti of the ith system is Ti = min(Ti1, Ti2, · · · , TiJ), and its observation
value is denoted by ti, i = 1, . . . , n. Let Si be the set of units which cause the
failure of system i and si is the realization of Si. Then the observation data include
(t1, s1), (t2, s2), · · · , (tn, sn). If the set si contains only one element or it is composed
of a single element, it indicates that the unit which causes the failure of system i is
known. If the set si contains more than one element, it indicates that the life data
of units which cause the failure of system i are masked.

Let Ki be the exact unit that causes the failure of system i. The density function,
distribution function, reliability function and failure rate function of the jth unit
life are respectively denoted by fj(t), Fj(t), F̄j(t) and hj(t). Assume that the life
distributions of units are independent of each other. Take Jj = {1, 2, · · · , j − 1, j +
1, · · · , J}.

Therefore, according to [19], the simplified likelihood function of n series systems
can be denoted by

L(data) =

n∏
i=1

∑
j∈si

fj(ti) ∏
l∈Jj

F̄l(ti)

.
Since fj(t) = hj(t)F̄j(t), we have

L(data) =

n∏
i=1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)

.
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3. Statistical Analysis of Series System for Masked
Data under Simple Successive Censored Life Test

3.1. Likelihood function of series system for masked data un-
der simple successive censored life test

Considering that n series systems composed of two units are put in simple successive
censored life test, the failure reason of each system can be summed up in three
categories: s1 = {1}, s2 = {2}, s12 = {1, 2}. When k1 systems are failed, n1
systems randomly selected from n − k1 systems that are not failed are evacuated
from testing site, and remaining n − k1 − n1 systems continue the test. When
other k2 systems are failed, n − k1 − n1 − k2 systems that are not failed are all
evacuated from testing site. Thus the order failure time of all failure systems are
τ1, τ2, · · · , τk1 , τk1+1, τk1+2, · · · , τk1+k2 . Among k1 failure systems in the first test,
r1 systems belong to class s1 and their failure time are t1, t2, · · · , tr1 ; r2 systems
belong to class s2 and their failure time are tr1+1, tr1+2, · · · , tr1+r2 ; r3 systems
belong to classs12 and their failure time are tr1+r2+1, tr1+r2+2, · · · , tr1+r2+r3 , where
r1 +r2 +r3 = k1. Among k2 failure systems in the second test, r4 systems belong to
class s1 and their failure time are tk1+1, tk1+2, · · · , tk1+r4 ; r5 systems belong to class
s2 and their failure time are tk1+r4+1, tk1+r4+2, · · · , tk1+r4+r5 ; r6 systems belong to
classs12 and their failure time are tk1+r4+r5+1, tk1+r4+r5+2, · · · , tk1+r4+r5+r6 , where
r4 + r5 + r6 = k2. The data form is shown in Table 1, where A denotes the number
of failure system in each test and B denotes system failure time according to the
classification of failure reason.

Table 1. Data Form of Series System for Masked Data under Simple Successive Censored Life Test

B
A

Failure time that
belongs to class s1

Failure time that
belongs to class s2

Failure time that
belongs to class s12

k1 t1, t2, · · · , tr1 tr1+1, tr1+2, · · · , tr1+r2 tr1+r2+1, tr1+r2+2,
· · · , tr1+r2+r3

k2 tk1+1, tk1+2,
· · · , tk1+r4

tk1+r4+1, tk1+r4+2,
· · · , tk1+r4+r5

tk1+r4+r5+1, tk1+r4+r5+2,
· · · , tk1+r4+r5+r6

Theorem 3.1. Supposed that density function of the system is q(τ) and survival
function is R(τ), the density function, distribution function, reliability function
and failure rate function of the jth unit life in each series system are respectively
fj(t), Fj(t), F̄j(t) and hj(t), j = 1, 2, · · · , J . Besides, assuming that the life distri-
butions of units are mutually independent, n series systems composed of two units
are put in simple successive censored life test and the data form is shown as Table
1. Then the likelihood function of this situation is

L(data) =C+
2

k1∏
i=1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


k1+k2∏
i=k1+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


× [R(τk1)]

n1 [R(τk1+k2)]
n−k1−n1−k2

=C+
2

k1+k2∏
i=1

[
2∏
l=1

F̄l(ti)

]
r1∏
i=1

∑
j∈s1

hj(ti)

 k1+r4∏
i=k1+1

∑
j∈s1

hj(ti)


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×
r1+r2∏
i=r1+1

∑
j∈s2

hj(ti)

 k1+r4+r5∏
i=k1+r4+1

∑
j∈s2

hj(ti)

 k1∏
i=r1+r2+1

∑
j∈s12

hj(ti)


×

k1+k2∏
i=k1+r4+r5+1

∑
j∈s12

hj(ti)

 [R(τk1)]
n1 [R(τk1+k2)]

n−k1−n1−k2 ,

where C+
2 is a positive constant.

Proof. Supposed that C+
1 , C

′+
1 , C+

2 are positive constants, the joint density func-
tion of τ1, τ2, · · · , τk1 is

g(τ1, τ2, · · · , τk1) = C+
1

k1∏
i=1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)

 [R(τk1)]
n−k1 .

When τ1, τ2, · · · , τk1 are given, τk1+1, τk1+2, · · · , τk1+k2 are the first k2 observation
values from the censored distribution with sample size n− k1 − n1, which follow a
left censored distribution and its density function q1(τ) and survival function R1(τ)
are respectively

q1(τ) =
q(τ)

R(τk1)
, R1(τ) =

R(τ)

R(τk1)
, τ ≥ τk1 .

Then we have

g(τk1+1, τk1+2, · · · , τk1+k2 |τ1, τ2, · · · , τk1)

=C ′+1

k1+k2∏
i=k1+1

[q1(τi)] [R1(τk1+k2)]
n−k1−n1−k2

=C ′+1

k1+k2∏
i=k1+1

{∑
j∈si

[hj(ti)]
J∏
l=1

F̄l(ti)

}
[R(τk1+k2)]

n−k1−n1−k2

[R(τk1)]
k2 [R(τk1)]

n−k1−n1−k2

=C ′+1

k1+k2∏
i=k1+1

{∑
j∈si

[hj(ti)]
J∏
l=1

F̄l(ti)

}
[R(τk1+k2)]

n−k1−n1−k2

[R(τk1)]
n−k1−n1

g(τ1, τ2, · · · , τk1 , τk1+1, τk1+2, · · · , τk1+k2)

=g(τ1, τ2, · · · , τk1)g(τk1+1, τk1+2, · · · , τk1+k2 |τ1, τ2, · · · , τk1)

=C+
2

k1∏
i=1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)

 [R(τk1)]
n1

×
k1+k2∏
i=k1+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)

 [R(τk1+k2)]
n−k1−n1−k2 .

Therefore, under the situation that n series systems composed of two units are
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put in simple successive censored life test, the likelihood function is

L(data)

=C+
2

k1∏
i=1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


k1+k2∏
i=k1+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


× [R(τk1)]

n1 [R(τk1+k2)]
n−k1−n1−k2

=C+
2

r1∏
i=1


∑
j∈s1

hj(ti)

 2∏
l=1

F̄l(ti)


r1+r2∏
i=r1+1


∑
j∈s2

hj(ti)

 2∏
l=1

F̄l(ti)


×

k1∏
i=r1+r2+1


∑
j∈s12

hj(ti)

 2∏
l=1

F̄l(ti)


k1+r4∏
i=k1+1


∑
j∈s1

hj(ti)

 2∏
l=1

F̄l(ti)


×

k1+r4+r5∏
i=k1+r4+1


∑
j∈s2

hj(ti)

 2∏
l=1

F̄l(ti)


k1+k2∏

i=k1+r4+r5+1


∑
j∈s12

hj(ti)

 2∏
l=1

F̄l(ti)


× [R(τk1)]

n1 [R(τk1+k2)]
n−k1−n1−k2

=C+
2

k1+k2∏
i=1

[
2∏
l=1

F̄l(ti)

]
r1∏
i=1

∑
j∈s1

hj(ti)

 k1+r4∏
i=k1+1

∑
j∈s1

hj(ti)

 r1+r2∏
i=r1+1

∑
j∈s2

hj(ti)


×

k1+r4+r5∏
i=k1+r4+1

∑
j∈s2

hj(ti)

 k1∏
i=r1+r2+1

∑
j∈s12

hj(ti)


×

k1+k2∏
i=k1+r4+r5+1

∑
j∈s12

hj(ti)

 [R(τk1)]
n1 [R(τk1+k2)]

n−k1−n1−k2 .

3.2. Statistical analysis of series system composed of two units
with constant failure rate

Supposed that the life of unit 1 is X and its failure rate is the constant α1 and
the life of unit 2 is Y and its failure rate is the constant α2, X,Y are mutually
independent and the life of series system is denoted by T , T = min(X,Y ). Such n
series systems are put in simple successive censored life test. For t ≥ 0, we have

P (T ≤ t) = 1− P (T > t) = 1− P (X > t, Y > t)

= 1− P (X > t)P (Y > t) = 1− e−α1te−α2t = 1− e−(α1+α2)t,

P (T > t) = e−(α1+α2)t.

The likelihood function is L(data, α1, α2),

L(data, α1, α2) =C+
2

k1+k2∏
i=1

[
e−(α1+α2)ti

]
αr1+r41 αr2+r52 (α1 + α2)r3+r6

× e−n1(α1+α2)τk1 e−(n−k1−n1−k2)(α1+α2)τk1+k2
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=C+
2 e
−(α1+α2)

k1+k2∑
i=1

ti
αr1+r41 αr2+r52 (α1 + α2)r3+r6

× e−n1(α1+α2)τk1 e−(n−k1−n1−k2)(α1+α2)τk1+k2 ,

lnL(data, α1, α2) = lnC+
2 − (α1 + α2)

k1+k2∑
i=1

ti + (r1 + r4) lnα1

+ (r2 + r5) lnα2 + (r3 + r6) ln(α1 + α2)

− n1(α1 + α2)τk1 − (n− k1 − n1 − k2) (α1 + α2)τk1+k2 ,

∂ lnL(data, α1, α2)

∂α1
=−

k1+k2∑
i=1

ti +
r1 + r4
α1

+
r3 + r6
α1 + α2

− n1τk1

− (n− k1 − n1 − k2) τk1+k2 ,

∂ lnL(data, α1, α2)

∂α2
=−

k1+k2∑
i=1

ti +
r2 + r5
α2

+
r3 + r6
α1 + α2

− n1τk1

− (n− k1 − n1 − k2) τk1+k2 .

Take ∂ lnL(data,α1,α2)
∂α1

= 0, ∂ lnL(data,α1,α2)
∂α2

= 0, and we obtain following equa-
tion set


−
k1+k2∑
i=1

ti + r1+r4
α1

+ r3+r6
α1+α2

− n1τk1 − (n− k1 − n1 − k2) τk1+k2 = 0,

−
k1+k2∑
i=1

ti + r2+r5
α2

+ r3+r6
α1+α2

− n1τk1 − (n− k1 − n1 − k2) τk1+k2 = 0.

By solving above equation set, the maximum likelihood estimate α̂1, α̂2 of pa-
rameters α1, α2 are respectively

α̂1 =
r1 + r4

r1 + r4 + r2 + r5

k1 + k2
k1+k2∑
i=1

ti + n1τk1 + (n− k1 − n1 − k2) τk1+k2

,

α̂2 =
r2 + r5

r1 + r4 + r2 + r5

k1 + k2
k1+k2∑
i=1

ti + n1τk1 + (n− k1 − n1 − k2) τk1+k2

.

When α1 = α2 = α, the likelihood function is

L(data, α) =C+
2 e
−2α

k1+k2∑
i=1

ti
αr1+r4+r2+r5(2α)r3+r6

× e−2αn1τk1 e−2α(n−k1−n1−k2)τk1+k2

=C+
2 e
−2α

k1+k2∑
i=1

ti
2r3+r6αk1+k2e−2αn1τk1 e−2α(n−k1−n1−k2)τk1+k2 ,

lnL(data, α) = lnC+
2 − 2α

k1+k2∑
i=1

ti + (r3 + r6) ln 2 + (k1 + k2) lnα− 2αn1τk1

− 2α (n− k1 − n1 − k2) τk1+k2 ,
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d lnL(data, α)

dα
=− 2

k1+k2∑
i=1

ti +
k1 + k2
α

− 2n1τk1 − 2 (n− k1 − n1 − k2) τk1+k2 .

Take d lnL(data,α)
dα = 0, and we obtain following equation

−2

k1+k2∑
i=1

ti +
k1 + k2
α

− 2n1τk1 − 2 (n− k1 − n1 − k2) τk1+k2 = 0.

By solving above equation, the maximum likelihood estimate α̂ of parameter α
is

α̂ =
1

2

k1 + k2
k1+k2∑
i=1

ti + n1τk1 + (n− k1 − n1 − k2) τk1+k2

.

Then we use the method of likelihood ratio to construct interval estimate. That is,

under H0 : θ = θ0, the asymptotic distribution of Λ = −2 ln
[
L(θ0)

L(θ̂)

]
is χ2(k), where

θ is k-dimension parameter.
If θ is divided into θ = (θ1, θ2)

′
, considering H0 : θ1 = θ10, the asymptotic

distribution of Λ = −2 ln
[
L(θ10,θ̃2(θ10)

L(θ̂1,θ̂2)

]
is χ2(p), where θ1 is p- dimension vector and

θ̃2(θ10) is the maximum likelihood estimate of θ2 under H0. Further, if parameter θ
is one-dimensional, under the hypothesis H0 : θ = θ0, the likelihood ratio statistic

Λ = −2 ln
[
L(θ0)

L(θ̂)

]
approximately follows χ2(1), where L(θ) is likelihood function.

Significance test regards Λ as χ2(1), and the larger value of Λ will result in rejecting
H0. The confidence interval of parameter θ can be obtained by reversing this test.
The confidence interval of parameter θ is the set of θ0 which satisfies Λ ≤ x2α(1). In
many situations, it indicates that it is very good to approximate Λ by using χ2, even
in the small sample situation. Such confidence interval is very close to the coverage
probability. For the given confidence level, the approximate interval estimate can
be obtained by using the method of likelihood estimate.

Example 3.1. Take a sample with sample size n = 30, k1 = 15, r1 = 3, r2 = 8,
n1 = 3, k2 = 10, r4 = 2, r5 = 5 The failure rates of two units are respectively
α1 = 0.3, α2 = 0.7. The failure data generated by Monte-Carlo simulation are
shown in Table 2.

Table 2. Failure Data of Example 3.1 Generated by Monte-Carlo Simulation

Test se-
quence

Unit set causing sys-
tem failure

System failure time

1

si = {1} 0.4889,0.1987,0.2535
si = {2} 0.0045,0.0215,0.3567,0.4677,0.4378,0.1902

0.3636,0.3712
si = {1, 2} 0.7105,0.2068,0.0943,0.6200

2

si = {1} 0.7760,1.3733
si = {2} 1.2968,0.9885,1.9497,2.0954,1.2176
si = {1, 2} 1.9114,1.7256,1.0921

Take τ1 = 0.7105 and τ2 = 2.0954. We can obtain α̂1 = 0.2720 and α̂2 = 0.7071
by using the method presented in this paper. For the given confidence level 0.95, the
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approximate interval estimate of α1 is [0.1788,0.3929], and the approximate interval
estimate of α2 is [0.4649,1.0216].

Example 3.2. Take a sample with sample size n = 50, k1 = 20, r1 = 12, r2 = 3,
n1 = 4, k2 = 25, r4 = 16, r5 = 4. The failure rates of two units are respectively
α1 = 0.8, α2 = 0.2. The failure data generated by Monte-Carlo simulation are
shown in Table 3.

Table 3. Failure Data of Example 3.2 Generated by Monte-Carlo Simulation

Test se-
quence

Unit set causing sys-
tem failure

System failure time

1

si = {1} 0.1424,0.0903,0.3951,0.1396,0.0945,0.0227
0.3921,0.2103,0.1130,0.1443,0.1327,0.3304

si = {2} 0.5540,0.4054,0.2833
si = {1, 2} 0.1694,0.2428,0.0015,0.3621,0.0885

2

si = {1} 1.0298,0.6336,1.2707,1.9890,0.7929,0.7839
1.9089,2.7638,1.8484,1.3079,0.9072,1.9543
1.4315,2.1746,0.8482,1.5311

si = {2} 1.5467,1.1269,1.0540,2.1112
si = {1, 2} 1.0447,0.8464,1.1456,1.0617,1.9926

Take τ1 = 0.5540 and τ2 = 2.7638. We can obtain α̂1 = 0.8108 and α̂2 = 0.2027
by using the method presented in this paper. For the given confidence level 0.95, the
approximate interval estimate of α1 is [0.5964,1.0713], and the approximate interval
estimate of α2 is [0.1491,0.2678].

3.3. Statistical analysis of series system composed of two units
with linear failure rate (through the origin)

Supposed that the life of unit 1 is X and its failure rate is the linear function
β1t of time t and the life of unit 2 is Y and its failure rate is the linear function β2t
of time t, X,Y are mutually independent and the life of series system is denoted by
T , T = min(X,Y ). Such n series systems are put in simple successive censored life
test. For t ≥ 0, we have

P (T ≤ t) = 1− P (T > t) = 1− P (X > t, Y > t) = 1− P (X > t)P (Y > t)

= 1− e− 1
2β1t

2

e−
1
2β2t

2

= 1− e− 1
2 (β1+β2)t

2

,

P (T > t) = e−
1
2 (β1+β2)t

2

.

The likelihood function is

L(data, β1, β2) =C+
2

k1+k2∏
i=1

ti

k1+k2∏
i=1

[
e−

1
2 (β1+β2)t

2
i

]
βr1+r41 βr2+r52 (β1 + β2)r3+r6

× e−
1
2n1(β1+β2)τ

2
k1 e−

1
2 (n−k1−n1−k2)(β1+β2)τ

2
k1+k2

=C+
2

k1+k2∏
i=1

tiβ
r1+r4
1 βr2+r52 (β1 + β2)r3+r6e

− 1
2 (β1+β2)

k1+k2∑
i=1

t2i

× e−
1
2n1(β1+β2)τ

2
k1 e−

1
2 (n−k1−n1−k2)(β1+β2)τ

2
k1+k2 ,
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lnL(data, β1, β2) = lnC+
2 +

k1+k2∑
i=1

ln ti + (r1 + r4) lnβ1 + (r2 + r5) lnβ2

+ (r3 + r6) ln(β1 + β2)− 1

2
(β1 + β2)

k1+k2∑
i=1

t2i −
1

2
n1(β1 + β2)τ2k1

− 1

2
(n− k1 − n1 − k2) (β1 + β2)τ2k1+k2 .

Take ∂ lnL(data,β1,β2)
∂β1

= 0, ∂ lnL(data,β1,β2)
∂β2

= 0, and we obtain following equa-
tion set

r1+r4
β1

+ r3+r6
β1+β2

− 1
2

k1+k2∑
i=1

t2i − 1
2n1τ

2
k1
− 1

2 (n− k1 − n1 − k2) τ2k1+k2 = 0,

r2+r5
β2

+ r3+r6
β1+β2

− 1
2

k1+k2∑
i=1

t2i − 1
2n1τ

2
k1
− 1

2 (n− k1 − n1 − k2) τ2k1+k2 = 0.

By solving above equation set, the maximum likelihood estimate β̂1, β̂2 of pa-
rameters β1, β2 are respectively

β̂1 =
2 (r1 + r4) (k1 + k2)

(r1 + r4 + r2 + r5)

[
k1+k2∑
i=1

t2i + n1τ2k1 + (n− k1 − n1 − k2) τ2k1+k2

] ,
β̂2 =

2 (r2 + r5) (k1 + k2)

(r1 + r4 + r2 + r5)

[
k1+k2∑
i=1

t2i + n1τ2k1 + (n− k1 − n1 − k2) τ2k1+k2

] .
When β1 = β2 = β, the likelihood function is

L(data, β) =C+
2

k1+k2∏
i=1

tiβ
r1+r4βr2+r5(2β)r3+r6e

−β
k1+k2∑
i=1

t2i

× e−n1βτ
2
k1 e−(n−k1−n1−k2)βτ2

k1+k2 ,

lnL(data, β) = lnC+
2 +

k1+k2∑
i=1

ln ti + (r1 + r4) lnβ + (r2 + r5) lnβ

+ (r3 + r6) ln 2 + (r3 + r6) lnβ − β
k1+k2∑
i=1

t2i

− n1βτ2k1 − (n− k1 − n1 − k2)βτ2k1+k2 .

Take d lnL(data,β)
dβ = 0, and we obtain following equation

1

β

6∑
i=1

ri −

[
k1+k2∑
i=1

t2i + n1τ
2
k1 + (n− k1 − n1 − k2)τ2k1+k2

]
= 0.

By solving above equation, the maximum likelihood estimate β̂ of parameter β is

β̂ =

6∑
i=1

ri

k1+k2∑
i=1

t2i + n1τ2k1 + (n− k1 − n1 − k2)τ2k1+k2

.
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Similarly, for the given confidence level, the approximate interval estimate can be
obtained by using the method of likelihood estimate.

Example 3.3. Take a sample with sample size n = 30, k1 = 15, r1 = 3, r2 = 8,
n1 = 3, k2 = 10, r4 = 2, r5 = 5. The failure rates of two units are respectively
β1 = 0.3, β2 = 0.7. The failure data generated by Monte-Carlo simulation are
shown in Table 4.

Table 4. Failure Data of Example 3.3 Generated by Monte-Carlo Simulation

Test se-
quence

Unit set causing
system failure

System failure time

1

si = {1} 0.4953 0.4180 0.2192
si = {2} 0.6564,0.2372,0.7541,0.7249,1.1956,0.3422

0.9769,0.8106
si = {1, 2} 1.1977,0.8176,0.6060,0.4481

2

si = {1} 1.4837,1.5913
si = {2} 1.8266,1.2948,1.3446,1.2467,2.2476
si = {1, 2} 2.1972,1.9985,1.3539

Take τ1 = 1.1977 and τ2 = 2.2476. We can obtain β̂1 = 0.2718 and β̂2 = 0.7067
by using the method presented in this paper. For the given confidence level 0.95, the
approximate interval estimate of β1 is [0.1787,0.3927], and the approximate interval
estimate of β2 is [0.4646,1.0210].

Example 3.4. Take a sample with sample size n = 50, k1 = 20, r1 = 12, r2 = 3,
n1 = 4, k2 = 25, r4 = 16, r5 = 4 The failure rates of two units are respectively
β1 = 0.8, β2 = 0.2. The failure data generated by Monte-Carlo simulation are
shown in Table 5.

Table 5. Failure Data of Example 3.4 Generated by Monte-Carlo Simulation

Test se-
quence

Unit set causing
system failure

System failure time

1

si = {1} 0.6736,0.5309,0.8719,0.8313,0.9640,0.2261
0.3309,0.4422,0.6061,0.7097,0.3752,0.8517

si = {2} 0.7862,0.9475,0.8827
si = {1, 2} 0.6745,0.4890,1.0233,0.9490,0.4627

2

si = {1} 2.7380,1.5915,1.0630,2.0555,1.5788,1.6056
2.0498,1.4826,1.4386,1.3401,1.5821,1.4145
1.3194,1.5537,1.0352,1.0766

si = {2} 1.4232,1.2368,1.5040,1.0554
si = {1, 2} 1.3536,2.9902,1.8923,1.3090,1.5705

Take τ1 = 1.0233 and τ2 = 2.9902. We can obtain β̂1 = 0.7950 and β̂2 = 0.1987
by using the method presented in this paper. For the given confidence level 0.95, the
approximate interval estimate of β1 is [0.5848,1.0504], and the approximate interval
estimate of β2 is [0.1462,0.2626].
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4. Statistical Analysis of Series System for Masked
Data under Multiple Successive Censored Life
Test

4.1. Likelihood function of series system for masked data un-
der multiple successive censored life test

Considering that n series systems composed of two units are put in multiple suc-
cessive censored life test, when k1 systems are failed, n1 systems randomly selected
from n − k1 systems that are not failed are evacuated from testing site, and re-
maining n − k1 − n1 systems continue the test. When other k2 systems are failed,
n2 systems randomly selected from n − k1 − n1 − k2 systems that are not failed
are evacuated from testing site, and remaining n − k1 − n1 − k2 − n2 systems
continue the test. The test is going on until km systems are failed for the mth

time, then the test is stopped and the remaining systems that are not failed are
all evacuated from testing site. Thus, the order failure time of all failure systems
are τ1, τ2, · · · , τk1 , τk1+1, τk1+2, · · · , τk1+k2 , · · · , τm−1∑

η=0
kη+1

, τm−1∑
η=0

kη+2
, · · · τ m∑

η=0
kη

. The

test data is shown as Table 6, where k0 = 0, τ0 = 0, ki ≥ 1, ni ≥ 0, i = 1, 2, · · · ,m
and nm is the number of systems that are not failed when the test is over at last.

Table 6. Series System for Masked Data under Multiple Successive Censored Life Test

Sample size of
test

Order failure time Failure
number

Sample size of evac-
uation

n τ1, τ2, · · · , τk1 k1 n1
n− k1 − n1 τk1+1, τk1+2, · · · , τk1+k2 k2 n2
n− k1 − n1
−k2 − n2

τk1+k2+1, τk1+k2+2, · · · ,
τk1+k2+k3

k3 n3

...
...

...
...

n

−
m−1∑
η=0

(kη + nη)

τm−1∑
η=0

kη+1
, τm−1∑

η=0
kη+2

,

· · · , τ m∑
η=0

kη

km nm = n

−
m−1∑
η=0

(kη + nη)−km

Among k1 failure systems in the first test, r1 systems belong to class s1 and
their failure time are t1, t2, · · · , tr1 ; r2 systems belong to class s2 and their failure
time are tr1+1, tr1+2, · · · , tr1+r2 ; r3 systems belong to classs12 and their failure time
are tr1+r2+1, tr1+r2+2, · · · , tr1+r2+r3 , where r1 + r2 + r3 = k1. Among k2 failure
systems in the second test, r4 systems belong to class s1 and their failure time
are tk1+1, tk1+2, · · · , tk1+r4 ; r5 systems belong to class s2 and their failure time are
tk1+r4+1, tk1+r4+2, · · · , tk1+r4+r5 ; r6 systems belong to classs12 and their failure time
are tk1+r4+r5+1, tk1+r4+r5+2, · · · , tk1+r4+r5+r6 , where r4 + r5 + r6 = k2. Among km
failure systems in the mth test, r3m−2 systems belong to class s1 and their failure
time are tm−1∑

η=0
kη+1

, tm−1∑
η=0

kη+2
, · · · , tm−1∑

η=0
kη+r3m−2

; r3m−1 systems belong to class s2

and their failure time are tm−1∑
η=0

kη+r3m−2+1
, tm−1∑

η=0
kη+r3m−2+2

, · · · , tm−1∑
η=0

kη+r3m−2+r3m−1

;
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r3m systems belong to classs12 and their failure time are tm−1∑
η=0

kη+r3m−2+r3m−1+1
,

tm−1∑
η=0

kη+r3m−2+r3m−1+2
, · · · , tm−1∑

η=0
kη+r3m−2+r3m−1+r3m

, where r3m−2 +r3m−1 +r3m =

km. The data form is shown in Table 7, where A denotes the number of failure sys-
tem in each test and B denotes system failure time according to the classification
of failure reason.

Table 7. Data Form of Series System for Masked Data under Multiple Successive Censored Life Test

B
A

Failure time that
belongs to class s1

Failure time that
belongs to class s2

Failure time that
belongs to class s12

k1 t1, t2, · · · , tr1 tr1+1, tr1+2, · · · , tr1+r2 tr1+r2+1, tr1+r2+2,
· · · , tr1+r2+r3

k2 tk1+1, tk1+2,
· · · , tk1+r4

tk1+r4+1, tk1+r4+2,
· · · , tk1+r4+r5

tk1+r4+r5+1, tk1+r4+r5+2,
· · · , tk1+r4+r5+r6

...
...

km tm−1∑
η=0

kη+1
,

· · · , tm−1∑
η=0

kη+r3m−2

tm−1∑
η=0

kη+r3m−2+1
,

· · · , tm−1∑
η=0

kη+r3m−2+r3m−1

tm−1∑
η=0

kη+r3m−2+r3m−1+1
,

· · · , tm−1∑
η=0

kη+r3m−2+r3m−1+r3m

Theorem 4.1. Supposed that density function of the system is q(τ) and survival
function is R(τ), the density function, distribution function, reliability function
and failure rate function of the jth unit life in each series system are respectively
fj(t), Fj(t), F̄j(t) and hj(t). Besides, assuming that the life distributions of units
are mutually independent and Jj = {1, 2, · · · , j − 1, j + 1, · · · , J}, n series systems
composed of two units are put in multiple successive censored life test and the data
form is shown as Table 7. Then the likelihood function of this situation is

L(data) =C+
m

k1∏
i=1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)

 [R(τk1)]
n1

k1+k2∏
i=k1+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


× [R(τk1+k2)]

n2 · · ·

m−2∑
η=0

kη+km−1∏
i=
m−2∑
η=0

kη+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


R(τm−1∑

η=0
kη

)

nm−1

×

m−1∑
η=0

kη+km∏
i=
m−1∑
η=0

kη+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


R(τ m∑

η=0
kη

)

n−
m−1∑
η=0

(kη+nη)−km

,

where C+
m is a positive constant.

Proof. When m = 2, the theorem can be proved by Theorem 3.1.
Supposed that the theorem is true for m ≥ 3, we need prove that the theorem

is also true for the m+ 1th test.
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Since the joint density function of τ1, τ2, · · · , τk1 , τk1+1, τk1+2, · · · , τk1+k2 , · · · ,
τm−1∑
η=0

kη+1
, τm−1∑

η=0
kη+2

, · · · τ m∑
η=0

kη
is

g(τ1, τ2, · · · , τk1 , τk1+1, τk1+2, · · · , τk1+k2 , · · · , τm−1∑
η=0

kη+1
, τm−1∑

η=0
kη+2

, · · · τ m∑
η=0

kη
)

=C+
m

k1∏
i=1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)

 [R (τk1)]
n1

k1+k2∏
i=k1+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


× [R(τk1+k2)]

n2 · · ·

m−1∑
η=0

kη+km∏
i=
m−1∑
η=0

kη+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)



×

R(τ m∑
η=0

kη
)

n−
m−1∑
η=0

(kη+nη)−km

,

the life of remaining systems that are not failed in the test follow a left censored dis-
tribution when τ1, τ2, · · · , τk1 , τk1+1, τk1+2, · · · , τk1+k2 , · · · , τm−1∑

η=0
kη+1

, τm−1∑
η=0

kη+2
, · · · ,

τ m∑
η=0

kη
are given, and its density function qm(τ) and survival function Rm(τ) are

respectively

qm(τ) =
q(τ)

R(τ m∑
η=0

kη
)
, Rm(τ) =

R(τ)

R(τ m∑
η=0

kη
)
, τ ≥ τ m∑

η=0
kη
.

Then τ m∑
η=0

kη+1
, τ m∑
η=0

kη+2
, · · · , τ m∑

η=0
kη+km+1

are the first km+1 observation values from

this censored distribution with sample size n−
m∑
η=0

(kη + nη). Thus, we have

g

(
τ m∑
η=0

kη+1
, τ m∑
η=0

kη+2
, · · · , τ m∑

η=0
kη+km+1

|τ1, τ2, · · · , τk1 , τk1+1, τk1+2, · · · , τk1+k2 , · · · ,

τm−1∑
η=0

kη+1
, τm−1∑

η=0
kη+2

, · · · τ m∑
η=0

kη

)

=C ′+m

m∑
η=0

kη+km+1∏
i=

m∑
η=0

kη+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


R(τm+1∑

η=0
kη

)

n−
m∑
η=0

(kη+nη)−km+1

and

g(τ1, · · · , τk1 , τk1+1, · · · , τk1+k2 , · · · , τm−1∑
η=0

kη+1
, · · · τ m∑

η=0
kη
, τ m∑
η=0

kη+1
, · · · τm+1∑

η=0
kη

)
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=C+
m+1

k1∏
i=1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)

 [R(τk1)]
n1

k1+k2∏
i=k1+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


× [R(τk1+k2)]

n2 · · ·

m−1∑
η=0

kη+km∏
i=
m−1∑
η=0

kη+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


R(τ m∑

η=0
kη

)

nm

×

m∑
η=0

kη+km+1∏
i=

m∑
η=0

kη+1

∑
j∈si

[hj(ti)]

J∏
l=1

F̄l(ti)


R(τm+1∑

η=0
kη

)

n−
m∑
η=0

(kη+nη)−km+1

,

where C ′+m and C+
m+1 are positive constants.

According to the induction method, it can be proved that Theorem 4.1 is true.

4.2. Statistical analysis of series system composed of two units
with constant failure rate

Supposed that the life of unit 1 is X and its failure rate is the constant α1 and
the life of unit 2 is Y and its failure rate is the constant α2, X,Y are mutually
independent and the life of series system is denoted by T , T = min(X,Y ). Such n
series systems are put in multiple successive censored life test. For t ≥ 0, we have

P (T ≤ t) = 1− P (T > t) = 1− P (X > t, Y > t) = 1− P (X > t)P (Y > t)

= 1− e−α1te−α2t = 1− e−(α1+α2)t,

P (T > t) = e−(α1+α2)t.

The likelihood function is L(data, α1, α2)

L(data, α1, α2)

=C+
m

m∑
η=0

kη∏
i=1

[
e−(α1+α2)ti

]
α
r1+r4+···+r3m−2

1 α
r2+r5+···+r3m−1

2 (α1 + α2)r3+r6+···+r3m

× e−n1(α1+α2)τk1 e−n2(α1+α2)τk1+k2 · · · e
−
[
n−

m−1∑
η=0

(kη+nη)−km

]
(α1+α2)τ m∑

η=0
kη

=C+
me
−(α1+α2)

m∑
η=0

kη∑
i=1

ti
α
r1+r4+···+r3m−2

1 α
r2+r5+···+r3m−1

2 (α1 + α2)r3+r6+···+r3m

× e−n1(α1+α2)τk1 e−n2(α1+α2)τk1+k2 · · · e
−
[
n−

m−1∑
η=0

(kη+nη)−km

]
(α1+α2)τ m∑

η=0
kη

,

lnL(data, α1, α2)

= lnC+
m − (α1 + α2)

m∑
η=0

kη∑
i=1

ti + (r1 + r4 + · · ·+ r3m−2) lnα1
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+ (r2 + r5 + · · ·+ r3m−1) lnα2 + (r3 + r6 + · · ·+ r3m) ln(α1 + α2)

− n1(α1 + α2)τk1 − n2(α1 + α2)τk1+k2 − · · ·

−

[
n−

m−1∑
η=0

(kη + nη)− km

]
(α1 + α2)τ m∑

η=0
kη
,

∂ lnL(data, α1, α2)

∂α1

=−

m∑
η=0

kη∑
i=1

ti +
r1 + r4 + · · ·+ r3m−2

α1
+
r3 + r6 + · · ·+ r3m

α1 + α2

− n1τk1 − n2τk1+k2 − · · · −

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ m∑
η=0

kη
,

∂ lnL(data, α1, α2)

∂α2

=−

m∑
η=0

kη∑
i=1

ti +
r2 + r5 + · · ·+ r3m−1

α2
+
r3 + r6 + · · ·+ r3m

α1 + α2

− n1τk1 − n2τk1+k2 − · · · −

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ m∑
η=0

kη
.

Take ∂ lnL(data,α1,α2)
∂α1

= 0, ∂ lnL(data,α1,α2)
∂α2

= 0, and we obtain following equa-
tion set

−

m∑
η=0

kη∑
i=1

ti + r1+r4+···+r3m−2

α1
+ r3+r6+···+r3m

α1+α2

−n1τk1 − n2τk1+k2 − · · · −

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ m∑
η=0

kη
= 0,

−

m∑
η=0

kη∑
i=1

ti + r2+r5+···+r3m−1

α2
+ r3+r6+···+r3m

α1+α2

−n1τk1 − n2τk1+k2 − · · · −

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ m∑
η=0

kη
= 0.

By solving above equation set, the maximum likelihood estimate α̂1, α̂2 of pa-
rameters α1, α2 are respectively

α̂1 =
r1 + r4 + · · ·+ r3m−2

r1 + r4 + · · ·+ r3m−2 + r2 + r5 + · · ·+ r3m−1

×

m∑
η=0

kη

m∑
η=0

kη∑
i=1

ti + n1τk1 + n2τk1+k2 + · · ·+

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ m∑
η=0

kη

,
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α̂2 =
r2 + r5 + · · ·+ r3m−1

r1 + r4 + · · ·+ r3m−2 + r2 + r5 + · · ·+ r3m−1

×

m∑
η=0

kη

m∑
η=0

kη∑
i=1

ti + n1τk1 + n2τk1+k2 + · · ·+

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ m∑
η=0

kη

.

When α1 = α2 = α, the likelihood function is

L(data, α) =C+
m2r3+r6+···+r3me

−2α

m∑
η=0

kη∑
i=1

ti
α

3m∑
i=1

ri
e−2n1ατk1

× e−2n2ατk1+k2 · · · e
−2

[
n−

m−1∑
η=0

(kη+nη)−km

]
ατ m∑
η=0

kη

,

lnL(data, α) = lnC+
m + (r3 + r6 + · · ·+ r3m) ln 2− 2α

m∑
η=0

kη∑
i=1

ti +

3m∑
i=1

ri lnα

− 2n1ατk1 − 2n2ατk1+k2 − · · · − 2

[
n−

m−1∑
η=0

(kη + nη)− km

]
ατ m∑

η=0
kη
.

Take d lnL(data,α)
dα = 0, and we obtain following equation

− 2

m∑
η=0

kη∑
i=1

ti +
1

α

3m∑
i=1

ri − 2n1τk1 − 2n2τk1+k2 − · · ·

− 2

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ m∑
η=0

kη
= 0.

By solving above equation, the maximum likelihood estimate α̂ of parameter α
is

α̂ =
1

2

3m∑
i=1

ri

m∑
η=0

kη∑
i=1

ti + n1τk1 + n2τk1+k2 + · · ·+

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ m∑
η=0

kη

.

Similarly, for the given confidence level, the approximate interval estimate can be
obtained by using the method of likelihood estimate.

Example 4.1. Take a sample with sample size n = 50, k1 = 15, r1 = 2, r2 = 8,
n1 = 2, k2 = 10, r4 = 1, r5 = 4, n2 = 2, k3 = 20, r7 = 3, r8 = 12. The failure
rates of two units are respectively α1 = 0.2, α2 = 0.8. The failure data generated
by Monte-Carlo simulation are shown in Table 8.
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Table 8. Failure Data of Example 4.1 Generated by Monte-Carlo Simulation

Test se-
quence

Unit set causing
system failure

System failure time

1

si = {1} 0.1846,0.0120
si = {2} 0.1219,0.0351,0.0060,0.0130,0.0098,0.0443

0.1302,0.1197
si = {1, 2} 0.1558,0.1481,0.2104,0.0812,0.2008

2

si = {1} 0.3222
si = {2} 0.4962,0.2909,0.4560,0.5013
si = {1, 2} 0.3301,0.4680,0.4236,0.3954,0.3805

3

si = {1} 1.9587,2.8490,2.5376
si = {2} 0.6373,0.8952,3.1753,0.8103,3.9137,0.9385

2.7328,3.6605,1.5347,1.5345,1.0900,0.8458
si = {1, 2} 0.7411,1.5444,0.5300,0.9174,1.6165

Take τ1 = 0.2104, τ2 = 0.5013 and τ3 = 3.9137. We can obtain α̂1 = 0.1985
and α̂2 = 0.7940 by using the method presented in this paper. For the given
confidence level 0.95, the approximate interval estimate of α1 is [0.1460,0.2623],
and the approximate interval estimate of α2 is [0.5841,1.0491].

Example 4.2. Take a sample with sample size n = 90, k1 = 30, r1 = 8, r2 = 12,
n1 = 2, k2 = 25, r4 = 6, r5 = 9, n2 = 2, k3 = 30, r7 = 10, r8 = 15. The failure
rates of two units are respectively α1 = 1, α2 = 1.5. The failure data generated by
Monte-Carlo simulation are shown in Table 9.

Table 9. Failure Data of Example 4.2 Generated by Monte-Carlo Simulation

Test se-
quence

Unit set causing
system failure

System failure time

1

si = {1} 0.0030,0.0451,0.0524,0.0867,0.0852,0.0248
0.0015,0.1595

si = {2} 0.1268,0.0669,0.1185,0.0708,0.1262,0.0333
0.1065,0.1806,0.0556,0.0910,0.0384,0.0698

si = {1, 2} 0.1118,0.1131,0.0029,0.1357,0.1656,0.0457
0.1139,0.0695,0.0823,0.1770

2

si = {1} 0.3748,0.3479,0.2692,0.2473,0.3738,0.3598
si = {2} 0.1922,0.3915,0.3658,0.2778,0.2731,0.3162

0.2321,0.2625,0.2024
si = {1, 2} 0.2083,0.3913,0.1913,0.2998,0.3429,0.4557

0.2606,0.3999,0.2469,0.3633

3

si = {1} 0.6252,1.3080,0.9998,1.0296,0.7108,0.5500
0.5395,0.7954,0.5979,0.7488

si = {2} 0.5306,0.5319,0.6702,0.6060,1.0256,0.4831
0.4558,0.6885,0.6298,1.4121,0.9763,0.4572
1.0035,1.1605,0.6728

si = {1, 2} 1.0485,0.5651,1.0927,0.6417,0.4948

Take τ1 = 0.1806, τ2 = 0.4557 and τ3 = 1.4121. We can obtain α̂1 = 0.9459
and α̂2 = 1.4189 by using the method presented in this paper. For the given
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confidence level 0.95, the approximate interval estimate of α1 is [0.7589,1.1615],
and the approximate interval estimate of α2 is [1.1383,1.7423].

4.3. Statistical analysis of series system composed of two units
with linear failure rate(through the origin)

Supposed that the life of unit 1 is X and its failure rate is the linear function β1t
of time t and the life of unit 2 is Y and its failure rate is the linear function β2t of
time t, X,Y are mutually independent and the life of series system is denoted by
T , T = min(X,Y ). Such n series systems are put in multiple successive censored
life test. For t ≥ 0, we have

P (T ≤ t) = 1− P (T > t) = 1− P (X > t, Y > t) = 1− P (X > t)P (Y > t)

= 1− e− 1
2β1t

2

e−
1
2β2t

2

= 1− e− 1
2 (β1+β2)t

2

,

P (T > t) = e−
1
2 (β1+β2)t

2

.

The likelihood function is L(data, β1, β2)

L(data, β1, β2) =C+
m

m∑
η=0

kη∏
i=1

ti

m∑
η=0

kη∏
i=1

[
e−

1
2 (β1+β2)t

2
i

]
β
r1+r4+···+r3m−2

1 β
r2+r5+···+r3m−1

2

× (β1 + β2)r3+r6+···+r3me−
1
2n1(β1+β2)τ

2
k1

× e−
1
2n2(β1+β2)τ

2
k1+k2 · · · e

− 1
2

[
n−

m−1∑
η=0

(kη+nη)−km

]
(β1+β2)τ

2
m∑
η=0

kη

=C+
m

m∑
η=0

kη∏
i=1

tiβ
r1+r4+···+r3m−2

1 β
r2+r5+···+r3m−1

2 (β1 + β2)r3+r6+···+r3m

× e
− 1

2 (β1+β2)

m∑
η=0

kη∑
i=1

t2i
e−

1
2n1(β1+β2)τ

2
k1

× e−
1
2n2(β1+β2)τ

2
k1+k2 · · · e

− 1
2

[
n−

m−1∑
η=0

(kη+nη)−km

]
(β1+β2)τ

2
m∑
η=0

kη

,

lnL(data, β1, β2) = lnC+
m +

m∑
η=0

kη∑
i=1

ln ti + (r1 + r4 + · · ·+ r3m−2) lnβ1

+ (r2 + r5 + · · ·+ r3m−1) lnβ2 + (r3 + r6 + · · ·+ r3m) ln(β1 + β2)

− 1

2
(β1 + β2)

m∑
η=0

kη∑
i=1

t2i −
1

2
n1(β1 + β2)τ2k1 −

1

2
n2(β1 + β2)τ2k1+k2

− · · · − 1

2

[
n−

m−1∑
η=0

(kη + nη)− km

]
(β1 + β2)τ2m∑

η=0
kη
.



Statistical analysis of series system 767

Take ∂ lnL(data,β1,β2)
∂β1

= 0, ∂ lnL(data,β1,β2)
∂β2

= 0, and we obtain following two
equations

r1 + r4 + · · ·+ r3m−2
β1

+
r3 + r6 + · · ·+ r3m

β1 + β2
− 1

2

m∑
η=0

kη∑
i=1

t2i −
1

2
n1τ

2
k1 −

1

2
n2τ

2
k1+k2

− · · · − 1

2

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ2m∑
η=0

kη
= 0,

r2 + r5 + · · ·+ r3m−1
β2

+
r3 + r6 + · · ·+ r3m

β1 + β2
− 1

2

m∑
η=0

kη∑
i=1

t2i −
1

2
n1τ

2
k1 −

1

2
n2τ

2
k1+k2

− · · · − 1

2

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ2m∑
η=0

kη
= 0.

By solving above equations, the maximum likelihood estimate β̂1, β̂2 of param-
eters β1, β2 are respectively

β̂1 =
2 (r1 + r4 + · · ·+ r3m−2)

(r1 + · · ·+ r3m−2 + r2 + · · ·+ r3m−1)

×

m∑
η=0

kη
m∑
η=0

kη∑
i=1

t2i + n1τ2k1 + · · ·+

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ2m∑
η=0

kη


,

β̂2 =
2 (r2 + r5 + · · ·+ r3m−1)

(r1 + · · ·+ r3m−2 + r2 + · · ·+ r3m−1)

×

m∑
η=0

kη
m∑
η=0

kη∑
i=1

t2i + n1τ2k1 + · · ·+

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ2m∑
η=0

kη


.

When β1 = β2 = β, the likelihood function is L(data, β)

L(data, β) =C+
m

m∑
η=0

kη∏
i=1

tiβ
r1+r4+···+r3m−2βr2+r5+···+r3m−1(2β)r3+r6+···+r3m

× e
−β

m∑
η=0

kη∑
i=1

t2i
e−n1βτ

2
k1 e−n2βτ

2
k1+k2 · · ·

× e
−
[
n−

m−1∑
η=0

(kη+nη)−km

]
βτ2

m∑
η=0

kη

,
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lnL(data, β) = lnC+
m + (r3 + r6 + · · ·+ r3m) ln 2 +

m∑
η=0

kη∑
i=1

ln ti +

3m∑
i=1

ri lnβ

− β

m∑
η=0

kη∑
i=1

t2i − n1βτ2k1 − n2βτ
2
k1+k2 − · · ·

−

[
n−

m−1∑
η=0

(kη + nη)− km

]
βτ2m∑

η=0
kη
.

Take d lnL(data,β)
dβ = 0, and we obtain following equation

1

β

3m∑
i=1

ri−

m∑
η=0

kη∑
i=1

t2i − n1τ2k1 − n2τ
2
k1+k2 − · · · −

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ2m∑
η=0

kη
= 0.

By solving above equation, the maximum likelihood estimate β̂ of parameter β is

β̂ =

3m∑
i=1

ri

m∑
η=0

kη∑
i=1

t2i + n1τ2k1 + n2τ2k1+k2 + · · ·+

[
n−

m−1∑
η=0

(kη + nη)− km

]
τ2m∑
η=0

kη

.

Similarly, for the given confidence level, the approximate interval estimate can be
obtained by using the method of likelihood estimate.

Example 4.3. Take a sample with sample size n = 50, k1 = 15, r1 = 2, r2 = 8,
n1 = 2, k2 = 10, r4 = 1, r5 = 4, n2 = 2, k3 = 20, r7 = 3, r8 = 12. The failure
rates of two units are respectively β1 = 0.2, β2 = 0.8. The failure data generated
by Monte-Carlo simulation are shown in Table 10.

Table 10. Failure Data of Example 4.3 Generated by Monte-Carlo Simulation

Test se-
quence

Unit set causing
system failure

System failure time

1

si = {1} 0.1938,0.7600
si = {2} 0.7212,0.2612,0.3687,0.7175,0.7395,0.7201

0.3781,0.6429
si = {1, 2} 0.5810,0.5940,0.3937,0.8475,0.7733

2

si = {1} 1.0007
si = {2} 0.9745,1.0284,1.3319,0.9477
si = {1, 2} 1.2863,0.9654,0.9172,1.2315,1.1587

3

si = {1} 1.5038,2.1023,1.8286
si = {2} 1.4024,1.4239,2.1741,2.1165,1.3600,1.6100

1.6754,2.2375,1.4245,2.0463,1.5817,1.4172
si = {1, 2} 1.5727,1.7111,1.9628,1.8020,2.1309
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Take τ1 = 0.8475, τ2 = 1.3319 and τ3 = 2.2375. We can obtain β̂1 = 0.1981
and β̂2 = 0.7926 by using the method presented in this paper. For the given
confidence level 0.95, the approximate interval estimate of β1 is [0.1457,0.2618], and
the approximate interval estimate of β2 is [0.5830,1.0472].

Example 4.4. Take a sample with sample size n = 90, k1 = 30, r1 = 8, r2 = 12,
n1 = 2, k2 = 25, r4 = 6, r5 = 9, n2 = 2, k3 = 30, r7 = 10, r8 = 15. The failure
rates of two units are respectively β1 = 1, β2 = 1.5. The failure data generated by
Monte-Carlo simulation are shown in Table 11.

Table 11. Failure Data of Example 4.4 Generated by Monte-Carlo Simulation

Test se-
quence

Unit set causing
system failure

System failure time

1

si = {1} 0.1762,0.4655,0.4000,0.3229,0.1830,0.4451
0.4401,0.4510

si = {2} 0.2987,0.4164,0.4385,0.0654,0.1946,0.4461
0.3597,0.0582,0.4614,0.2980,0.4915,0.4012

si = {1, 2} 0.2553,0.1579,0.4901,0.3960,0.4408,0.3044
0.1350,0.4905,0.4295,0.1735

2

si = {1} 0.9038,0.6017,0.6754,0.5660,0.7231,0.8329
si = {2} 0.5245,0.8517,0.7625,0.6666,0.5831,0.6102

0.6465,0.8800,0.5530
si = {1, 2} 0.5431,0.9016,0.7068,0.6961,0.6531,0.8605

0.8849,0.6156,0.5019,0.7685

3

si = {1} 0.9945,0.9383,1.0221,1.0142,1.1148,1.3042
1.1923,1.0089,1.6280,1.1317

si = {2} 1.0803,1.2400,1.2909,0.9228,0.9356,1.0826
1.4332,1.6597,1.0117,1.0644,1.4115,1.4543
1.1966,1.5895,0.9049

si = {1, 2} 1.1811,1.5671,1.4879,1.7217,1.3354

Take τ1 = 0.4915, τ2 = 0.9038 and τ3 = 1.7217. We can obtain β̂1 = 0.9875
and β̂2 = 1.4812 by using the method presented in this paper. For the given
confidence level 0.95, the approximate interval estimate of β1 is [0.7921,1.2125], and
the approximate interval estimate of β2 is [1.1882,1.8187].
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