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Abstract In this paper, we using bifurcation theory method of dynamical
systems to find the exact solutions of generalized Zakharov equations with
high order singular points and arbitrary power nonlinearities. Under different
parameter conditions, we obtain exact solitary wave solutions, periodic wave
solutions as well as kink and anti-kink wave solutions.
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1. Introduction

The investigation of the traveling wave solutions of nonlinear wave equations plays
an important role in the area of plasma, elastic media, optical fibres, etc. To find
exact traveling wave solution, both mathematicians and physicists have made sig-
nificant progression. Many effective methods such as the inverse scattering method,
Darboux transformation, the Hirota bilinear method, the homogeneous balance
method and the tanh method have been developed (see [3,6,16,17]). In recent years,
Jibin Li used dynamic system method to investigate the exact solutions, bifurcations
and dynamical behavior of the traveling wave systems for a lot of nonlinear partial
differential equations, such as the nonlinear Schrodinger equation, high-order KdV
equations, generilized Camassa-Holm equations, Kudryashow-Sinelshchikov equa-
tion and so on (see [7, 10, 11] and references therein). The traveling systems of the
above PDEs are singular nonlinear wave systems named by [9] and [12].

In this paper, we consider the exact solutions for the following generalized Za-
kharov equations with arbitrary exponent [15]:

Htt −Hxx = (|u|2m)xx,

iut + uxx = Hu+ α0|u|2mu+ β0|u|4mu,
(1.1)
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where m > 0, α0, β0 are real parameters. Many researchers have used their own
methods to solve the generalized Zakharov equations (see [1, 2, 4, 5, 8, 13, 14]). For
example, by using bifurcation theory method of dynamical systems, Song, et al., [13]
obtained some explicit periodic wave solutions, unbounded wave solutions, and kink
wave solutions. Javidi, et al., [5] applied the variational iteration method to con-
struct solitary wave solutions. By using the infinite series method, Taghizadeh, et
al., [14], obtained some exact solutions. In Hong, et al., [4], the authors extended
the Jacobian elliptic function expansion method, obtained a few new doubly peri-
odic solutions. For the generalized Zakharov equations (1.1) with arbitrary power
nonlinearities, the authors of [15] used F-expansion method, under some special
parameter conditions, obtained a few exact solutions. Therefore, it is necessary to
do more complete study for system (1.1).

We consider the solutions of system (1.1) with the form

u(x, t) = eiηϕ
1

2m (ξ), H(x, t) = ψ(ξ), (1.2)

where η = x+ σt, ξ = kx− ct, k is a constant and c is the wave speed.
Substituting (1.2) into (1.1), we have from the first equation of system (1.1) that

ψ =
k2

c2 − k2
ϕ, (1.3)

and

−σ−i c
2m

ϕ−1ϕ′−1+i
k

m
ϕ−1ϕ′+

k2

2m
(

1

2m
−1)ϕ−2ϕ′2+

k

2m
ϕ−1ϕ′′ = ψ+α0ϕ+β0ϕ

2,

(1.4)
where ”′” is the derivative with respect to ξ.

Separating the real and imaginary parts in (1.4), respectively, we obtain k = 1
2c

and the following equation:

ϕ′′ =
aϕ′2 + ϕ2(γ + βϕ+ αϕ2)

ϕ
, (1.5)

where a = 1
2c(1−

1
2m ), γ = 4m(σ+1)

c , β = 4m
c ( 1

3 + α0), α = 4mβ0

c . Equation (1.5) is
equivalent to the planar dynamical system

dϕ

dξ
= y,

dy

dξ
=
ay2 + ϕ2(γ + βϕ+ αϕ2)

ϕ
. (1.6)

This system is a singular nonlinear traveling wave system named by Li Jibin at
al., [9] in 2006, which has the singular straight line ϕ = 0 in the phase plane (ϕ, y).
System (1.6) has an associated regular system

dϕ

dτ
= ϕy,

dy

dτ
= ay2 + ϕ2(γ + βϕ+ αϕ2), (1.7)

where dξ = ϕdτ. Systems (1.6) and (1.7) have the same first integrals as follows:
for a 6= 1, 3

2 , 2,

H(ϕ, y) = y2ϕ−2a + ϕ−2a

(
γ

a− 1
ϕ2 +

2β

2a− 3
ϕ3 +

α

a− 2
ϕ4

)
= h; (1.8)
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for a = 1,

H(ϕ, y) =
y2

ϕ2
− (αϕ2 + 2βϕ+ 2γ ln |ϕ|) = h; (1.9)

for a = 3
2 ,

H(ϕ, y) =
y2

ϕ3
− 2αϕ− 2β ln |ϕ|+ 2γ

ϕ
= h; (1.10)

for a = 2,

H(ϕ, y) =
y2

ϕ4
− 2α ln |ϕ|+ 2β

ϕ
+

γ

ϕ2
. (1.11)

This paper is organized as follows. In second 2, we discuss the bifurcations of
phase portraits of system (1.6) and (1.7) under different parameter conditions. In
section 3, we calculate the exact solutions of system (1.1). In section 4, we state
the main conclusion of this paper.

2. Bifurcations of phase portraits of system (1.7)

In this section, we assume that αβ 6= 0, a 6= 1, 2, 3
2 . Write that f(ϕ) = αϕ2+βϕ+

γ,∆ = β2− 4αγ. Clearly, when ∆ < 0, system (1.7) has only one equilibrium point
E0(0, 0). When ∆ > 0, system (1.7) has three equilibrium points E0(0, 0), E1(ϕ1, 0)

and E2(ϕ2, 0), where ϕ1 = −β+
√

∆
2α , ϕ2 = −β+

√
∆

2α . When ∆ = 0, system (1.7)
has the equilibrium point E0(0, 0) and a double equilibrium point Ed(ϕd, 0), where
ϕd = − β

2α .

Let M(ϕj , 0) be the coefficient matrix of the linearized system of (1.7) at an
equilibrium point Ej . We have

M =

 0 ϕj

ϕ2
jf
′(ϕj) 0

 .

Thus, we have

J(0, 0) = detM̂(0, 0) = 0, J(ϕd, 0) = detM(ϕd, 0) = 0,

J(ϕ1,2, 0) = detM(ϕ1,2, 0) = −ϕ3
1,2f

′(ϕ1,2).

By the theory of planar dynamical systems, for an equilibrium point of a planar
integrable system, if J < 0, then the equilibrium point is a saddle point; If J > 0
and (traceM)2 − 4J < 0(> 0), then it is a center point (a node point); if J = 0
and the Poincaré index of the equilibrium point is 0, then this equilibrium point is
cusped (see [7]). Notice that the equilibrium point E0(0, 0) is a high-order singular
point.

By using the above information, for a = 1
2 and a fixed γ < 0, depending on

the change of parameter pair (α, β), we have the bifurcations of phase portraits of
system (1.7) when γ < 0 shown in Fig.1-Fig.7.

Similarly, we can obtain the bifurcations of phase portraits of system (1.7) when
γ > 0 or a 6= 1

2 .
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Figure 1. α > 0, β > 0 Figure 2. ∆ > 0, α < 0, β > 0 Figure 3. ∆ = 0, α < 0, β > 0

Figure 4. ∆ < 0, α < 0 Figure 5. ∆ = 0, α < 0, β < 0 Figure 6. ∆ > 0, α < 0, β < 0

Figure 7. α > 0, β < 0

3. Exact solutions of system (1.6) and equation (1.1)
for a = 1

2

In this section, we investigate the exact solutions of system (1.6) when a = 1
2 and

give exact solutions of equation (1.1). We only consider the case of ϕ > 0. When
a = 1

2 , we know from (1.8) that

H(ϕ, y) = Ha= 1
2
(ϕ, y) =

y2

ϕ
− 2

3
ϕ

(
3γ +

3

2
βϕ+ αϕ2

)
= h, (3.1)

h1 = H(ϕ1, 0) =
1

6α
ϕ1(−8αγ + β2 + β

√
∆),

h2 = H(ϕ2, 0) =
1

6α
ϕ2(−8αγ + β2 − β

√
∆).
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It follows that

y2 = 2
3αϕ

(
3h
2α + 3γ

α ϕ+ 3β
2αϕ

2 + ϕ3
)
, for α > 0,

y2 = 2
3 |α|ϕ

(
3h

2|α| + 3γ
|α|ϕ+ 3β

2|α|ϕ
2 − ϕ3

)
, for α < 0.

Using the first equation of system (1.6), we have that for α > 0,√
3

2α
ξ =

∫ ϕ

ϕ0

dϕ√
ϕ
(

3h
2α + 3γ

α ϕ+ 3β
2αϕ

2 + ϕ3
) , (3.2)

or for α < 0, √
3

2|α|
ξ =

∫ ϕ

ϕ0

dϕ√
ϕ
(

3h
2|α| + 3γ

|α|ϕ+ 3β
2|α|ϕ

2 − ϕ3
) . (3.3)

3.1 α > 0, β > 0, see Fig.1. In this case, we have ϕ1 < 0 < ϕ2, h1 < 0 < h2.
(i) For every h ∈ (0, h2), the level curves defined by Ha= 1

2
(ϕ, y) = h contain two

open branches passing through the points (ϕL, 0) and (ϕl, 0) (ϕl < 0 < ϕM < ϕ2 <
ϕL), respectively, and a close branch contacting to singular straight line ϕ = 0 at
the equilibrium point E0(0, 0). On the basis of ”finite time interval” theorem given
by Li and Chen [12], we know that the family of close branches gives rise to a family
of periodic solutions of system (1.6). Now, y2 = 2

3α(ϕL − ϕ)(ϕM − ϕ)ϕ(ϕ − ϕl).
Hence, by (3.2), we obtain the parametric representation of periodic solutions of
system (1.6) as follows:

ϕ(ξ) = ϕM −
ϕM (ϕL − ϕM )sn2(Ω1ξ, k)

ϕL − ϕM sn2(Ω1ξ, k)
, (3.4)

where Ω1 = 1
2

√
3ϕL(ϕM−ϕl)

2α , k2 = ϕM (ϕL−ϕl)
ϕL(ϕM−ϕl) .

(3.4) implies the exact periodic wave solutions of system (1.1):

u(x, t) =
(
ϕM − ϕM (ϕL−ϕM )sn2(Ω1ξ,k)

ϕL−ϕM sn2(Ω1ξ,k)

) 1
2m

eiη,

H(x, t) = 1
3ϕ(ξ) = 1

3

(
ϕM − ϕM (ϕL−ϕM )sn2(Ω1ξ,k)

ϕL−ϕM sn2(Ω1ξ,k)

)
.

(3.5)

(ii) Corresponding to the level curves defined by Ha= 1
2
(ϕ, y) = h2, there exist

two heteroclinic orbits of system (1.6), for which y2 = 2
3α(ϕ2−ϕ)2ϕ(ϕ−ϕl). Thus,

we have the parametric representation of the kink wave and anti-kink wave solutions
of system (1.6) as follows:

ϕ(ξ) =

(
ϕ2 −

4A1P1

P 2
1 e
ω1ξ + ϕ2

l e
−ω1ξ − 2B1P1

)
, (3.6a)

ϕ(ξ) =

(
ϕ2 −

4A1P1

P 2
1 e
−ω1ξ + ϕ2

l e
ω1ξ − 2B1P1

)
, (3.6b)

where

0 < ϕ0 < ϕ2, A1 = ϕ2(ϕ2−ϕl), B1 = −(2ϕ2−ϕl), P1 =
2
√
A1(A1+B1ϕ0+ϕ2

0)+B1ϕ0+2A1

ϕ0
,

ω1 =
√

3A1

2α .
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(3.6) follows the exact solutions of system (1.1):

u(x, t) =
(
ϕ2 − 4A1P1

P 2
1 e

±ω1ξ+ϕ2
l e

∓ω1ξ−2B1P1

) 1
2m

eiη,

H(x, t) = 1
3

(
ϕ2 − 4A1P1

P 2
1 e

±ω1ξ+ϕ2
l e

∓ω1ξ−2B1P1

)
.

(3.7)

3.2 α < 0, β > 0, ∆ > 0, see Fig.2. In this case, we have 0 < ϕ2 < ϕ1, h1 < 0 < h2.
(i) When h ∈ (h1, 0) the level curves defined by Ha= 1

2
(ϕ, y) = h contain a close

branch enclosing the equilibrium point E1(ϕ1, 0), for which we have

y2 ==
2

3
|α|ϕ

(
3h

2|α|
+

3γ

|α|
ϕ+

3β

2|α|
ϕ2 − ϕ3

)
=

2

3
|α|(r1 − ϕ)(ϕ− r2)ϕ(ϕ− r3).

Thus, we see from (3.3) that the family of periodic orbits has the parametric rep-
resentation:

ϕ(ξ) =
r2

1− α̃2
1sn2(Ω2ξ, k)

, (3.8)

where k2 = (r1−r2)(−r3)
r1(r2−r3) ,Ω2 = 1

2

√
3r1(r2−r3)

2|α| , α̃2
1 = r1−r2

r1
.

(3.8) gives rise to the exact solutions of system (1.1):

u(x, t) =
(

r2
1−α̃2

1sn2(Ω2ξ,k)

) 1
2m

eiη,

H(x, t) = 1
3

(
r2

1−α̃2
1sn2(Ω2ξ,k)

)
.

(3.9)

(ii) When h ∈ (0, h2) the level curves defined by Ha= 1
2
(ϕ, y) = h contain two

close branches, for which one family encloses the equilibrium point E1(ϕ1, 0), an-
other one family contacts to singular straight line ϕ = 0 at the equilibrium point
E0(0, 0). We have y2 = 2

3 |α|(r1−ϕ)(ϕ−r2)(ϕ−r3)ϕ, y2 = 2
3 |α|(r1−ϕ)(r2−ϕ)(r3−

ϕ)ϕ, respectively. Hence, the right family of periodic orbits has the parametric rep-
resentation:

ϕ(ξ) = r3 +
r2 − r3

1− α̃2
2sn2(Ω3ξ, k)

, (3.10)

where k2 = (r1−r2)r3
(r1−r3)r2

,Ω3 = 1
2

√
3r2(r1−r3)

2|α| , α̃2
2 = r1−r2

r1−r3 .

The left family of periodic orbits has the parametric representation:

ϕ(ξ) = r1 −
r1

1− α̃2
3sn2(Ω3ξ, k)

, (3.11)

where k2 = (r1−r2)r3
(r1−r3)r2

,Ω3 = 1
2

√
3r2(r1−r3)

2|α| , α̃2
3 = −r2

r1−r3 .

(3.10) and (3.11) give rise to two families of exact solutions:

u(x, t) =
(
r3 + r2−r3

1−α̃2
2sn2(Ω3ξ,k)

) 1
2m

eiη,

H(x, t) = 1
3

(
r3 + r2−r3

1−α̃2
2sn2(Ω3ξ,k)

)
.

(3.12)

u(x, t) =
(
r1 − r1

1−α̃2
3sn2(Ω3ξ,k)

) 1
2m

eiη,

H(x, t) = 1
3

(
r1 − r1

1−α̃2
3sn2(Ω3ξ,k)

)
.

(3.13)
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(iii) The level curves defined by Ha= 1
2
(ϕ, y) = h2 contain a homoclinic orbit en-

closing the equilibrium point E1(ϕ1, 0) and two heteroclinic orbits connecting the
equilibrium point E2(ϕ2, 0) and E0(0, 0).We have that y2 = 2

3 |α|(ϕM−ϕ)(ϕ−ϕ2)2ϕ.
Therefore, corresponding to the homoclinic orbit, we obtain the following soli-

tary wave solution:

ϕ(ξ) = ϕ2 +
2ϕ2(ϕM − ϕ2)

ϕM cosh(Ω0ξ)− (ϕM − 2ϕ2)
, (3.14)

where Ω0 =
√

3ϕ2(ϕM−ϕ2)
2α .

Corresponding to the two heteroclinic orbits, we have the following kink and
anti-kink wave solutions:

ϕ(ξ) = ϕ2 −
4A2P2

P 2
2 e
±ω2ξ + ϕ2

Me
∓ω2ξ − 2B2P2

, (3.15)

where

0 < ϕ0 < ϕ2, A2 = ϕ2(ϕM−ϕ2), B2 = 2ϕ2−ϕM , P2 =
2
√
A2(A2+B2ϕ0−ϕ2

0)+B2ϕ0+2A2

ϕ0
,

ω2 =
√

3A2

2|α| .

(3.14) and (3.15) give rise to the exact solutions of system (1.1) as follows:

u(x, t) =
(
ϕ2 + 2ϕ2(ϕM−ϕ2)

ϕM cosh(Ω0ξ)−(ϕM−2ϕ2)

) 1
2m

eiη,

H(x, t) = 1
3

(
ϕ2 + 2ϕ2(ϕM−ϕ2)

ϕM cosh(Ω0ξ)−(ϕM−2ϕ2)

)
.

(3.16)

u(x, t) =
(
ϕ2 − 4A2P2

P 2
2 e

±ω2ξ+ϕ2
Me

∓ω2ξ−2B2P2

) 1
2m

eiη,

H(x, t) = 1
3

(
ϕ2 − 4A2P2

P 2
2 e

±ω2ξ+ϕ2
Me

∓ω2ξ−2B2P2

)
.

(3.17)

(iv) When h ∈ (h2,∞) the level curves defined by Ha= 1
2
(ϕ, y) = h are a global

family of close orbits of system (1.6), enclosing the equilibrium point E1(ϕ1, 0) and
E2(ϕ2, 0), contacting to the singular straight line ϕ = 0 at E0(0, 0). In this case, we
have y2 = 2

3 |α|(ϕM −ϕ)[(ϕ−b1)2 +a2
1]ϕ. Hence, (3.3) follows the following periodic

solutions:

ϕ(ξ) =
ϕMB3(1− cn(Ω4ξ, k))

(A3 +B3)− (A3 +B3)cn(Ω4ξ, k)
, (3.18)

where A2
3 = (ϕM − b1)2 + a2

1, B
2
3 = a2

1 + b21,Ω4 = 1
2

√
3A3B3

2|α| , k
2 =

ϕ2
M−(A3−B3)2

4A3B3
.

(3.18) gives rise to the exact solutions of system (1.1) as follows:

u(x, t) =
(

ϕMB3(1−cn(Ω4ξ,k))
(A3+B3)−(A3+B3)cn(Ω4ξ,k)

) 1
2m

eiη,

H(x, t) = 1
3

(
ϕMB3(1−cn(Ω4ξ,k))

(A3+B3)−(A3+B3)cn(Ω4ξ,k)

)
.

(3.19)

3.3 α < 0, β > 0, ∆ = 0, see Fig.3. In this case, we have ϕ2 = ϕ1 = β
2|α| , h1 =

h2 = β2

12α2 .
(i) When h ∈ (0, h2) and h ∈ (h2,∞), the level curves defined by Ha= 1

2
(ϕ, y) = h

are two families of periodic orbits of system (1.6). They have the same parametric
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representations as (3.18). So that, system (1.1) has the same exact solutions as
(3.19).

(ii) The level curves defined by Ha= 1
2
(ϕ, y) = h2 are two heteroclinic orbits.

Now, we have that y2 = 2
3 |α|(ϕ2 − ϕ)3ϕ. Thus, we have the following kink and

anti-kink wave solutions:

ϕ(ξ) =
3ϕ3

2ξ
2

8|α|+ 3ϕ2
2ξ

2
=

3β3ξ2

64α4 + 6|α|β2ξ2
. (3.20)

(3.20) gives rise to the exact solutions of system (1.1) as follows:

u(x, t) =
(

3β3ξ2

64α4+6|α|β2ξ2

) 1
2m

eiη,

H(x, t) = 1
3

(
3β3ξ2

64α4+6|α|β2ξ2

)
.

(3.21)

3.4 α < 0, ∆ < 0, see Fig.4.
When h ∈ (0,∞), the level curves defined by Ha= 1

2
(ϕ, y) = h are a family of

periodic orbits of system (1.6) contact to the singular straight line ϕ = 0 at E0(0, 0).
It has the same parametric representations as (3.18). So that, system (1.1) has the
same exact solutions as (3.19).

For the cases in Fig.5-7, we can make similar discussion. We omit them.

4. Conclusion

To sum up, we have proved the following main conclusion.

Theorem 4.1. 1). For the nonlinear generalized Zakharov system (1.1), to find its
exact solutions with the form (1.2), the function ϕ(ξ) satisfies the planar dynamical
system (1.6). When a = 1

2 and γ < 0, system (1.6) has the bifurcations of phase
portraits shown in Fig.1-Fig.7.

2). Under different parameter conditions, system (1.1) has nine different exact
solutions given by (3.5), (3.7), (3.9), (3.12), (3.13), (3.16), (3.17), (3.19) and
(3.21).
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