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BOGDANOV-TAKENS SINGULARITY IN THE
COMPREHENSIVE NATIONAL POWER

MODEL WITH TIME DELAYS∗

Jingnan Wang 1,2,† and Weihua Jiang1

Abstract In this paper, the comprehensive national power model with time
delays is studied. The condition that there is only one trivial equilibrium in
the model is given. Based on the analysis of the distribution of the eigen-
values at the trivial equilibrium, it is found that the trivial equilibrium is
a Bogdanov-Takens singularity. Using the center manifold theory and the
normal form method, the normal form with delay and ratio parameters of
the model is obtained. Furthermore, the topological structures of the mod-
el near the bifurcation point with the variation of these two parameters are
given. The associated development situations of the comprehensive national
power for some topological structures are discussed. Finally, some numerical
simulations are performed to support the analytic results.
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1. Introduction

National power is a fascinating, yet elusive, concept in the study of internation-
al relations as well as in other social sciences. For centuries, scholars have been
wrestling with its conceptualization and measurement. Hu & Men [3] presented:
Comprehensive national power is the sum total of the powers or strengths of a
country regarding economy, military affairs, science and technology, education and
resources and its influence. More abstractly, it refers to the combination of all the
powers possessed by a country for the survival and development of a sovereign state,
including material and ideational ethos, and international influence as well. Theory
and data are often regarded as separate, but this is not necessarily true. Sometimes
theoretical advances come to a halt for the want of empirical inspiration. At other
times, data construction is hampered for the lack of theoretical guidance. By con-
structing mathematical models, if we investigate the development of comprehensive
national power, then some key variables playing important roles in affecting the
comprehensive national power can be found. In the same time, we use the data to
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test whether the constructed model is reasonable. Recently many political science
and mathematics scholars focus more attention on the measure of the comprehen-
sive national power (see [1, 5, 10, 11, 13, 15, 17, 19], and the references therein). In
1981, Cline [1] proposed the following static formula for the measurement of the
national power

Pp = (C + E +M)× (S +W ),

where C = critical mass (territory+population); E = economics capability; M =
military capability; S = strategic purpose; W = national will. Pillsbury [10] shows
that the above-mentioned Cline’s equation was deemed as unsuitable as it did not
dynamically assess the variations and development of a country’s comprehensive na-
tional power over time. To solve this problem, in 1992, Huang [5] gave a dynamical
model of the comprehensive national power using the following master equation:

dYt

dt
= ρYt(1−

Yt

M
),

where Yt is the national power function of time t. Yt is the combination of n com-
ponent factors x1, x2, · · · , xn. Here xi are functions of t (0 ≤ i ≤ n). ρ is the
annual growth rate of the national power; M is the carrying capacity of environ-
ment (including international, domestic and natural environment). Tellis etc. [11]
and Zhang [19] both used a tripartite taxonomy to examine Chinese approaches to
soft power, as ’resource’, as ’strategies’ and ’outcomes’. Tellis etc. [11] distilled the
meaning of soft power in the Chinese. Zhang [19] showed: Soft power in China was
mainly used in a domestic policy context to mean cultural resources to be amassed
and accumulated. Soft power could be measured as part of its comprehensive na-
tional power and compared with the hierarchical status of other nation states. Soft
power as strategies meant using power softly in seeking normal economic and po-
litical advantages abroad. In 1997, Wang [13] divided the comprehensive national
power into hard power (tangible national power) and soft power (intangible national
power), and revised the model of Huang [5] into the following form

dx

dt
= αx(

M − x

M
)− βy,

dy

dt
= −γy + δ(m− x)x,

(1.1)

where x(t) = X̃(t) − X̃0, X̃(t) =
∑n

i αixi is the hard power function denoting an
aggregate index of the level of materialistic civilization (including resources x1, eco-
nomic x2 and military x3, etc), X̃0 is a positive constant denoting the predicament
line. y(t) =

∑n
i βiyi is the soft power function denoting an aggregate index of the

level of spiritual civilization (including both incorrect and correct decisions of do-
mestic policy and diplomacy y1, official corruption and incorruption y2, the failure
and success of national education y3, the merits and demerits of social security y4,
etc). That is to say, y(t) > 0 corresponds to social evils, which means negative
effects of the soft power on the social development; y(t) < 0 corresponds to social
goods, which means the positive effects of the soft power on the social development.
dx
dt is proportional to the product of x(t) and M−x

M (the share of the development
potentiality), α is called growth rate. −βy means the obstacle produced by social
evils to the development of material aspects, β is called evils coefficient. −γy ex-
presses the resistance and control of people and government to the social evils. γ
is called national control coefficient. δ(m− x)x means the worsening of social evils
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with the increase of x(t) when basic living conditions or resources become deficient,
i.e., x(t) < m; social evils decline with the increase of x(t) when basic living con-
ditions or resources become better than the certain value, i.e., x(t) > m. By some
transformations, Wang obtained some dynamic behaviors of the following model

du

dt
= au(1− u)− v,

dv

dt
= −bv + c(µ− u).

(1.2)

Based on the obtained theoretical results, he divided the entire social phase plane
into three parts: social development region, social turbulence region, social collapse
region (see Fig.1).

Figure 1. The social phase plane.

In Fig.1, curved edge trapezoid DO′CGHD constitutes the social development
region; the spots region constitutes the social turbulence region and the other parts
constitutes the social collapse region. In addition, Wang [13] presented the following
social explanations:

1. When a ≤ b, the national control factor is greater than the growth coefficient.
The origin is in the social turbulence region, and at the same time, social evils vanish
and material resource also towards the predicament line as t → ∞ (see the left of
Fig.1).

2. When a > b, 0 < a − b ≪ 1, the growth coefficient is slightly greater
than the national control factor. The origin is in the social turbulence region. At
the same time, the development situations of materialistic civilization and spiritual
civilization are both spiral towards a stable limit cycle (see the middle of Fig.1).

3. When a − b > a(cµ−ab)
c−ab , the growth coefficient is notably greater than the

national control factor. The social phase plane is only divided two parts, the one is
the social development region and the other is the social collapse region. The origin
is in the social collapse region, which shows that social development is very terrible
(see the right of Fig.1).

Wang [13] gave the following of three plans if the society is not in the state
of development: The first plan is that government makes every effort to control
social evils to eliminate social evils and temporarily doesn’t consider economic and
military, until there exists time t = t1, such that, (x(t1), y(t1)) is in the social
development region (see arrow one in the left of Fig.1). The second plan is that if
the degree of social evils is below the line DI, then government takes every possible
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measure to develop economic and military (see arrow two in the left of Fig.1).
The third plan is that government may combine the first plan and the second plan
together (see arrow three in the left of Fig.1).

In 2006, a more general diffusion model of the comprehensive national power
was proposed by Yang & Wang [17] as follows:

dxi

dt
= (βi + γixi) · (Ki − Σn

j=1)aijxj),

xi(0) = x
(0)
i , i = 1, 2, · · · , n,

(1.3)

where xi(t) denotes the i-th kind index of national power at time t; xi(0) is the
initial value of the i-th kind index of national power; Ki is the target value of the
i-th kind index of national power , i.e., upper bound of planning objectives for a
certain period of time; βi is the influence rate of national policies affecting on the
the i-th kind index of national power ; γi is the influence rate of national policies
affecting on the the i-th kind index of national power ; aij is the influence factor of
the development of the j-th kind index of national power affecting on the i-th kind
index of national power ; Ki −

∑n
j=1 aij is the remaining space of the development

of the i-th kind index of national power. In 2007, Xing [15] added time delay into
model (1.1), which becomes

dx

dt
= αx(

M − x

M
)− βy(t− r),

dy

dt
= −γy + δ(m− x)x,

(1.4)

where r is time delay; that is to say, after a period of some time r, the influence of
the soft power on the hard power can become apparent. Furthermore, she analyzed
the stability of the model with time delay at the equilibrium point and gave the
existence conditions of local Hopf bifurcation using time delay as a parameter. In
2009, Liao [8] studied the simple nonlinear diffusion model of the comprehensive
national power. Its results show the effect of the interactive mutual restriction
and harmonious proportion among all comprehensive national power in indexes on
dynamic equilibrium.

In this paper, based on the idea of the incorporation of time delay of Xing [15],
we consider that the cross-effect between soft power and hard power is mutual and
requires some time to become apparent. Therefore, we add another time delay to
the model of Xing [15]. This modified model is more reasonable. For example,
some people were so poor that they have never a penny in their pockets and are
forced to cheat on public transport many years ago. This immoral manner reflecting
the decline of spiritual civilization is caused by poor material wealth. Once their
economic conditions improve, people are not short of money to pay tickets. However
it requires some time to adjust and adapt. Moreover, we find that there exists
Bogdanov-Takens bifurcation in the model, that is to say, there exists not only a
period orbit, but also a homoclinic orbit. In bifurcation theory, a Bogdanov-Takens
bifurcation is a well-studied example of a bifurcation with codimension two, meaning
that two parameters must be varied for the bifurcation to occur. The study of
Bogdanov-Takens bifurcation can be helpful to analyze the rich dynamical behaviors
of some engineering mechanics and biology models (see [6, 7, 9, 12, 14, 16, 18]). In
addition, we find that some obtained dynamic behaviors of the national model of
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Wang [13] and Xing [15], such as the existence of positive equilibrium, the center,
the fine focus, the limit cycle , and the Hopf bifurcation, may be regarded as parts
behaviors of the local topological structure near Bogdanov-Takens singularity.

The remainder of this paper is organized as follows. In Section 2, we study the
root distribution of the characteristic equation of the linearization of the delayed
model at the trivial equilibrium. In Section 3, we give the occurrence conditions
of Bogdanov-Takens singularity of the model with time delays. Using the center
manifold theory and the normal form method for the retarded functional differen-
tial equations of Faria & Magalhes [2], we obtain the normal forms with universal
unfolding parameters of the comprehensive national power model with time de-
lays. Furthermore, we give the topological structures of the delayed model near
Bogdanov-Takens singularity (referring to Jiang & Yuan [7] and Li & Jiang [9]). In
Section 4, we perform some numerical simulations to support the obtain results. Fi-
nally, we give the associated development situations of the comprehensive national
power for some topological structures.

2. The analysis of eigenvalues

From results of Xing [15], we know that after a period of some time τ2, the influence
of the soft power on the hard power can become apparent in Eq.(1.4). In the same
way, we consider whether the influence of the hard power on the soft power can
become apparent after a period of some time τ1. Considering this factor, we have

dx

dt
= αx(

M − x

M
)− βy(t− τ2)

dy

dt
= −γy + δ(m− x(t− τ1))x(t− τ1).

(2.1)

In system (2.1), setting u(t) = x(t)
M , v(t) = y(t)

M , a = α
β , b = γ

β , c = δM
β , d = m

M ,
s = βt and rewriting s as t, we obtain

du

dt
= au(1− u)− v(t− βτ2)

dv

dt
= −bv + c(d− u(t− βτ1))u(t− βτ1).

(2.2)

Wang [13] and Xing [15] obtain that if {α+γ}2

4βγ < m < M holds, then there

exist two equilibrium points E1 = (0, 0) and E2 = (ab−cd
ab−c , a(

ab−cd
ab−c )(1 − ab−cd

ab−c )).

Clearly, if ab = cd, i.e., {α+γ}2

4βγ = m, then there exists only one equilibrium point

E1 = (0, 0). Under such circumstances, the dynamic behaviors of system (2.2) is
unknown. System (2.2) is formulated to explore possible mechanisms and dynamical
behaviors of the development of soft power and hard power from the origin. By
estimating key parameter values for the development of national power, one can
assess and guide the development of the comprehensive national power. Let τ =
β(τ1 + τ2), the characteristic equation corresponding to the linearization of system
(2.2) at the trivial equilibrium becomes

λ2 + (b− a)λ− ab+ cde−λτ = 0. (2.3)
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Lemma 2.1. If ab = cd and τ ≥ 0 hold, then equation (2.3) has no other zero real
part roots except a zero root λ = 0 for τ ≥ 0.

Proof. We know that if τ = 0 and ab = cd, then (2.3) has two roots: one is 0,
and the other is a − b. When τ ̸= 0, we assume that equation (2.3) has a pair of
purely imaginary roots λ = ±iω(ω > 0). Substituting λ = iω(ω > 0) into (2.3), we
obtain

−ω2 + (b− a)iω − ab+ cd(cosωτ − isinωτ) = 0.

We know that if ab = cd holds, then ω2 = ab(cosωτ − 1). Since cosωτ ≤ 1, ω2 ≤ 0
which contradicts the assumption ω > 0. It means that equation (2.3) has no other
zero real part roots except a zero root λ = 0 for τ ≥ 0. This completes the proof.

Lemma 2.2. If ab = cd, b > aand 0 ≤ τ < b−a
ab hold, then Eq.(2.3) has a simple

zero root λ = 0, and the remaining characteristic roots have strictly negative real
parts.

Proof. Equation (2.3) can be rewritten as the following form

λ(λ+ b− a+
cde−λτ − ab

λ
) = 0. (2.4)

From (2.4), we know that λ = 0 is a simple root of (2.4). When ab = cd, we have

λ(λ+ b− a+ ab
e−λτ − 1

λ
) = 0 ⇒

λ(λ+ b− a+ τab

∫ 1

0

e−λτsds) = 0. (2.5)

Assume that λ = α1+iβ1(α1 > 0) is a positive real part root of (2.3), and substitute
it into (2.5), we obtain

α1 = −(b− a) + abτRe(

∫ 1

0

e−(α1+iβ1)τsds)

≤ −(b− a) + abτ |
∫ 1

0

e−(α1+iβ1)τsds|

≤ −(b− a) + abτ

∫ 1

0

e−α1τsds

≤ −(b− a) + abτ.

Clearly, if 0 ≤ τ < b−a
ab , then α1 < 0, contradicting to the assumption α1 > 0.

Therefore, Eq.(2.3) has no positive real part roots. By Lemma 2.1, we know that
(2.3) has no purely imaginary roots. This completes the proof.

Theorem 2.1. If ab = cd, b > a and τ = b−a
ab hold, then equation (2.3) has a

double zero root λ = 0, and the remaining characteristic roots have strictly negative
real parts.

Proof. Let H(λ) = λ2+(b−a)λ−ab+cde−λτ . Then we obtain H(0) = H ′(0) = 0,
H ′′(0) ̸= 0 as ab = cd and τ = b−a

ab > 0 hold, which means that λ = 0 is the double
root of Eq.(2.3). If we assume that there exists a positive real part root of Eq.(2.3),
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letting λ = α2 + iβ2(α2 > 0), then there must exist a positive constant δ satisfying
that when τ ∈ ( b−a

ab − δ, b−a
ab ), there exists a positive real part root of Eq.(2.3),

which is a contradiction to Lemma 2.2. Therefore, Eq.(2.3) has no positive real
part roots. On the other hand, by Lemma 2.1, there does not exist zero real part
roots of Eq.(2.3) except λ = 0 when the conditions of this theorem hold. This
completes the proof.

3. Normal form of Bogdanov-Takens singularity

Firstly, let τ = β(τ1 + τ2), we rescale the time by t| → (t/τ) to normalize the delay,
so that system (2.2) can be written as the form

du

dt
= τau(1− u)− τv(t− r2),

dv

dt
= −bτv + τc(d− u(t− r1))u(t− r1),

(3.1)

where ri = (βτi/τ) ≥ 0(i = 1, 2) and r1 + r2 = 1. Based on Theorem 2.1 in Sec.2,
we obtain the following theorem:

Theorem 3.1. For system (3.1), we choose ratio d and time delay τ as bifurcation
parameters and introduce two new parameters µ1 and µ2 such that d = ab

c + µ1

c

and τ = b−a
ab + µ2. If b > a, d = d0 = ab

c and τ = τ0 = b−a
ab are satisfied, then

system (3.1) undergoes Bogdanov-Takens bifurcation at the origin. The origin is
called Bogdanov-Takens singularity.

Substituting d = ab
c + µ1

c and τ = b−a
ab + µ2 into system (3.1), we have

du

dt
= (τ0 + µ2)au(1− u)− (τ0 + µ2)v(t− r2),

dv

dt
= −b(τ0 + µ2)v + (τ0 + µ2)(ab+ µ1)u(t− r1)− (τ0 + µ2)cu

2(t− r1).

(3.2)

Since system (3.2) is a functional differential equation, we use the normal form the-
ory for the retarded functional equation (see Faria & Magalhes [2]) to discuss the
dynamical behaviors near the origin of (3.2). For convenience, the following formu-
las and notations that we use are referred to those of Faria & Magalhes [2]. System
(3.2) can be considered as the following abstract retarded functional differential
equation with parameters in the phase space C = C([−r, 0];R2)

Ẋ(t) = L(µ)Xt +G(Xt, µ), (3.3)

where Xt = (ut, vt)
T ∈ C is defined by Xt(θ) = X(t+ θ), −r ≤ θ ≤ 0,

L(µ)Xt =

∫ 0

−r

dη(θ, µ)Xt(θ),

G(Xt, µ) = (−(τ0 + µ2)au
2
t (0),−(τ0 + µ2)cu

2
t (−r1))

T ,

where

η(θ, µ) =


0, θ = 0,
−A, θ ∈ [−ri, 0),
−A−Ai, θ ∈ (ri − 1,−ri),
−A−Ai −Aj , θ = ri − 1,
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and i+ j = 3, i, j = 1, 2; ri = min(r1, r2); r = 1−min(r1, r2); µ = (µ1, µ2),

A = (τ0 + µ2)

(
a 0
0 −b

)
; A1 = (τ0 + µ2)

(
0 0

ab+ µ1 0

)
;

A2 = (τ0 + µ2)

(
0 −1
0 0

)
.

In fact, zero is a double characteristic root, and G(0) = 0, DG(0) = 0. We consider

Λ = {0}. By △(λ) = λI −
∫ 0

−r
dη(θ, 0)eλθ, we obtain

Φ(θ) =

(
1 1 + θ
a (1 + r2 + θ)− τ−1

0

)
and

Ψ(s) =

(
z1 − sw1 z2 − sw2

w1 w2

)
,

where w1 = 2b(b−a)
a2+b2 ; w2 = −bw1; z1 = 2ab

a2+b2 − 4b(b3−a3)
3(b2+a2)2 ; z2 = 4(b3−a3)

3(b2+a2)2 + 2r2(b−a)
b2+a2 ,

are the bases for P and P ∗ (see Hale [4], Lemmas 3.2 and 3.3 in Chapter 7),
respectively, satisfying (Ψ,Φ) = I, Φ̇ = ΦB and −Ψ̇ = BΨ, where

B =

(
0 1
0 0

)
.

Then we project the infinite-dimensional flow on C to the finite-dimensional mani-
fold P . Following the ideas in Faria & Magalhes [2], we consider the enlarged phases
pace BC of functions from [−r, 0] to R2, continuous on [−r, 0) and with a possible
jump discontinuity at zero. This space can be identified with C×R2 whose elements
are in the form ϕ = φ+X0c̃, where φ ∈ C, c̃ ∈ R2 and X0 is the 2×2 matrix-valued
function defined by X0(θ) = 0 for θ ∈ [−r, 0) and X0(0) = I. In the space BC, Eq.
(3.2) becomes an abstract ODE

d

dt
U = A0U +X0F (U, µ), (3.4)

where
F (φ, µ) = (Lµ − L0)φ+G(φ, µ)

for µ ∈ R2, A0 is defined by

A0 : C1 → BC,A0φ = φ̇+X0[L0φ− φ̇(0)].

The definition of the continuous projection

π : BC → P, π(φ+X0c̃) = Φ[(Ψ, φ) + Ψ(0)c̃]

allows us to decompose the enlarged phase space by Λ into BC = P⊕Kerπ. By this
new decomposition of BC, we let U = Φx+y in BC, where x = (x1, x2)

T ∈ R2 = P
and y ∈ Kerπ. From results of Faria & Magalhes [2], the abstract ODE (3.4) can
be decomposed into the following system

ẋ = Bx+Ψ(0)F (Φx+ y, µ),

d

dt
y = AQ1y + (I − π)X0F (Φx+ y, µ)

(3.5)



Bogdanov-Takens singularity 89

for y ∈ Q1 = Q ∩ C1 ⊂ Kerπ, where AQ1 is the restriction of A0 as an operator
from Q1 to the Banach space Kerπ.

Employing Taylor’s theorem, we denote respectively Ψ(0)F (Φx+ y, µ) and (I −
π)X0F (Φx+ y, µ) as

Ψ(0)F (Φx+ y, µ) =
1

2!
f1
2 (x, y, µ) + · · · ,

(I − π)X0F (Φx+ y, µ) =
1

2!
f2
2 (x, y, µ) + · · · ,

where f1
j (x, y, µ) and f2

j (x, y, µ) are homogeneous polynomials in (x, y, µ) of degree

j(j ≥ 2) with coefficients in R2 and Kerπ, respectively. Then Eq.(3.5) can be
rewritten as the following system

ẋ = Bx+
1

2!
f1
2 (x, y, µ) + · · · ,

d

dt
y = AQ1y +

1

2!
f2
2 (x, y, µ) + · · · .

(3.6)

Let V 4
2 (R

2) be the linear space of homogeneous polynomials with respect to (x1, x2, µ)
of degree 2 with coefficients in R2. M1

2 is the operator defined in V 4
2 (R

2), with values
in the same space, by

M1
2 (p)(x, µ) = Dxp(x, µ)Bx−Bp(x, µ).

Then for system (3.2), the normal form with universal unfolding at Bogdanov-
Takens singularity has the form

ẋ = Bx+
1

2!
g12(x, 0, µ) + · · · , (3.7)

where g1j (x, 0, µ) are homogeneous polynomials in (x, µ) of degree j(j ≥ 2) and

g1j = (I − P 1
I,j)f

1
j (j ≥ 2) (see Faria & Magalhes [2]). Next, we compute the value

of g12(x, 0, µ).
From (3.2) and definitions of Φ(θ)(−r ≤ θ ≤ 0) and Ψ(s)(0 ≤ s ≤ r), we have

f1
2 (x, 0, µ) =

(
b1µ1x1 + b2µ2x2 + b3µ1x2 −A1

20x
2
1 −A1

11x1x2 −A1
02x

2
2

c1µ1x1 + c2µ2x2 + c3µ1x2 −A2
20x

2
1 −A2

11x1x2 −A2
02x

2
2

)
,

with b1 = 2z2τ0; b2 = 2z1
τ0

+ 2z2(
b
τ0

− ab); b3 = 2z2τ0r2;A
1
20 = 2τ0(az1 + cz2);A

1
11 =

2τ0(az1 + cr2z2);A
1
02 = 2τ0(az1 + cr22z2); c1 = 2w2τ0; c2 = 2w1

τ0
+ 2w2(

b
τ0

− ab); c3 =

2w2τ0r2;A
2
20 = 2τ0(aw1 + cw2);A

2
11 = 2τ0(aw1 + cr2w2);A

2
02 = 2τ0(aw1 + cr22w2).

By the canonical basis of V 4
2 (R

2) and the corresponding images of these elements
under M1

2 in paper of Jiang & Yang [7], we obtain the bases of Im(M1
2 )

c and
Ker(M1

2 )
c. Thus we know that the second order terms in (x, µ) on the center

manifold are given by

1

2!
g12(x, 0, µ) =

(
0

λ1x1 + λ2x2 +B1x
2
1 +B2x1x2

)
,

where

λ1 = 1
2c1µ1 = −2(b−a)2

ab(a2+b2)µ1,

λ2 = 1
2 [(c3 + b1)µ1 + c2µ2] = [ 4(b

3−a3)(b−a)

3ab(a2+b2)2
− 2r1(b−a)2

ab(a2+b2) ]µ1 +
2ab(b−a)
a2+b2 µ2,
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B1 =
−A2

20

2 = 2(b−a)2(c−ab)
ab(a2+b2) ,

B2 =
−A2

11

2 −A1
20 = −2(b2−a2)

b2+a2 − 8(b3−a3)(b−a)(c−ab)

3ab(b2+a2)2
− 2cr2(b−a)2

ab(b2+a2) .

By computing, we obtain B1 > 0 and B2 < 0. Hence, by truncating Eq.(3.7) to
the second order plus some transforms, Eq.(3.7) becomes

ẋ1 = x2,

ẋ2 = λ1
B2

2

B2
1

x1 − λ2
B2

B1
x2 + x2

1 − x1x2.
(3.8)

By the results and Fig.1 in paper of Jiang& Yuan [7], we obtain the following
theorem:

Theorem 3.2. System (3.8) has different topological structures depending on the
different changes of (µ1, µ2) near (0, 0) in the phase plane of x1 − x2. These dif-
ferent topological structures correspond respectively to the different portions of the
bifurcation diagram of µ1 − µ2 in the neighborhood Ω of (0, 0) (see Fig.2). The
bifurcation diagram is composed of the origin and the following curve lines :

(i) TB = {(µ1, µ2)|µ1 = 0};
(ii) H+ = {(µ1, µ2)|µ2 = k1µ1, µ1 > 0},

H− = {(µ1, µ2)|µ2 = [k2 + k3]µ1, µ2 < k1µ1};
(iii) P+ = {(µ1, µ2)|µ2 = 1

7 [k2 − 5k3]µ1, µ2 > k1µ1},
P− = {(µ1, µ2)|µ2 = 6

7 [k2 + 5k3]µ1, µ2 < k1µ1},

where k1 = − 2(b3−a3)
3a2b2(a2+b2) + (b−a)r1

a2b2 ; k2 = (a+b)
ab(c−ab) + cr2(b−a)

a2b2(c−ab) − (b−a)r1
a2b2 ; k3 =

2(b3−a3)
3a2b2(a2+b2) . On the line TB, transcritical bifurcation occurs. When the parameters

vary across the line TB from one half plane to the other half plane, the trivial
equilibrium becomes a non-trivial equilibrium, and a non-trivial equilibrium becomes
the trivial equilibrium. On the line H± , there exists stable Hopf bifurcation, while on
the curve P±, the system undergoes a saddle connection or homoclinic bifurcation.

Figure 2. The bifurcation set and phase portraits for (3.8).
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4. Numerical simulation

We choose a = 1, b = 2, c = 4, r1 = 0.2, r2 = 0.8 in Eq.(3.2). By computing, we
know that τ0 = 0.5; k1 = −0.1833; k2 = 1.1; k3 = 0.2333; on the line P+: µ2 =
−0.00952380952µ1, (µ2 > −0.1833µ1); on the line H+: µ2 = −0.1833µ1,(µ1 > 0) ;
on the line H−: µ2 = 1.333µ1, (µ2 < −0.1833µ1); on the line P−: µ2 = 1.9427µ1,
(µ2 < −0.1833µ1). Then we obtain d = 0.5 + 0.25µ1; τ = τ0 + µ2; βτ1 = 0.2τ ;
βτ2 = 0.8τ in Eq.(2.2). To understand the bifurcation diagram in Fig.2, we consider
the following situations:

(i) µ1 = 1 and µ2 = 0 lying in region I in Fig.2; the trivial equilibrium of model
(2.2) is unstable and the non-trivial equilibrium of model (2.2) is a saddle (see
Fig.3).

(ii) µ1 = 1 and µ2 = −0.1612 lying in region II in Fig.2, and there is a stable
limit cycle of model(2.2) (see Fig.4).

(iii) µ1 = 1 and µ2 = −0.3 lying in region III in Fig.2; the trivial equilibrium of
model (2.2) is stable and the non-trivial equilibrium of model (2.2) is a saddle
(see Fig.5).

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
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0.5

1
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Figure 3. The origin is unstable for d = 0.75, βτ1 = 0.1, βτ2 = 0.4.

5. Conclusion

In this paper, we have analyzed the dynamical behaviors of (2.2) near the trivial
equilibrium point and proved that there exists a Bogdanov-Takens bifurcation in
the model, that is to say, there not only exists a period orbit, but also a homoclinic
orbit. From the effects of parameters on the dynamical behaviors of the model, we
find that the changes of the delays and the ratio of m and M , can regulate and
determine the development of social situation under some conditions. Figs. 2-5 show
that models (2.2) and (3.8) have the same topological structures. From studying
a simple ordinary differential equation, we can obtain some dynamical behaviors
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Figure 4. The stable limit cycle is obtained for d = 0.75,
βτ1 = 0.06776, βτ2 = 0.2714.
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Figure 5. The origin is stable for d = 0.75, βτ1 = 0.04, βτ2 = 0.16.

of a functional differential equation. If (µ1, µ2) ∈ I of Fig.2, then E1 = (0.0)
is unstable, meaning that the area of the social turbulence region is almost zero,
which reveals that the social collapse region becomes larger. If (µ1, µ2) ∈ II of Fig.2,
then there exists a periodic solution near the equilibrium point E1 of (2.2), that is
to say, both material and cultural resources change periodically, which means that
social development is stable. If (µ1, µ2) ∈ III of Fig.2, then the equilibrium point
E1 = (0.0) is stable; in other words, social evils vanish and the material resource
also towards the predicament line as t → ∞. These cases show that, if different
parameters of a, b, c, r1, r2 with different countries are put into our model, then the
development situation of comprehensive national power is obtained, which provides
some theoretical foundation for further studying social development.
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