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ITERATIVE METHOD FOR RANK-DEFICIENT
(2,1)-BLOCK KKT SYSTEMS

Gül Karaduman1,2,†

Abstract Karush-Kuhn-Tucker (KKT) systems are widely used in scientific
and engineering problems. They are characterized by a 2-by-2 block structure
coefficient matrix that exhibits various features, such as sparsity, symmetry,
non-symmetry, singularity, and nonsingularity. Solving singular (2,1)-block
KKT systems presents significant computational challenges due to their in-
herent complexity. To address this challenge, an iterative method has been
introduced explicitly for addressing singular (2,1)-block KKT systems. The
proposed method reduces the system size by using only maximum linearly
independent rows of (2,1) block matrices and effectively handles the singu-
larity by transforming the row deficiency problem into a reduced form. The
effectiveness and efficiency of the proposed iterative method are verified us-
ing numerical experiments with various matrices. It has demonstrated the
capacity to provide definitive solutions for singular KKT systems and improve
computing performance across multiple applications.

Keywords Rank deficient, Iterative solver, KKT systems, Numerical opti-
mization, Krylov subspace solvers
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1. Introduction

The Karush-Kuhn-Tucker (KKT) system is a linear system that appears in many
scientific and engineering applications [14]. This system is characterized by a large
and sparse coefficient matrix with a 2 by 2 block structure. The system can be
written as Kz = b. In this system, K ∈ R(n+m)×(n+m) refers to a large and sparse
matrix, the vector b ∈ Rn+m represents the right-hand vector containing nonzero
values, and z ∈ Rn+m represents the solution vector. KKT can be expressed as,

Kz ≡

 A B1
T

B2 0

x
y

 =

f
g

 ≡ b. (1.1)

In the system, A ∈ Rn×n, B1 ∈ Rm×n, and B2 ∈ Rm×n are large and sparse
matrices. B2 is a low-rank matrix, and the condition n ≥ m holds. The vectors
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on the right are represented by f ∈ Rn and g ∈ Rm, while the solution vectors are
denoted by x ∈ Rn and y ∈ Rm.

The KKT system with rank deficiency poses some difficulties for numerical meth-
ods that require special techniques for optimal solutions [1]. Various techniques have
been developed over the years to solve such systems, each with its own limitations.
One of these is the regularization method, which involves adding a regularization
term to ensure that the system [20] is non-singular. Tikhonov regularization is a
leading example of this technique [13]. However, this approach can introduce bias
into the solution and requires careful parameter tuning.

Another approach is constraint preconditioning [4]. This method uses a precon-
ditioner to constrain the solution space and effectively reduces the system’s rank de-
ficiency. Constraint preconditioning methods aim to improve convergence but may
be computationally expensive, particularly for large-scale problems. The null space
method is also an important technique [8]. It uses the null space of the KKT system
to reduce its dimensionality by leveraging the null space of B2, but its effectiveness
diminishes when B2 has a high rank or is ill-conditioned. The static condensation
method is an example of this approach. In addition to all these studies, we can
list articles that develop various techniques on KKT systems [3] [5] [15] [16] [22].
Additionally, methods such as the Uzawa algorithm and the augmented Lagrangian
method [6,7,10] have been widely employed, yet they often struggle with slow con-
vergence rates when dealing with highly rank-deficient systems. Iterative methods
offer an approach to overcome the rank deficient problems [17] [23] [19]. They are
particularly effective in solving large-scale problems by recursively solving the KKT
system.

To address these limitations, this work introduces an iterative approach tailored
explicitly for rank-deficient KKT systems, where B2 ∈ Rm×n has limited rank, i.e.,
l ≤ m and m≪ n. Our method constructs a projection matrix that transforms the
original problem into a least squares problem, which can then be efficiently solved
using iterative solvers such as LSMR [9]. Unlike standard regularization methods,
our approach does not introduce additional regularization terms, thus avoiding ar-
tificial bias. Moreover, by explicitly identifying the linearly independent rows of B2,
our method ensures numerical stability and enhances convergence. While our tech-
nique focuses on rank-deficient real matrices, it can be readily adapted to handle
full-rank real and complex coefficient matrices.

The main structure of this study is as follows. Section 2 introduces how the pro-
jection matrix is constructed and provides a theoretical analysis of the projection
approach. Section 3 identifies the linearly independent rows within the matrix B2.
Section 4 outlines the solution to the problem and presents the algorithmic frame-
work for our method. Section 5 presents the numerical results and accompanying
figures. Finally, the concluding section draws insights based on the findings.

2. Formulation of Projection Matrix Construction

This section outlines the process of constructing the projection matrix, assuming
that B2 is not a full-rank matrix and can have its rows rearranged into a specific
partition format, as shown below.
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PB2 =

B21

B22

 ∈ Rm×n, (2.1)

where P ∈ Rm×m is a permutation matrix, B21 ∈ Rl×n is a full rank matrix and
rank(B2) = l ≤ m. In particular, the rows of B21 are linearly independent. Similarly

a vector g ∈ Rm can be permuted as Pg =

g1
g2

.
Theorem 2.1. Assume that B2 is not a full rank matrix. Permute B2 using the
formula (2.1), where P ∈ Rm×m is a permutation matrix, B21 ∈ Rl×n has full row
rank, and both rank(B2) and rank(B21) equal l, which is less than m. Additionally,
B22 ∈ R(m−l)×n. Consequently, each row in B22 can be expressed as a linear com-
bination of rows in B21. Therefore, there exists a matrix C ∈ R(m−l)×l such that
B22 = CB21.

Proof. : Let

B21

B22

 =



b1

b2
...

bl

bl+1

...

bm



where {b1, b2, . . . , bl} represent the row vectors of B21, and {bl+1, bl+2, . . . , bm} rep-
resent the row vectors of B22. As {bl+1, bl+2, . . . , bm} are linearly dependent on the
rows of B21, it is possible to express every row vector of B22 as a linear combina-
tion of the vectors {b1, b2, . . . , bl}. This implies the existence of scalar coefficients
cl+1,1, cl+1,2, . . . , cl+1,l, cl+2,1, cl+2,2, . . . , cl+2,l , . . . , cm,1, cm,2, . . . , cm,l such that,

bl+1 = cl+1,1b1 + cl+1,2b2 + . . .+ cl+1,lbl,

bl+2 = cl+2,1b1 + cl+2,2b2 + . . .+ cl+2,lbl,

...

bm = cm,1b1 + cm,2b2 + . . .+ cm,lbl.
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Equivalently,

B22 =


cl+1,1 cl+1,2 . . . cl+1,l

...
...

...

cm,1 cm,2 . . . cm,l





b1

b2
...

bl


= CB21.

Theorem 2.2. (Rank-Nullity Theorem [2]). Let B2 be an m× n matrix. Then

rank(B2) + null(B2) = n. (2.2)

Proof. : [2]

Theorem 2.3. If B21 ∈ Rl×n is a full row rank matrix (i.e., rank(B21) = l), then
B21B21

T ∈ Rl×l is invertible.

Proof. : Assuming that B21 is a matrix with full row rank, the aim is to demon-
strate that B21B21

T is an invertible l × l square matrix. To prove this statement,
it needs to be established that if B21B21

Tw = 0 for some vector w, then w must
be the zero vector. Since B21 has a rank of l, it is known that B21

T has the same
rank of l. From the rank-nullity theorem, it can be concluded that the null space of
B21

T is trivial, which implies that if B21
Tw = 0, then w must be the zero vector.

null(B21
T ) = l − rank(B21

T )

= l − l

= 0. (2.3)

If B21B21
Tw = 0 then

0 = wTB21B21
Tw = (B21

Tw)T (B21
Tw)

= ⟨B21
Tw,B21

Tw⟩
=

∥∥B21
Tw

∥∥.
If

∥∥B21
Tw

∥∥ = 0 then B21
Tw = 0. Additionally, since null(B21

T ) = 0 as shown in

Equation (2.3), the vector w must be the zero vector. Therefore, B21B21
T ∈ Rl×l

is an invertible matrix.

Definition 2.1. (Right Inverse Matrix) Let B21 ∈ Rl×n with rank(B21
T ) = l.

Then B21B21
T is invertible matrix and the right inverse of B21 is

B21
+ = B21

T (B21B21
T )−1, (2.4)

with B21B21
+ = Il.
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Theorem 2.4. Let B21 ∈ Rl×n and g1 ∈ Rl. Let x ∈ Rn be the minimum-norm
solution of

∥g1 −B21x∥2 = min
w∈Rn

∥g1 −B21w∥2 . (2.5)

Then x = B21
+g1.

Proof. : By [21].

Theorem 2.5. A vector g ∈ Rm belongs to the range of B2 if and only if there exists
a vector x ∈ Rn that satisfies B2x = g. Given that B21 ∈ Rl×n with rank(B21)=l,
x can be expressed as:

x = B21
+g1, (2.6)

where Pg =

g1
g2

, P ∈ Rm×n is a permutation matrix.

Proof. : (⇒) Suppose that B21 ∈ Rl×n with rank(B21) = l and g ∈ Rm is in the
range of B2 ∈ Rm×n. Then

B2x = g, (2.7)

for some x ∈ Rn. Apply the permutation matrix P ∈ Rm×m to both sides of
equation (2.7).

PB2x = Pg (2.8)B21

B22

x =

g1
g2

 (2.9)

B21x = g1. (2.10)

(2.11)

By Theorem (2.4),
x = B21

+g1,

where B21
+ = B21

T (B21B21
T )−1 ∈ Rn×l.

(⇐) Suppose that x ∈ Rn takes the form

x = B21
+g1,

B21
+ = B21

T (B21B21
T )−1 ∈ Rn×l and g1 ∈ Rl. It is also known that B22 = CB21

for some C ∈ R(m−l)×l by Theorem 2.1. Then

PB2B21
+g1 =

B21

B22

B21
+g1 (2.12)

=

 B21

CB21

[
B21

T (B21B21
T )−1

]
g1 (2.13)

=

 (B21B21
T )(B21B21

T )−1

C(B21B21
T )(B21B21

T )−1

 g1 (2.14)
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=

 I

CI

 g1 (2.15)

=

 g1

Cg1

 (2.16)

=

g1
g2

 (2.17)

= Pg. (2.18)

(2.19)

Hence, g is in the range of B2. This completes the proof of the theorem.

3. Finding the Full Row Rank Matrix

This section discusses a method for identifying the linearly independent rows of the
(2,1)-block matrix B2. In certain cases, the initial l rows of B2, where l corresponds
to the rank of B2, may lack linear independence. To determine which rows of B2

are linearly independent, QR factorization with column pivoting is employed on
the transpose of B2. This approach is outlined in [12]. This factorization can be
expressed as follows,

B2
TPπ = Q

R11 R12

0 0

 (3.1)

=
[
b̂1 . . . b̂m

]
, (3.2)

where, Q is an orthogonal matrix of size n × n, R11 is an upper triangular and
nonsingular matrix of size l × l, and Pπ is a permutation matrix of size m×m.

Suppose Householder matricesH1, . . . ,Hk−1 and permutation matrices Pπ1
, . . . , Pπk−1

have been computed for some integer k. The transpose of matrix B2 can be trans-
formed into an upper triangular matrix R(k−1) using these matrices. R(k−1) can
then be partitioned into R11

(k−1) and R22
(k−1), where R11

(k−1) is a nonsingular
and upper triangular matrix such that,

(Hk−1 . . . H1)B2
T (Pπ1

. . . Pπk−1
) = R(k−1) (3.3)

=

R11
(k−1) R12

(k−1)

0 R22
(k−1)

 . (3.4)

Suppose that the remaining rows and columns ofR22
(k−1) are denoted by uk

(k−1), . . . , um
(k−1)

such that

R22
(k−1) =

[
uk

(k−1), . . . , um
(k−1)

]
(3.5)
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is divided into columns, and let i ≥ k be the smallest index that satisfies∥∥∥ui
(k−1)

∥∥∥
2
= max

{∥∥∥uk
(k−1)

∥∥∥
2
, . . . ,

∥∥∥um
(k−1)

∥∥∥
2

}
. (3.6)

If
∥∥ui

(k−1)
∥∥
2
= 0, the calculation must be stopped. Otherwise, if

∥∥ui
(k−1)

∥∥
2
>

0, the matrix Pπ ∈ Rm×m needs to be found by interchanging the p-th and k-
th columns. Then, the Householder matrix Hk needs to be computed such that
R(k) = HkR

(k−1)Pπk
and ensuring that R(k)(k + 1 : n, k) = 0. After completing

the k-th step, it needs to be verified if |ukk|
|u11| is less than a tolerance value 10−12,

denoted as ”tol”. If |ukk|
|u11| >tol, b̂k is a column of B21

T . Then the matrix B21
T will

be

B21
T =

[
b̂1 b̂2 . . . b̂k−1 b̂k

]
, (3.7)

where b̂1, b̂2, ... , b̂k−1, b̂k are linearly independent columns of B21
T . Then the

matrix B21 will be

B21 =



b̂T1

b̂T2
...

b̂Tk−1

b̂Tk


. (3.8)

4. Solving the Rank-Deficient KKT Problem

The KKT system (1.1) can be expressed in the following

Ax+B1
T y = f,

B2x = g.

According to Theorem (2.5), the solution vector x ∈ Rn can be represented as,

x = B21
+g1. (4.1)

Substituting x = B21
+g1 into Ax+B1

T y = f , the following equation is obtained,

AB21
+g1 +B1

T y = f,

then
B1

T y = f −AB21
+g1, (4.2)

where f −AB21
+g1 belongs to the vector space Rn.

When dealing with an overdetermined linear system in equation (4.2) where
m ≪ n, it is possible to use advanced numerical methods to solve the system
efficiently and accurately, this allows us to reformulate the problem (4.2) as a least
squares problem.
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min
y

∥∥B1
T y − (f −AB21

+g1)
∥∥
2
, (4.3)

the coefficient matrix of this least squares problem belongs to Rn×m. By solving
this problem, the solution vector can be obtained.

The LSMR algorithm, based on the Golub-Kahan bidiagonalization process [11],

employs recursive transformations to convert the matrix
[
b̂ B1

T
]
into a bidiagonal

form. This process forms the essential foundation for the LSMR method.
To elaborate, the transformation procedure can be demonstrated as follows,

1. Given initial guess y0 = 0. The residual r0 = b̂;

2. Set β1 = ∥r0∥2, u1 = r0/β1, v̂1 =B1u1, α1 = ∥v̂1∥2, v1 = v̂1/α1;

3. For i = 1, 2, · · · , do

ûi+1 = B1
T vi − αiui, βi+1 = ∥ûi+1∥2, ui+1 = ûi+1/βi+1,

v̂i+1 = B1ui+1 − βi+1vi, αi+1 = ∥v̂i+1∥2, vi+1 = v̂i+1/αi+1.

Upon completing the k-th step, assuming no breakdown (i.e., βi+1 = 0 or αi+1 = 0),
the following relationship holds

B1
TVk = Uk+1Fk, B1Uk+1 = VkF

T
k + αk+1vk+1e

T
k+1, (4.4)

where Vk =
[
v1 v2 · · · vk

]
, Uk =

[
u1 u2 · · · uk

]
, UT

k Uk = I, V T
k Vk = I, and

Fk =



α1

β2 α2

. . .
. . .

βk αk

βk+1


.

The k-th approximate solution yk is sought over span(Vk), and Vk is the orthog-
onal basis of the Krylov subspace.

Kk

(
B1B1

T , B1r0
)
= span

(
B1r0, B1B1

T (B1r0), · · · , (B1B1
T )k−1(B1r0)

)
.

Denote by yk = Vktk. In LSMR, the goal is to minimize ∥B1rk∥2 over span(Vk),

where rk = b̂−B1
T yk is the k-th residual. According to (4.4), the following holds,

B1rk = Vk+1

β1α1e1 −

 FT
k Fk

αk+1βk+1e
T
k

 tk

 .

Since Vk+1
TVk+1 = Ik+1, the reduced problem is the following,

min
t
∥B1r∥2 = min

t

∥∥∥∥∥∥β̄1e1 −

 FT
k Fk

β̄k+1e
T
k

 t

∥∥∥∥∥∥
2

,

where β̄k = αkβk and β̄1 = α1β1. The LSMR method employs the double QR
decomposition on FT

k Fk to minimize ∥B1r∥2during the k-th iteration.
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5. Numerical Results

This section presents a comprehensive set of numerical tests to demonstrate the
performance of the proposed method. The numerical examples address a vari-
ety of problems, including combinatorial issues, linear programming problems, and
biochemical networks. The aim is to illustrate the superiority of the RDKKT itera-
tion method over the well-established generalized minimum residual method (GM-
RES) [18] and least squares minimum residual methods (LSMR) [9]. This will
be accomplished by thoroughly comparing the numerical results of these iteration
methods, focusing on the number of iterations and their elapsed time in seconds
(CPU). The results offer valuable insight into how the relative residual changes
across iterations of the RDKKT algorithm.

Table 1. Rank-Deficient Testing Matrices B2: Characteristics of the rank-deficient matrices used in the
experiments, including their dimensions, sparsity, and application domains

Matrix m n nnz application

GL6 D 10 163 341 2053 Combinatorial Problem

lp scorpion 388 466 1534 Linear Programming Problem

GL6 D 9 340 545 4349 Combinatorial Problem

GL6 D 8 544 637 6153 Combinatorial Problem

GL7d26 305 2798 7412 Combinatorial Problem

N biocarta 1922 1996 4335 Biochemical Network

lp ship12s 1151 2869 8284 Linear Programming Problem

N pid 3625 3923 8054 Biochemical Network

Table 1 presents a collection of example matrices representing the (2,1)-block
matrix B2. The matrices are not only rank-deficient but also originate from diverse
real-world problems, highlighting the relevance of the proposed method across mul-
tiple domains. Matrices such as GL6 D 10, GL6 D 9, GL6 D 8, and GL7d26 arise in
combinatorial optimization and graph theory applications, where solving large-scale
constrained optimization problems is crucial. These problems frequently appear in
network design, scheduling, and integer programming. Matrices like lp scorpion

and lp ship12s are derived from linear programming models, which are commonly
used in logistics, resource allocation, and operational research. The rank deficiency
in these cases often results from constraints that introduce dependencies, making
the solution process more challenging. Additionally, matrices such as N biocarta

and N pid originate from network-based models in systems biology, capturing inter-
actions between biomolecules in pathways such as metabolic or signaling networks.
In these cases, rank deficiency occurs due to conservation laws and redundancies
in biochemical reactions, making these systems particularly suitable for testing the
effectiveness of iterative solvers.

Each entry in Table 1 provides information about the number of columns in
B2, denoted by n, and the number of rows in B2, denoted by m. To construct the
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coefficient K, sparse matrices are randomly assigned to A ∈ Rn×n and B1 ∈ Rn×m,
resulting in the following structure.

K =

 A B1
T

B2 0

 .

This formulation allows for examining the method’s performance across various
problem instances of different sizes and characteristics, facilitating a comprehensive
analysis of its effectiveness and efficiency. Given the rank deficiency of the system,
a thorough review is conducted to determine whether a solution exists. The con-
sistency of the system Kz = b is assessed by comparing the ranks of the coefficient
matrix K and the augmented matrix [K b]. Extensive investigations consistently
demonstrate that the rank of K matches the rank of [K b]in every case. To evaluate
the proposed algorithm 1, the relative residual is defined as∥∥b−Kz∥∥

2∥∥b∥∥
2

. (5.1)

Two conditions define the stopping criterion: reaching 10000 iterations or achiev-
ing a relative residual (5.1) below 10−8. Calculations in this research were performed
using Matlab version R2023b on a computer equipped with an Apple M2 chip and
16GB of RAM. This information gives insights into the computational environment
used for conducting our analyses, ensuring transparency and reproducibility of the
results.

The framework for solving the rank-deficient KKT problems (RDKKT) is pre-
sented below.

Algorithm 1 Solving KKT system with rank-deficient B2 and g ̸= 0 (RDKKT)

Input: K and b as described in equation (1.1), initial guess y0 = 0, maximum
iterations kmax = 10000, tolerance ϵ = 10−8;

Output: An approximate solution, denoted as (xopt, yopt), to the KKT system
(1.1).

1: Initialize k = 0;
2: while k < kmax do
3: Apply LSMR method to solve the least squares problem (4.3) and obtain an

estimated solution yk;
4: if relative residual (5.1) < ϵ then
5: Set yopt = yk and break;
6: end if
7: k ← k + 1;
8: end while
9: Compute xopt = B21

+g1;

10: Return

xopt

yopt

.
Figure 1 illustrates the convergence based on the relative residual (5.1). These

figures display the approximations obtained using Algorithm 1 on the testing ma-
trices generated from random A, B1, and B2 ∈ Rm×n, as outlined in Table 1.
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Figure 1. Left: Relative residual vs. iteration number for K formed by random A,B1 and B2 ∈ Rm×n

for GL6 D 10, GL6 D 9, GL7d26, and lp ship12s ; Right: Relative residual vs. iteration number for K formed
by random A,B1 and B2 ∈ Rm×n for lp scorpion, GL6 D 8, N biocarta, and N pid.
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Table 2 presents the iteration numbers required by LSMR, GMRES, and RD-
KKT to achieve a relative residual (5.1) of less than or equal to 10−8 for various
examples.

Table 2. Iteration Number for Different Solvers: Number of iterations required by LSMR, GMRES,
and RDKKT to solve the rank-deficient KKT system

Matrix LSMR GMRES RDKKT

GL6 D 10 275 423 172

lp scorpion 325 415 252

GL6 D 9 396 584 241

GL6 D 8 325 628 252

GL7d26 3282 4228 2555

N biocarta 2437 3448 2375

lp ship12s 3753 3207 3002

N pid 6284 Not available 3391

The results in table 2 show that RDKKT consistently outperforms both LSMR
and GMRES regarding iteration counts for most matrices. For instance, for the
matrix GL6 D 10, RDKKT requires only 172 iterations, significantly lower than
LSMR’s 275 and GMRES’s 423 iterations. This trend continues with other matrices
such as lp scorpion, GL6 D 9, and GL6 D 8, where RDKKT maintains a lower
iteration count compared to the other methods.

Notably, the difference in iteration counts becomes more pronounced with larger
and more complex matrices. For example, with GL7d26, RDKKT requires 2555
iterations, while LSMR and GMRES require 3282 and 4228, respectively. Similarly,
for the matrix N biocarta, RDKKT again demonstrates its efficiency by requiring
2375 iterations compared to LSMR’s 2437 and GMRES’s 3448.

Interestingly, in the case of the matrix lp ship12s, LSMR requires more it-
erations (3753) than GMRES (3207), which is an exception to the general trend
observed. However, RDKKT still maintains a competitive edge with 3002 iter-
ations. For the matrix N pid, GMRES results were not available, but RDKKT
(3391) still needed fewer iterations compared to LSMR (6284). The results indicate
that RDKKT is generally more efficient, requiring fewer iterations to converge to
the desired relative residual than LSMR and GMRES, particularly for larger and
more complex matrices.

The CPU time is summarized in table 3. This table lists the CPU times required
by each method to achieve convergence, highlighting the efficiency and computa-
tional cost associated with the RDKKT method compared to LSMR and GMRES.
According to the reported CPU times RDKKT generally has the lowest CPU time
across the various matrices, underscoring its efficiency. For example, the matrix
GL6 D 10 requires only 0.588 seconds with RDKKT, compared to 0.942 seconds with
LSMR and 1.448 seconds with GMRES. Similarly, for lp scorpion, RDKKT takes
0.705 seconds, significantly less than LSMR’s 0.968 seconds and GMRES’s 1.236
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Table 3. CPU Time Comparison for Different Solvers: Computational time in seconds for solving the
rank-deficient KKT system using LSMR, GMRES, and RDKKT

Matrix LSMR GMRES RDKKT

GL6 D 10 0.942 1.448 0.588

lp scorpion 0.968 1.236 0.705

GL6 D 9 1.143 1.685 0.695

GL6 D 8 1.110 2.145 0.860

GL7d26 6.212 8.002 4.835

N biocarta 4.448 6.293 4.334

lp ship12s 6.445 5.508 5.155

N pid 12.703 Not available 6.855

seconds. This trend continues with other matrices such as GL6 D 9 and GL6 D 8,
where RDKKT shows marked reductions in CPU time compared to LSMR and
GMRES. For larger and more complex matrices, such as GL7d26 and N biocarta,
RDKKT maintains its efficiency, requiring 4.835 seconds and 4.334 seconds, respec-
tively, while LSMR and GMRES require significantly more time. An interesting
observation is with the matrix lp ship12s, where GMRES shows a lower CPU
time (5.508 seconds) compared to LSMR (6.445 seconds), yet RDKKT still outper-
forms both with a time of 5.155 seconds. For the matrix N pid, GMRES results
were not available, but RDKKT (6.855 seconds) still significantly outperformed
LSMR (12.703 seconds). The results show that RDKKT consistently demonstrates
lower CPU times, making it a more cost-effective choice for solving large-scale linear
systems than LSMR and GMRES.

The experimental results demonstrate the remarkable convergence achieved by
the projection method when applied to rank-deficient B2 matrices, indicating the
approach’s efficacy in solving such systems. The method extends its applicability
to singular K and A matrices, illustrating that a full-rank system is unnecessary
for favorable outcomes. This demonstrates the robustness and flexibility of the ap-
proach. Re-orthogonalization or preconditioning techniques were not used in the
current implementation, but the potential benefits of these methods are acknowl-
edged. In future research, the integration of preconditioning methods is planned to
improve the efficiency and accuracy of solving KKT systems.

6. Conclusion

The presented research contributes to the field by offering an iterative method specif-
ically designed for rank-deficient (2,1)-block KKT systems. The findings, supported
by experimental evidence, highlight the effectiveness of the projection method in
addressing the challenges posed by singular systems. The notable convergence
achieved by the method underscores its potential to deliver successful outcomes
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in solving these systems. The results from the experiments clearly demonstrate
that a full-rank system is not necessary for obtaining satisfactory results with this
approach. This illustrates the robustness and versatility of the method, allowing it
to address scenarios where traditional methods may struggle. Beyond its theoretical
significance, the proposed method has practical applications in a range of real-world
optimization problems. Rank-deficient KKT systems frequently arise in large-scale
constrained optimization tasks, such as linear and quadratic programming, net-
work flow optimization, and control problems in engineering. Additionally, these
systems play a crucial role in economic modeling, machine learning optimization
frameworks, and structural mechanics, where constrained formulations often lead
to singular systems. By extending the method’s applicability to singular matrices,
a valuable solution is provided that can tackle a wider array of practical problems,
ensuring its relevance across multiple disciplines.
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