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Abstract

This paper is concerned with uniform large deviation principles of fractional stochastic
p-Laplacian reaction-diffusion equations driven by additive noise defined on unbounded
domains. The nonlinear drift is assumed to be locally Lipschitz continuous. Due to the
non-compact of the solution operator, we will use the method of weak convergence to
show the result.
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1. Introduction
In this paper, we would like to think of the uniform large deviation principles of fractional

stochastic p-Laplacian reaction-diffusion equations which are defined on the whole space Rn

and driven by additive noise as well. Given α ∈ (0, 1), consider the Ito stochastic equation:

du (t) + (−∆)αp u (t) dt+ F (t, x, u (t)) dt = g (t, x) dt+
√
εQdW, (1.1)

with initial condition
u (0, x) = u0, x ∈ Rn, t > 0, (1.2)

where ε > 0 is the intensity of noise, −∆α
p is fractional p-Laplacian operator, with p ≥ 2,

F : R×Rn×R → R is a non-linear function satisfying certain conditions, g ∈ L2
loc

(
R,L2 (Rn)

)
is
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given, Q : L2 (Rn) → H1 (Rn) is a Hilbert-Schmidt operator and W is a two-side real-valued
Wiener process defined on a complete filtered probability space

(
Ω,F , {Ft}t∈[0,T ],P

)
for some

T > 0. Throughout this paper, we write the inner product and norm of L2 (Rn) as (·, ·) and
∥ · ∥, respectively.

The fractional partial differential equations arise from lots of applications in [2, 4, 5, 13,
16,18] while the systems with standard p-Laplacian have been well-investigated in [1,10]. The
solutions and the long term dynamics of these equations have been extensively studied in the
literature, see in [7]. In this paper, we would like to show the uniform large deviation principle
of the stochastic fractional p-Laplacian reaction-diffusion equation (1.1).

The large deviation principles of stochastic equations are related to exit time and exit place
of the solutions from a domain, and have been studied by many authors in the literature, see,
e.g. [6,9,11,12,14,16,18]. In particular, in [14], the author has studied the uniform large devi-
ation principle of the non-local fractional stochastic reaction-diffusion equation defined on the
entire space Rn driven by additive noise. However, when the problem comes to the p-Laplacian
in which p > 2 is rigidly, that means the space Wα,p isn’t a Hilbert space so that the normal
way of inner product cannot be used. To solve this problem, we need the operator A from [17]
to finish the estimate of the solutions of fractional stochastic p-Laplacian reaction-diffusion
equation (1.1) in the space C ([0, T ], H)

⋂
Lp (0, T ;V ). Next, we will recall some propaedeutics

to reach that end.

2. Large deviation principles
In this section, we recall the weak convergence theory for large deviation principles from

[8,9].

2.1 Weak convergence theory for large deviations.
Assume E as a Polish space, on which we have a Borel σ-algebra B (E). Let {νε}ε>0 be

a family of probability measures on (E ,B (E)). As a beforehand procedure to show the large
deviation principle of {νε}ε>0, we need the definition of rate functions.
Definition 2.1. A function J : E → [0,∞] is said to be a rate function on E if it is lower
semi-continuous on E . A rate function J on E is called a good rate function on E if for every
0 < s <∞, the level set Js = {z ∈ E : J (z) < s} is a compact subset of E .

Then it comes to show the definition of large deviation principles of probability measures.
Definition 2.2. Let J : E → [0,∞] be a good rate function on E and {νε}ε>0 be a family of
probability measures on (E ,B (E)). We say family {νε}ε>0 satisfies a large deviation principle
on E with rate function J if:

1. For every s ≥ 0, δ1 > 0 and δ2 > 0, there exists ε0 > 0 such that

νε (N (z, δ1)) ≥ e−
J(z)+δ2

ε , ∀ε ≤ ε0, ∀z ∈ Js,

where N (z, δ1) = {y ∈ E : dist (y, z) < δ1} and Js = {z ∈ E : J (z) ≤ s}.
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2. For every s0 ≥ 0, δ1 > 0 and δ2 > 0, there exists ε0 > 0 such that

νε (E \ N (Js, δ1)) ≤ e−
s−δ2

ε , ∀ε ≤ ε0, ∀s ≤ s0,

where N (Js, δ1) = {z ∈ E : dist (z, Js) < δ1}.
Next, we show the large deviation principles of random variables in E .
Let

(
Ω,F , {Ft}t∈[0,T ],P

)
be a complete filtered space satisfying usual condition. Assume

{W (t)}t∈[0,T ] is a two-side real-valued Wiener process with identity covariance operator in
a separable Hilbert space H with respect to

(
Ω,F , {Ft}t∈[0,T ],P

)
, which means there exists

another separable Hilbert space U such that the embedding H ↪→ U is a Hilbert-Schmidt
operator and W (t) takes values in U for t ∈ [0, T ].

Given ε > 0, let Gε : C ([0, T ], U) → E be a measurable map and set

Xε = Gε (W ) , ∀ε > 0. (2.1)

By the knowledge of stochastic process we know {Xε} is a family of random variables in E .
Therefore Xε has a distribution law on E and we write it as νε. Then we say the family {Xε}
satisfying the large deviation principle on E if the family {νε}ε>0 satisfies the large deviation
principle on E .

Given N > 0, denote by

SN =

{
v ∈ L2 (0, T ;H) :

∫ T

0

∥v (t) ∥2Hdt ≤ N

}
. (2.2)

Note that when endowed with weak topology, SN is a Polish space. Let A be the space of all
H-valued stochastic processes v which are progressively measurable with respect to {Ft}t∈[0,T ]
while

∫ T
0
∥v (t) ∥2Hdt <∞ P-almost surely. Set

AN = {v ∈ A : v (ω) ∈ SN for almost all ω ∈ Ω}. (2.3)

We further assume that there exists a measurable map G0 : C ([0, T ], U) → E such that G0

and the family {Gε}ε>0 satisfy the following conditions:

(H1) If N <∞ and {vε} ⊆ AN such that {vε} convergences in distribution to v as SN -valued

random variables, then Gε
(
W + ε−

1
2

∫ .
0
vε (t) dt

)
convergences in distribution to G0

(∫ .
0
v (t) dt

)
in E .

(H2) For every N <∞, {G0
(∫ .

0
v (t) dt

)
: v ∈ SN} is a compact subset of E .

Let I : E → [0,∞] be a mapping given by, for every x ∈ E ,

I (x) = inf

{
1

2

∫ T

0

∥v (t) ∥2Hdt : v ∈ L2 (0, T ;H) such thatG0

(∫ .

0

v (t) dt

)
= x

}
, (2.4)
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especially we take the infimum over an empty set as ∞. By assumption (H2), we can infer the
fact of every level set of I is compact in E , so by Definition 2.1 I is a good rate function on
E . In addition, it follows from (H1), (H2) and [9] that {Xε}ε>0 satisfies the large deviation
principle in E with rate function I, as presented below.
Proposition 2.3. ( [9]) If G0 and {Gε}ε>0 satisfy(H1)-(H2), then the family {Xε}ε>0 as given
by (2.1) satisfies the large deviation principle in E with rate function I as defined by (2.4).

2.2. Uniform large deviation principle. In this subsection, we recall the definition of
uniform large deviation principle and recall the uniform contraction principle for proving such
uniform large deviations in a separable Banach space.
Definition 2.4. Let Λ be a nonempty set and Z be a separable Banach space. Given λ ∈ Λ,
suppose {νε,λ}ε>0 is a family of probability measures on (Z,B (Z)) and Jλ : Z → [0,∞] is
a good rate function. We say the family {νε,λ}ε>0 satisfies a large deviation principle on Z
uniformly in λ ∈ Λ with rate function Jλ if:

1. For every s ≥ 0, δ1 > 0 and δ2 > 0, there exists ε0 > 0 such that

inf
λ∈Λ

(
νε,λ (N (zλ, δ1)) − e−

Jλ(zλ)+δ2
ε

)
≥ 0,∀ε ≤ ε0,∀zλ ∈ Jsλ, (2.5)

where N (zλ, δ1) = {z ∈ Z : ∥z − zλ∥Z < δ1} and Jsλ = {z ∈ Z, Jλ (z) ≤ s}.
2. For every s0 ≥ 0, δ1 > 0 and δ2 > 0, there exists ε0 > 0 such that

sup
λ∈Λ

νε,λ (Z \ N (Jsλ, δ1)) ≤ e−
s−δ2

ε ,∀ε ≤ ε0, ∀s ≤ s0, (2.6)

where N (Jsλ, δ1) = {z ∈ Z : dist (z, Jsλ) < δ1}.
Theorem 2.5. (Uniform contraction principle, [14]) Suppose Λ is a nonempty set, Y and Z
are separable Banach spaces. Let {µε}ε>0 be a family of probability measures satisfying the
large deviation principle with rate function I : Y → [0,∞] on (Y,B (Y )). Given λ ∈ Λ, let
Tλ : Y → Z be a locally Lipschitz continuous mapping, that is for every R > 0, there exists a
constant LR > 0 such that for all λ ∈ Λ, y1, y2 ∈ Y , with ∥y1∥ ≤ R and ∥y2∥ ≤ R, we have

∥Tλ (y1) − Tλ (y2) ∥Z ≤ LR∥y1 − y2∥Y .

Given λ ∈ Λ and ε > 0, let νε,λ = µε ◦ (Tλ)−1. Then we have {νε,λ}ε>0 satisfies the large
deviation principle on Z uniformly in λ ∈ Λ with good rate function Jλ as given by:

Jλ (z) = inf{I (y) : y ∈ (Tλ)−1 (z)},∀z ∈ Z.

We will use Theorem 2.5 to prove the uniform large deviation principle of the solutions of
the stochastic equation (1.1) with respect to initial data in a bounded set.

3. Existence of solutions of fractional p-Laplacian stochastic equations. In this
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section, we give the assumption of nonlinear term in stochastic equation (1.1) and discuss the
existence and uniqueness of solutions of the equation as well.

We first recall the concept of fractional p-Laplacian (−∆)αp on Rn, where 0 < α < 1 and
2 ≤ p <∞. Denote by

Lp−1
α (Rn) =

{
u : Rn → Rn is measurable,

∫
Rn

|u (x)|p−1

(1 + |x|)n+pα
dx <∞

}
.

For u ∈ Lp−1
α (Rn) , x ∈ Rn and ϵ > 0, we write

(−∆)αp,ϵ u (x) = C (n, p, α)

∫
y∈Rn,|y−x|>ϵ

|u (x) − u (y)|p−2 (u (x) − u (y))

|x− y|n+pα
dy,

where the normalized constant C (n, p, α) is given by

C (n, p, α) =
α4αΓ

(
pα+p+n−2

2

)
πn/2Γ (1 − α)

, with Γ being the usual Gamma function.

Then the fractional p-Laplacian operator (−∆)αp , with 0 < α < 1 and 2 ≤ p <∞ is defined by

(−∆)αp u (x) = lim
ϵ↓0

(−∆)αp,ϵ u (x)

= C (n, p, α)P.V.

∫
Rn

|u (x) − u (y)|p−2 (u (x) − u (y))

|x− y|n+pα
dy, x ∈ Rn,

if the limits exist, where P.V. means the principle value of the integral. The fractional Sobolev
space Wα,p (Rn), with 0 < α < 1 and 2 ≤ p <∞ is defined as:

Wα,p (Rn) =

{
u ∈ Lp (Rn) :

∫
Rn

∫
Rn

|u (x) − u (y)|p

|x− y|n+pα
dxdy <∞

}
, (3.1)

endowed with the norm

∥u∥Wα,p(Rn) =

(∫
Rn

|u (x)|pdx+ ∥u∥p
Ẇα,p(Rn)

) 1
p

, ∀u ∈ Wα,p (Rn) , (3.2)

where

∥u∥p
Ẇα,p(Rn) =

∫
Rn

∫
Rn

|u (x) − u (y) |p

|x− y|n+pα
dxdy, u ∈ Wα,p (Rn) , (3.3)

is the so-called Gagliardo semi-norm on Wα,p (Rn).
Moreover, we can find in [3] that the inequality below is established:(

|a|p−2a− |b|p−2b
)

(a− b) ≥ β|a− b|p for all p ∈ [2,∞) , (3.4)
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where β is a positive constant only depending on p.
For convenience, in the rest of the paper, we write H = L2 (Rn), and V = Wα,p (Rn). We

also use L2 (H1, H2) for the space of Hilbert-Schmidt operators from separable Hilbert space
H1 to separable Hilbert space H2 endowed with the norm ∥ · ∥L2(H1,H2).

For the nonlinear term F in equation (1.1), we assume F : R×Rn×R → R is continuous,
such that for every (t, x, u) ∈ R× Rn × R, we have:

F (t, x, u)u ≥ λ|u|q−ψ1 (t, x) , ψ1 ∈ L1
loc

(
R, L1 (Rn)

)
, (3.5a)

|F (t, x, u)| ≤ ψ2 (t, x) |u|q−1 + ψ3 (t, x) ,

ψ2 ∈ L∞
loc (R, L∞ (Rn)) , ψ3 ∈ Lq̂loc

(
R, Lq̂ (Rn)

)
, (3.5b)

∂

∂u
F (t, x, u) ≤ ψ4 (t, x) , ψ4 ∈ L∞

loc (R, L∞ (Rn)) , (3.5c)

where λ > 0, q > 1 are constants, q̂ denotes the conjugate exponent of q.
Definition3.1. For every t ∈ [0, T ], ω ∈ Ω, a continuous function u : H → H is said to be the
weak solution of problem (1.1)-(1.2), if

u ∈ C ([0, T ], H)
⋂

Lp ([0, T ], V )

and
du

dt
∈ L

p
p−1

(
[0, T ],W−α, p

p−1 (Rn)
)

and for every ξ ∈ H
⋂
V ,

d

dt
(u, ξ) +

C (n, p, α)

2

∫
Rn

∫
Rn

|u (x) − u (y)|p−2 (u (x) − u (y)) (ξ (x) − ξ (y))

|x− y|n+pα
dxdy

=

∫
Rn

F (t, x, u (t)) ξ (x) dx+

∫
Rn

g (t, x) ξ (x) dx+

∫
Rn

(
ξ (x) ,

√
εQdW

)
.

(3.6)

By [15] we know, when the conditions(3.5a), (3.5b), (3.5c) satisfied, there exists the unique
solution of problem (1.1)-(1.2).

Throughout this paper, we assume that (Ω,F , {Ft}t∈R, P ) is a complete filtered space with
usual condition. We also assume that W is a two-side real-valued Wiener process with identity
covariance operator in H, that means there exists another separable Hilbert space U such that
the embedding H ↪→ U is a Hilbert-Schmidit operator and W takes value in U . Next, we
discuss the uniform large deviation principle of the solutions of linear equation.

4. Large deviation principle of linear equations. In this section, we think of the large de-
viation principle of the linear equation of the fractional stochastic p-Laplacian reaction-diffusion
equation (1.1):

dzε (t) + (−∆)αp z
ε (t) dt =

√
εQdW (t) , zε (0) = 0. (4.1)
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We will show the family of the distributions of the solutions zε of problem (4.1) satisfies the large
deviation principle in C ([0, T ], H)

⋂
Lp (0, T ;V ) as ε→ 0. It is easy to prove the existence and

uniqueness of problem (4.1) for every ε > 0. Then as an immediately result, there exists a Borel
measurable mapping Gε : C ([0, T ], U) → C ([0, T ], H)

⋂
Lp (0, T ;V ) such that zε = Gε (W ) P -

almost surely.
Given v ∈ L2 (0, T ;H), consider the control equation of problem (4.1):

dzv
dt

(t) + (−∆)αp zv (t) = Qv (t) , zv (0) = 0. (4.2)

It is obviously that for every v ∈ L2 (0, T ;H), the problem (4.2) has the unique solution
zv ∈ C ([0, T ], H)

⋂
Lp (0, T ;V ).

Next, let G0 : C ([0, T ], U) → C ([0, T ], H)
⋂
Lp (0, T ;V ) be the mapping given below, for

every ξ ∈ C ([0, T ], U),

G0 (ξ) =

{
zv if ξ =

∫ ·
0
v (t) dt for some v ∈ L2 (0, T ;H) ;

0, otherwise,
(4.3)

where zv is the solution of (4.2).
Given ϕ ∈ C ([0, T ], H)

⋂
L2 (0, T ;V ), denote by

I (ϕ) = inf

{
1

2

∫ T

0

∥v (s) ∥2Hds : v ∈ L2 (0, T ;H) , zv = ϕ

}
, (4.4)

where zv is the solution of problem (4.2). Again, we let the infimum of empty sets be ∞.
We next show the solutions of problem (4.2) satisfy the large deviation principle in

C ([0, T ], H)
⋂
Lp (0, T ;V ) with the rate function as we have given in (4.4). First, we will show

the solutions of problem (4.2) are locally Lipschitz continuous with respect to v.
Lemma 4.1. For every T > 0, there exists a constant C1 > 0 depending on T , such that for
every v, v1, v2 ∈ L2 (0, T ;H), the solutions zv, zv1 , zv2 of (4.2) satisfy

∥zv∥2C([0,T ],H) + ∥zv∥2L2(0,T ;V ) ≤ C1∥v∥2L2(0,T ;H),

and
∥zv1 − zv2∥2C([0,T ],H) + ∥zv1 − zv2∥2L2(0,T ;V ) ≤ C1

(
∥v1 − v2∥2L2(0,T ;H)

)
.

Proof: We first take an operator A : V → V ∗, for every u, v ∈ V ,

⟨A (u) , v⟩(V ∗,V )

=
C (n, p, α)

2

∫
Rn

∫
Rn

|u (x) − u (y)|p−2 (u (x) − u (y)) (v (x) − v (y))

|x− y|n+pα
dxdy.

(4.5)

The hemicontinuous, monotone and boundedness of operator A can be found in [17] and hence
for the problem (4.2), we can change it into an operator equation:

dzv (t) + Azv (t) dt = Qv (t) dt, zv (0) = 0. (4.6)
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Moreover, by [3] we observe that such operator equation satisfies the energy equation below

d

dt
∥zv (t) ∥2 + C (n, p, α) ∥zv (t) ∥p

Ẇα,p(Rn)
= 2 (Qv (t) , zv (t)) ,

then we have

d

dt
∥zv (t) ∥2 + C (n, p, α) ∥zv (t) ∥p

Ẇα,p(Rn)
≤ ∥zv (t) ∥2 + ∥Q∥2L2(H,H)∥v (t) ∥2.

By Gronwall’s Lemma we know

∥zv (t) ∥2 ≤ ∥Q∥2L2(H,H)∥v∥2L2(0,T ;H)e
T ,

and hence we have
∥zv∥2C([0,T ],H) ≤ eT∥Q∥2L2(H,H)∥v∥2L2(0,T ;H),

and
∥zv∥2L2(0,T ;H) ≤ TeT∥Q∥2L2(H,H)∥v∥2L2(0,T ;H).

Thus we know the Gagliardo semi-norm ∥zv∥Ẇα,p(Rn) is bounded while v is bounded.
Next, we will show when v is bounded, the norm of zv in space Lp (Rn) is bounded to

complete the proof. Multiplying (4.6) by |zv|p−2zv and integrating over Rn we have

1

p

d

dt
∥zv∥pLp(Rn) +

∫
Rn

Azv|zv|p−2zvdx = 2
(
Qv, |zv|p−2zv

)
. (4.7)

For the second term on left-hand of (4.20), by the definition of p-Laplacian operator and
the condition (3.4) we have∫

Rn

Azv|zv|p−2zvdx ≥ C (n, p, α) β

2

∫
Rn

∫
Rn

|zv (x) − zv (y)|2p−2

|x− y|n+pα
dxdy ≥ 0. (4.8)

Then by (4.7) and (4.8) we have

1

p

d

dt
∥zv∥pLp(Rn) ≤ 2∥Q∥L2(H,H)∥v∥∥zv∥p−1

which implies that

∥zv∥pLp(Rn) ≤ 2pT∥Q∥L2(H,H)∥v∥L2(0,T ;H)∥zv∥p−1
L2([0,T ],H),

and then the desired estimate established immediately. □
By Lemma 4.1 we see that the solution zv of (4.2) is continuous in C ([0, T ], H)

⋂
Lp (0, T ;V )

with respect to v in the norm topology of L2 (0, T ;H). Next, we prove such continuous holds
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with respect to v in the weak topology of L2 (0, T ;H). To that end, define an operator
T : L2 (0, T ;H) → C ([0, T ], H) by

T (v) (t) =

∫ t

0

Qv (s) ds, ∀v ∈ L2 (0, T ;H) . (4.9)

It follows from [14] that the operator T has the following property.
Lemma 4.2. ( [14]) Let T be the operator as defined in (4.9),then we have:
(i) T is continuous from the weak topology of Lp (0, T ;V ) to the strong topology of C ([0, T ], H).
(ii) T : L2 (0, T ;H) → C ([0, T ], H) is compact with respect to the strong topology of C ([0, T ], H).
Next, we consider the convergence of the solutions of problem (4.2).
Lemma 4.3. Suppose Q ∈ L2 (H,H), v, vn ∈ L2 (0, T ;H) for all n ∈ N and zv, zvn are the so-
lutions of problem (4.2), respectively. If vn → v weakly in L2 (0, T ;H), then zvn → zv strongly
in C ([0, T ], H)

⋂
Lp (0, T ;V ).

Proof: Suppose vn → v weakly in L2 (0, T ;H). Then {vn}∞n=1 is bounded in L2 (0, T ;H). By
Lemma 4.1 we see that there exists c1 = c1 (t) > 0 such that

∥zvn∥C([0,T ],H) + ∥zv∥C([0,T ],H) + ∥zvn∥L2(0,T ;V ) + ∥zv∥L2(0,T ;V ) ≤ c1, ∀n ∈ N. (4.10)

By problem (4.2) we have

d

dt
(zvn − zv) + (−∆)αp (zvn − zv) = Q (vn − v) , zvn (0) = zv (0) = 0, (4.11)

which shows that zvn − zv is the solution of problem (4.2) with respect to vn − v. Then use
operator A again we have

d

dt
∥zvn − zv∥2 + C (n, p, α) ∥zvn − zv∥pẆα,p(Rn)

= 2 (Q (vn − v) , zvn − zv) . (4.12)

For each n ∈ N and t ∈ [0, T ], set

ψn (t) =

∫ t

0

Q (vn (s) − v (s)) ds. (4.13)

Since vn → v weakly in L2 (0, T ;H), by Lemma 4.2 we get

ψn (t) → 0 in C ([0, T ], V ) as n→ ∞. (4.14)

then we consider the right side of (4.12), by (4.13) and (4.14) we have

2 (Q (vn (t) − v (t)) , zvn (t) − zv (t)) = 2

(
d

dt
ψn (t) , zvn (t) − zv (t)

)
= 2

d

dt
(ψn (t) , zvn (t) − zv (t)) − 2

(
ψn (t) ,

d

dt
(zvn (t) − zv (t))

)
9



= 2
d

dt
(ψn (t) , zvn (t) − zv (t)) − 2 (ψn (t) , Q (vn − v))

+ 2 (ψn (t) , A (zvn (t) − zv (t)))

≤ 2
d

dt
(ψn (t) , zvn (t) − zv (t)) + 2∥ψn (t) ∥∥Q∥L2(H,H)∥vn − v∥

+ 2∥ψn (t) ∥V ∥A∥ (∥zvn (t) ∥V + ∥zv (t) ∥V ) , (4.14)

By (4.12)-(4.14) we get for t ∈ (0, T ),

d

dt
∥zvn (t) − zv (t) ∥2 + C (n, p, α) ∥zvn (t) − zv (t) ∥p

Ẇα,p(Rn)

≤2
d

dt
(ψn (t) , zvn (t) − zv (t)) + 2∥ψn (t) ∥∥Q∥L2(H,H)∥vn − v∥

+ 2∥ψn (t) ∥V ∥A∥ (∥zvn (t) ∥V + ∥zv (t) ∥V ) ,

which shows that for all t ∈ [0, T ],

∥zvn (t) − zv (t) ∥2 + C (n, p, α)

∫ t

0

∥zvn (s) − zv (s) ∥p
Ẇα,p(Rn)

ds

≤2 (ψn (t) , zvn (t) − zv (t)) + 2∥Q∥L2(H,H)

∫ t

0

∥ψn (s) ∥∥vn (s) − v (s) ∥ds

+ 2∥A∥
∫ t

0

∥ψn (s) ∥V (∥zvn (s) ∥V + ∥zv (s) ∥V ) ds

≤2∥ψn (t) ∥∥zvn (t) − zv (t) ∥ + 2∥Q∥L2(H,H)∥ψn∥C([0,T ],H)

∫ t

0

(∥vn (s) ∥ + ∥v (s) ∥) ds

+ 2∥A∥∥ψn∥C([0,T ],V )

∫ t

0

(∥zvn (s) ∥V + ∥zv (s) ∥V ) ds

≤1

2
∥zvn (t) − zv (t) ∥2 + 2∥ψn∥2C([0,T ],H)

+ 2T
1
2∥Q∥L2(H,H)∥ψn∥C([0,T ],H)

(
∥vn∥L2(0,T ;V ) + ∥v∥L2(0,T ;V )

)
+ 2T

1
2∥A∥∥ψn∥C([0,T ],V )

(
∥zvn∥L2(0,T ;V ) + ∥zv∥L2(0,T ;V )

)
. (4.16)

By (4.16) we see that

sup
0≤t≤T

(
∥zvn (t) − zv (t) ∥2 + 2C (n, p, α)

∫ t

0

∥zvn (s) − zv (s) ∥p
Ẇα,p(Rn)

ds

)
10



≤4∥ψn∥2C([0,T ],H) + 4T
1
2∥Q∥L2(H,H)∥ψn∥C([0,T ],H)

(
∥vn∥L2(0,T ;V ) + ∥v∥L2(0,T ;V )

)
+ 4T

1
2∥A∥∥ψn∥C([0,T ],V )

(
∥zvn∥L2(0,T ;V ) + ∥zv∥L2(0,T ;V )

)
. (4.17)

Since {vn}∞n=1 is bounded in L2 (0, T ;H), by (4.10) and (4.13) we find that the right-hand side
of (4.17) converges to zero as n→ ∞, from which we have

lim
n→∞

∥zvn (t) − zv (t) ∥2 = 0, (4.18)

and

lim
n→∞

∫ t

0

∥zvn (s) − zv (s) ∥p
Ẇα,p = 0. (4.19)

Next, mutiplying (4.11) by |zvn − zv|p−2 (zvn − zv) and integrating over Rn we have

1

p

d

dt
∥zvn − zv∥pLp(Rn) +

∫
Rn

(−∆)αp (zvn − zv) |zvn − zv|p−2 (zvn − zv) dx

=

∫
Rn

Q (vn − v) |zvn − zv|p−2 (zvn − zv) dx. (4.20)

Again, for the second term on left-hand of (4.20), by the definition of p-Laplacian operator
and the condition (3.4) we have∫

Rn

(−∆)αp (zvn − zv) |zvn − zv|p−2 (zvn − zv) dx

≥ C (n, p, α) β

2

∫
Rn

∫
Rn

|(zvn − zv) (x) − |(zvn − zv) (y)|2p−2

|x− y|n+pα
dxdy ≥ 0. (4.21)

And for the right-hand of (4.20) we have∫
Rn

Q (vn − v) |zvn − zv|p−2 (zvn − zv) dx

=
(
Q (vn − v) , |zvn − zv|p−2 (zvn − zv)

)
≤ |
(
Q (vn − v) , |zvn − zv|p−1

)
|

=

∣∣∣∣( d

dt
ψn (t) , |zvn − zv|p−1

)∣∣∣∣
=

∣∣∣∣ ddt (ψn (t) , |zvn − zv|p−1
)
−
(
ψn (t) ,

d

dt
|zvn − zv|p−1

)∣∣∣∣
=

∣∣∣∣ ddt (ψn (t) , |zvn − zv|p−1
)
−
(
ψn (t) , (p− 1) (zvn − zv)

p−2 d

dt
(zvn − zv)

)∣∣∣∣
11



=

∣∣∣∣ ddt (ψn (t) , |zvn − zv|p−1
)
−
(
ψn (t) , (p− 1) (zvn − zv)

p−2Q (vn (t) − v (t))
)

+
(
ψn (t) , (p− 1) (zvn − zv)

p−2A (zvn (t) − zv (t))
)∣∣

≤
∣∣∣∣ ddt (ψn (t) , |zvn − zv|p−1

)∣∣∣∣+ |
(
ψn (t) , (p− 1) (zvn − zv)

p−2Q (vn (t) − v (t))
)
|

+ |
(
ψn (t) , (p− 1) (zvn − zv)

p−2A (zvn (t) − zv (t))
)
|. (4.22)

Then integrating (4.20)-(4.22) on [0, T ] we have

1

p
∥zvn − zv∥pLp(Rn) ≤ ∥ψn∥∥zvn − zv∥p−1

+ (p− 1) ∥ψn∥C([0,T ],H)

∫ T

0

∥ (zvn (t) − zv (t)) ∥p−2∥Q (vn (t) − v (t)) ∥dt

+ (p− 1) ∥ψn∥C([0,T ],H)

∫ T

0

∥A∥∥zvn (t) − zv (t) ∥p−1dt

≤ (p− 1) ∥ψn∥C([0,T ],H)∥Q∥L2(H,H)∥vn − v∥C([0,T ],H)

∫ T

0

∥ (zvn (t) − zv (t)) ∥p−2dt

+ (p− 1) ∥ψn∥C([0,T ],H)∥A∥
∫ T

0

∥ (zvn (t) − zv (t)) ∥p−1dt+ ∥ψn∥∥zvn − zv∥p−1. (4.23)

Then by the convergence of zvn − zv in space H and Lemma 4.1 we have

lim
n→∞

∥zvn − zv∥pLp(Rn) = 0,

along with (4.19) and the definition of the norm on space V we can infer that

lim
n→∞

∫ T

0

∥zvn − zv∥V dt = 0.

together with (4.18) show that the Lemma 4.3 comes into existence. □
To prove the solutions of (4.1) satisfy the large deviation principle under the rate function

given by (4.4) in the space C ([0, T ], H)
⋂
Lp (0, T ;V ) , we need the satisfaction of condition

(H2) about the such solutions.
Lemma 4.4. For every N <∞, the set

KN =

{
G0

(∫ ·

0

v (t) dt

)
: v ∈ SN

}
, (4.24)
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is a compact subset of C ([0, T ], H)
⋂
Lp (0, T ;V ), where SN is the set as we have defined in

(2.2).
Proof. By (4.3) and (4.24) we have

KN =

{
zv : v ∈ L2 (0, T ;H) ,

∫ T

0

∥v (t) ∥2Hdt ≤ N

}
,

where zv is the solution of (4.2).

Let {zvn} be a sequence in KN , then by the definition of KN we know
∫ T
0
∥v (t) ∥2Hdt ≤ N ,

which means there exists v ∈ SN and a subsequence {vnk
}∞k=1 of {vn}∞n=1 such that vnk

→ v
weakly in L2 (0, T ;H). Then use Lemma 4.3 we get the fact that zvnk

→ uv strongly in the
space C ([0, T ], H)

⋂
Lp (0, T ;V ). Thus the Lemma is established. □

Furthermore, such property of the measurable map Gε below is needed to prove (H1).

Lemma 4.5. Let v ∈ AN for some N < ∞ and zεv = Gε
(
W + ε−

1
2

∫ ·
0
v (t) dt

)
. Then zεv is the

unique solution to

dzεv + (−∆)αp z
ε
vdt = Qvdt+

√
εQdW, zεv (0) = 0. (4.25)

In addition, there exists C2 = C2 (T,N) > 0 such that for any v ∈ AN , the solution zεv satisfies
for all ε ∈ (0, 1),

E
(
∥zεv∥2C([0,T ],H)

)
+ E

(
∥zεv∥2L2(0,T ;V )

)
≤ C2. (4.26)

Proof.The proof of Lemma 4.5 is the same as the proof in [14, Lemma 4.6] so we omit it here.□
Then we are ready to show G0 and Gε satisfying the condition (H1) to complete this

subsection.
Lemma 4.6. Let {vε} ⊆ AN for some N < ∞. If {vε} converges in distribution to v

as SN -valued random variables, then Gε
(
W + ε−

1
2

∫ ·
0
vε (t) dt

)
converges to G0

(∫ ·
0
v (t) dt

)
in

C ([0, T ], H)
⋂
Lp (0, T ;V ) in distribution.

Proof. Let zv = G0
(∫ ·

0
v (t) dt

)
. By (4.3) we see that zv is the solution of (4.2). Let zεvε =

Gε
(
W + ε−

1
2

∫ ·
0
vε (t) dt

)
. By lemma 4.5 we know that zεvε is the solution to the equation:

dzεvε + (−∆)αp z
ε
vεdt = Qvεdt+

√
εQdW, zεvε (0) = 0. (4.27)

To show that zεvε converges to zv in C ([0, T ], H)
⋂
Lp (0, T ;V ) in distribution as ε → 0,

we first establish the convergence of zεvε − zvε with G0
(∫ ·

0
vε (t) dt

)
. By (4.2) we have

dzvε + (−∆)αp zvεdt = Qvεdt, zvε (0) = 0. (4.28)

By (4.27) and (4.28) we get

d (zεvε − zvε) + (−∆)αp
(
zεvε − zvε

)
dt =

√
εQdW. (4.29)
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By (4.9) and under Definition 3.1 with operator A we have for t ∈ [0, T ],

∥zεvε (t) − zvε (t) ∥2 + C (n, p, α)

∫ t

0

∥zεvε (s) − zvε (t) ∥p
Ẇα,pds

= 2
√
ε

∫ t

0

(zεvε (s) − zvε (s) , QdW ) . (4.30)

which implies that for all t ∈ [0, T ],

E
(

sup
0≤r≤t

(
∥zεvε (r) − zvε (r) ∥2 + C (n, p, α)

∫ t

0

∥zεvε (s) − zvε (s) ∥p
Ẇα,pds

))
≤ 2

√
εE
(

sup
0≤r≤t

|
∫ r

0

(zεvε (s) − zvε (s) , QdW )|
)
. (4.31)

For the right-hand of (4.31), by the Burkholder inequality we get for ε ∈ (0, 1),

2
√
εE
(

sup
0≤r≤t

|
∫ r

0

(zεvε (s) − zvε (s) , QdW )|
)

≤6
√
ε∥Q∥L2(H,H)E

((∫ t

0

∥zεvε (s) − zvε (s) ∥2ds
) 1

2

)

≤3
√
ε∥Q∥L2(H,H) + 3

√
ε∥Q∥L2(H,H)

∫ t

0

E
(
∥zεvε (s) − zvε (s) ∥2

)
ds, (4.32)

which along with (4.31) implies that for all t ∈ [0, T ] and ε ∈ (0, 1),

E
(

sup
0≤r≤t

(
∥zεvε (r) − zvε (r) ∥2 + C (n, p, α)

∫ t

0

∥zεvε (s) − zvε (s) ∥p
Ẇα,pds

))
≤ 3

√
ε∥Q∥L2(H,H) + 6

√
ε∥Q∥L2(H,H)

∫ t

0

∥zεvε (s) ∥2 + ∥zvε (s) ∥2ds. (4.33)

On the other hand, by Lemmas 4.1 and 4.5 we see that there exists c1 = c1 (T,N) > 0 such
that for all ε ∈ (0, 1),

E
(
∥zεvε − zvε∥2C([0,T ],H)

)
+ C (n, p, α)E

(∫ T

0

∥zεvε (s) − zvε (s) ∥p
Ẇα,pds

)
≤3

√
ε∥Q∥L2(H,H) + 6

√
εTc1∥Q∥L2(H,H). (4.34)

By (4.34) we see that
lim
ε→0

E
(
∥zεvε − zvε∥2C([0,T ],H)

)
= 0,

and

lim
ε→0

E
(∫ T

0

∥zεvε (s) − zvε (s) ∥p
Ẇα,pds

)
= 0.
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Moreover we can use the same method as the one we used in Lemma 4.3 when proving the
convergence of ∥zvn − zv∥Lp(Rn) in space H to get the condition below:

lim
ε→0

E
(
∥zεvε−zvε∥

p
Lp(Rn)

)
= 0,

so we omit the proof. Then by the three conditions above, we have

lim
ε→0

(zεvε − zvε) = 0 in probability in C ([0, T ], H)
⋂

Lp (0, T ;V ) . (4.35)

Since {vε} converges in distribution to v in SN , by Skorokhod’s theorem, there exists a prob-

ability space
(

Ω̃, F̃ , P̃
)

and SN -valued random variables ṽε and ṽ on
(

Ω̃, F̃ , P̃
)

such that ṽε

and ṽ have the same distribution as vε and v respectively, and ṽε converges to ṽ almost surely
in SN which is endowed with weak topology.
By Lemma 4.3 we find that

zṽε → zṽ in C ([0, T ], H)
⋂

Lp (0, T ;V ) almost surely,

and hence
zṽε → zṽ in C ([0, T ], H)

⋂
Lp (0, T ;V ) in distribution,

which implies that

zvε → zv in C ([0, T ], H)
⋂

Lp (0, T ;V ) in distribution,

along with (4.35) shows that

zεvε → zv in C ([0, T ], H)
⋂

Lp (0, T ;V ) in distribution,

as desired. □
Then by Proposition 2.3 and Lemmas 4.4 and 4.6, we obtain the large deviation principle

of the solutions of the linear equation (4.2), as described below.
Lemma 4.7. If zε is the solution of (4.2), then the family {zε} satisfies the large deviation
principle in C ([0, T ], H)

⋂
L2 (0, T ;V ) with good rate function as given by (4.4) as ε→ 0.

In the next we show the uniform large deviation principle of stochastic p-Laplacian reaction-
diffusion equation (1.1), which is the main result of the paper.

5. Uniform large deviation principle of nonlinear equations.
In this section, we will use the method mentioned in Theorem 2.5 to prove the uniform large
deviation principle of (1.1)-(1.2) with respect to u0 in a bounded subset of H.

Given u0 ∈ H and z ∈ C ([0, T ], H), consider the deterministic equation:

dũ

dt
+ (−∆)αp ũ+ F (t, x, ũ+ z) = g, ũ (0) = 0. (5.1)

15



Under condition (3.5a)-(3.5c), it is easy to show that for every u0 ∈ H and z ∈ C ([0, T ], H),
such deterministic equation (5.1) has a unique solution ũ ∈ C ([0, T ], H)

⋂
Lp (0, T ;V ). For

convenience, we write the solution of problem (5.1) as ũ (t, u0, z).
Note that if uε and zε are the solutions of (1.1)-(1.2) and (4.2), respectively, then ũε =

uε−zε is a solution of (5.1) with z replaced by zε. To prove the uniform large deviation principle
of the solution of (1.1), we need the locally Lipshitz continuity of the solutions of (5.1) first.
Lemma 5.1. If (3.5a)-(3.5c) hold and T > 0. Then for every R1 > 0 and R2 > 0, there exists
a positive constant LR1,R2 depending on R1, R2 and T such that the solution of (5.1) satisfies

∥ũ (·, u0, z1) − ũ (·, u0, z2) ∥C([0,T ],H)
⋂
Lp(0,T ;V ) ≤ LR1,R2∥z1 − z2∥C([0,T ],H),

for all u0 ∈ H with ∥u0∥ ≤ R1 and z1, z2 ∈ C ([0, T ], H) with ∥z1∥C([0,T ],H) ≤ R2 and
∥z2∥C([0,T ],H) ≤ R2.
Proof. Let z1, z2 ∈ C ([0, T ], H) with ∥z1∥C([0,T ],H) ≤ R1 and ∥z2∥C([0,T ],H) ≤ R2. For
v (t) = ũ (t, u0, z1) − ũ (t, u0, z2), by (5.1) we have

d

dt
v (t) + (−∆)αp v (t) = − F (t, x, ũ (t, u0, z1) + z1 (t))

+ F (t, x, ũ (t, u0, z2) + z2 (t)) , (5.2)

with v (0) = 0. Then by (5.2) we have

d

dt
∥v (t) ∥2 + C (n, p, α) ∥v (t) ∥p

Ẇα,p(Rn)

≤ 2∥F (t, ·, ũ (t, u0, z1) + z1 (t)) − F (t, ·, ũ (t, u0, z2) + z2 (t)) ∥∥v (t) ∥. (5.3)

For the right-hand of (5.3), by (3.5c) we have

2∥F (t, ·, ũ (t, u0, z1) + z1 (t)) − F (t, ·, ũ (t, u0, z2) + z2 (t)) ∥∥v (t) ∥

= 2∥ ∂
∂u
F (t, x, u′) (ũ (t, u0, z1) + z1 (t) − ũ (t, u0, z2) − z2 (t)) ∥∥v (t) ∥

≤ ∥ψ4 (t, ·) (v (t) + z1 (t) − z2 (t)) ∥∥v (t) ∥
≤ ∥ψ4∥L∞(Rn)

(
2∥v (t) ∥2 + ∥z1 (t) − z2 (t) ∥2

)
, (5.4)

where u′ is a point in [ũ (t, u0, z1) , ũ (t, u0, z2)], then by (5.3)- (5.4) and Gronwall’s Lemma we
obtain for all t ∈ [0, T ],

∥v (t) ∥2 ≤ ∥ψ4∥L∞(Rn)T∥z1 − z2∥2C([0,T ],H)e
2T∥ψ4∥L∞(Rn) . (5.5)

and we also have

C (n, p, α)

∫ T

0

∥v (t) ∥p
Ẇα,p(Rn)

dt ≤ ∥ψ4∥L∞(Rn)

∫ T

0

∥v∥ (∥v∥ + ∥z1 − z2∥) dt
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≤ 2T
1
2∥ψ4∥L∞(Rn)∥v∥2L2(0,T ;H) + ∥ψ4∥L∞(Rn)T∥z1 − z2∥2C([0,T ],H). (5.6)

For convenience we write c2 = ∥ψ4∥L∞(Rn)Te
2T∥ψ4∥L∞(Rn) , and hence we have

∥v∥L2(0,T ;H) =

(∫ T

0

∥v (t) ∥2dt
) 1

2

≤ T
1
2 c

1
2
2 ∥z1 − z2∥C([0,T ],H). (5.7)

Then by (5.6) and (5.7) we have∫ T

0

∥v (t) ∥p
Ẇα,p(Rn)

dt ≤ c3∥z1 − z2∥2C([0,T ],H), (5.8)

where c3 =
2c22T

3
2 ∥ψ4∥L∞(Rn)+T∥ψ4∥L∞(Rn)

C(n,p,α)
is a positive constant.

Next, multiplying (5.2) by |v (t)|p−2v (t) and integrating over Rn we get

1

p

d

dt
∥v (t) ∥pLp(Rn) +

∫
Rn

(−∆)αp v (t) |v (t)|p−2v (t) dx

=
(
F (t, x, ũ (t, u0, z2) + z2 (t)) − F (t, x, ũ (t, u0, z1) + z1 (t)) , |v (t)|p−2v (t)

)
. (5.9)

As we have shown in (4.21), we know the second term on the left-hand of (5.9) is non-negative
and hence together with condition (3.5c) we have

1

p

d

dt
∥v (t) ∥pLp(Rn) ≤ ∥ψ4∥L∞(Rn)∥z1 (t) − z2 (t) + v (t) ∥∥v (t) ∥p−1

≤ ∥ψ4∥L∞(Rn)∥z1 (t) − z2 (t) ∥∥v (t) ∥p−1

+ ∥ψ4∥L∞(Rn)∥v (t) ∥p. (5.10)

Then integrating on [0, t] and together with (5.5) we get

∥v (t) ∥pLp(Rn) ≤
(
c

p−1
2

2 + c
p
2
2

)
pT∥ψ4∥L∞(Rn)∥z1 − z2∥pC([0,T ],H), (5.11)

Then the Lemma is established as a result of (5.5), (5.8) and (5.11). □
Next, we discuss the uniform large deviation of the distributions of solutions of (1.1)-(1.2).
Given T > 0 and u0 ∈ H, let Tu0 : C ([0, T ], H)

⋂
 Lp (0, T ;V ), be the mapping given by

Tu0 (z) = ũ (·, u0, z) , ∀z ∈ C ([0, T ], H)
⋂

 Lp (0, T ;V ) , (5.12)

where ũ (·, u0, z) is the solution of (5.1). Given ϕ ∈ C ([0, T ], H)
⋂

 Lp (0, T ;V ), define

Ju0 (ϕ) = inf{I (ψ) : ψ ∈ C ([0, T ], H)
⋂

Lp (0, T ;V ) ,
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ψ + Tu0 (ψ) = ϕ, ϕ (0) = 0}, (5.13)

where I is the rate function given by (4.4).
We are now ready to show the main result of the paper regarding the uniform large devi-

ation principle of (1.1)-(1.2) in C ([0, T ], H)
⋂
Lp (0, T ;V ).

Theorem 5.2. Suppose (3.5a)-(3.5c) hold and T > 0. Given u0 ∈ H, let uε (·, u0) be the solu-
tions of (1.1)-(1.2), and νε,u0 be the distribution law of uε (·, u0) in C ([0, T ], H)

⋂
Lp (0, T ;V ).

Then the family {νε,u0}ε>0 satisfies a large deviation principle in C ([0, T ], H)
⋂
Lp (0, T ;V )

with rate function Ju0 uniformly with respect to u0 in a bounded subset of H.
Proof. Given u0 ∈ H, let Tu0 and Ju0 be the mappings as defined by (5.7) and (5.8), re-
spectively. Then by Lemma 5.1 we find that z + Tu0 (z) is locally Lipschitz continuous in
z ∈ C ([0, T ], H)

⋂
Lp (0, T ;V ), uniformly with respect to u0 in a bounded subset of H.

Let zε be the solution of (4.2), and µε be the distribution law of zε. Then we have
uε (·, u0) = ũε (·, u0, zε) + zε = (I + Tu0) (zε). Since νε,u0 is the distribution law of uε (·, u0), we
have νε,u0 = µε ◦ (I + Tu0)

−1.
By Lemma 4.7 we know that the family {µε}ε>0 satisfies the large deviation principle in

C ([0, T ], H)
⋂
Lp (0, T ;V ) with rate function I as given by (4.4), which along with Theorem 2.5

implies that the family {νε,u0}ε>0 satisfies the large deviation principle on C ([0, T ], H)
⋂
Lp (0, T ;

V ) uniformly with respect to u0 in a bounded subset of H with rate function given by, for every
ϕ ∈ C ([0, T ], H)

⋂
Lp (0, T ;V ),

Ju0 (ϕ) = inf{I (ψ) : ψ ∈ (I + Tu0)
−1 ({ϕ})}

= inf{I (ψ) : ψ ∈ C ([0, T ], H) ∩ Lp (0, T ;V ) , ψ + Tu0 = ϕ},

which concludes the proof. □
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type continuity and continuous dependence of solutions to associated parabolic equations
on bounded domains. Nonlinear Anal. 135, 129-157 (2016).

[18] Xu, J., Caraballo, T., Valero, J.: Dynamics and large deviations for fractional stochastic
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